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Abstract 13 

Shock metamorphism is rarely found at the surface of the Earth. The most used structures to 14 

identify shock metamorphism are “true Planar Deformation Features” (PDFs) in quartz, now 15 

accepted as diagnostic indicators of a meteorite impact. Here we present several lines of 16 

evidence for shock metamorphism and PDFs developed in quartz occurring on samples centered 17 

on a circular geological structure on Mount Stojkovic (60º54’06"N; 101º55’40"E), which lies 18 

within southern surface exposures of the Siberian Traps. The shock event appears to have 19 

occurred during the eruption of the surface Siberian Traps basalts that cover this region. 20 

Curiously, Mount Stojkovic lies within ~3 km of the tree fall epicenter of the 1908 Tunguska 21 

event. Based on current estimates of the Phanerozoic impact distribution, there is at most a 1 in 22 
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~17,000 chance that the 1908 bolide would randomly fall on the site of a previous impact 23 

structure capable of creating shocked quartz. Just as improbable would be an airbust event, 24 

incapable of creating a small crater, that could have produced shock metamorphism. Our 25 

preferred least implausible hypothesis is that the shock-metamorphism here was associated with 26 

a terrestrial event, a hyperexplosive volcanic gas eruption called ‘Verneshot’. 27 

 28 

1. Introduction 29 

 The 30 June 1908 Tunguska event flattened trees within a >2000 km
2
 region (Vasilyev, 30 

1998), and was associated with a seismic event (Ben-Menahem, 1975) and world-wide 31 

electromagnetic and atmospheric disturbances (Whipple, 1930). It is also linked to a unique 32 

period of ‘White Nights’ over Europe (Brauner, 1908), with the first white nights actually 33 

reported one day (Denning, 1908; Vasilyev, 1998) to one week (Vasilyev, 1998) before the 30 34 

June event. Although it is generally accepted that the 1908 event was caused by a bolide 35 

explosion in the atmosphere 5-10 km above the Tunguska region, no unambiguous meteoritic 36 

material has ever been found near the epicenter of the treefall event, nor has a higher than Earth’s 37 

average amount of extraterrestrial dust (Vasilyev, 1998).  It was not linked to a comet impact, as 38 

this should have led to at least a detectable regional 
14

C spike (Liu et al., 2014), if not a larger 39 

global 
14

C spike commensurate with the far-flung ‘White Nights’ dispersal of Tunguska material. 40 

The only proposed, and very controversial, crater is Lake Cheko (300 m diameter) which lies 41 

8 km NNW of the epicenter (Gasperini et al., 2007; Collins et al., 2008; Gasperini et al., 2008). 42 

In 1999, a Russian researcher presented an extended abstract indicating that she had 43 

found shocked quartz in samples collected on Mt. Stojkovic (Hryanina, 1999), close to the 44 

treefall epicenter (Fig. 1). This astounding claim was not accompanied by figures or other 45 
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evidence to support her findings. We performed fieldwork in June 2008 and July 2009 in an 46 

attempt to replicate and better document her findings. 47 

 48 

2. Geological background 49 

 The Mt. Stojkovic region was the focus of fieldwork in 2008 and 2009, because regional 50 

geologic maps indicate quartzose sandstone outcropping around the flanks of this hill. Mt. 51 

Stojkovic lies within a swampy ~10-km-wide depression known as the “Great Tunguska 52 

Depression” ringed by hills (Fig. 1A). Russian geologic maps interpret this depression as a 53 

volcanic center called Mt. Kulikovskii, which would be part of a bigger volcanic complex, 54 

Khushminskii, composed by several craters of Early Triassic age and associated with the 55 

Siberian Traps volcanism (Sapronov and Sobolenko, 1975; Sapronov, 1986). Mt. Stojkovic is 56 

interpreted as the remnant of one of the volcanic chimneys. Regional geologic maps show Mt. 57 

Stojkovic to be encircled by quartzose sandstone outcrops (Sapronov, 1986). Quartzose 58 

sandstone and conglomerate beds are pre-Siberian Trap continental deposits of Permian age 59 

(Sapronov and Sobolenko, 1975; Sapronov, 1986) that are interpreted to have been uplifted 60 

during the intrusion of the volcanic complex.  61 

Almost the entire Great Tunguska Depression is covered either by taiga forest or by 62 

swamp. Outcrops are rare. Basaltic outcrops are present on Mt. Stojkovic, where there is also an 63 

outcrop of a poorly sorted deposit of sand and pebbles with blocks of up to ~m-size (Fig. 1B). 64 

We frequently used the common permafrost sampling technique of looking for rock fragments 65 

that are disinterred in the exposed roots of recent treefalls in the taiga forest. Trees root very 66 

poorly in the uppermost ~m of non-permafrost, thus treefalls containing rocks are fairly 67 

common. Although these rock fragments are not in place, they are: 1) a mixture of rounded and 68 
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angular shaped fragments, 2) grouped in areas of homogeneous lithologies. These two 69 

characteristics give us confidence that rocks collected in treefalls have not experienced 70 

significant subaereal transport.  71 

The new mapping confirms the existence of sandstone outcrops directly west of Mt. 72 

Stojkovic, where we found only dm-sized fragments of well-lithified quartzose sandstone to 73 

quartzite (Fig. 1B). On Mt. Stojkovic itself the sandstones are confined to a circular region near 74 

its summit (Fig. 1B). The high resolution mapping shows that the basaltic caprock in this region 75 

is essentially continuous except for a ~750 m diameter region near the summit of Mt. Stojkovic.  76 

In this region outcrops of basalt are completely absent. Instead, quartz-rich sand containing 77 

quartz pebbles and cobble sized fragments of quartzite are cropping out. Despite the variety in 78 

grain size, all the components of this deposit are well rounded. The deposit does not contain: 1) 79 

any basalt fragment or material of any size derived from weathering of basalt, 2) any bioclast. In 80 

this semi-circular region there is also the previously known “John’s Rock” (Fig. 1B), a large 81 

boulder (~2 m * 2 m * 1.5 m) of quartzite with well-preserved sedimentary structures. The 82 

siliciclastic sediments are gray to pale pink in color and are characterized by laminations and 83 

graded bedding. Despite the limited size of the samples, some cm-scale thick and long cross sets 84 

are visible, as are parallel laminations. The composition and texture of this material is consistent 85 

with its source being the Permian deposits that underlie much of the Siberian Traps (Sapronov 86 

and Sobolenko, 1975; Sapronov, 1986). These siliciclastic strata have been described as being 87 

deposited in a continental environment in a variety of fluvial settings with predominant high-88 

energy, braided systems. 89 

 The colloquial interpretation for John's Rock and the ~50 m diameter region surrounding 90 

it is that this is a recent glacial deposit. This is unlikely. Glaciologists, in fact, have shown that 91 
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ice-sheets never covered this region; the southernmost extant of Central Siberian ice-sheets is 92 

believed to have been ~200 km to the north of Tunguska (Astakhov, 2004; Svendsen et al., 93 

2004). In corroboration of this, there are no landforms typical of a formerly glaciated region in 94 

the vicinity of Mount Stojkovic. Furthermore, if it were glacial in origin, one would expect a 95 

moraine or drop deposit to contain abundant fragments of the Traps basalt that covers ~98% of 96 

the countryside between Tunguska and the icesheet’s source region in the Putorana plateau 97 

(Astakhov, 2004; Svendsen et al., 2004) at the northern coast of Siberia. Such abundant mafic 98 

fragments are seen in the end-moraines that lie 200 km to the North of Tunguska (Astakhov, 99 

2004), but are not found in the Mt. Stojkovic deposits.  100 

The distribution of quartzite and basalt near the base of Mt. Stojkovic cannot exclude 101 

local downslope transport of quartzite from the John's Rock area. However on the western side 102 

of Mt. Stojkovic we only have found basalts (Fig. 1B). So there is no direct geologic evidence of 103 

downslope transport in this direction. 104 

3. Analytical methods 105 

We examined a total of 33 polished thin sections, 24 were quartzose sandstone/quartzite 106 

and 9 were basalt. We studied the samples under the optical (petrographic) microscope, a 4-axis 107 

universal stage, and a Scanning Electron Microscope (SEM) with Electron Back Scattered 108 

Diffraction (EBSD). SEM and EBSD analyses were made on carbon-coated thin sections and 109 

ultra-polished thin sections. SEM (instrument used at Modena and Reggio Emilia University: 110 

FEI Esem Quanta 200-FEI XL30 with a tungsten filament, micro analysis done with X-EDS 111 

Oxford INCA with a Si(Li) detector) was used to analyze the fabric of nanocrystalline samples 112 

and to make detailed compositional maps.  113 
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4. Deformation lamellae in quartz 114 

 The samples of lithic clasts and fragments collected at Mt. Stojkovic and to its west vary 115 

from quartzarenite (>90% quartz) to orthoquartzite (99%-100% quartz). At the mesoscopic scale, 116 

sedimentary structures are commonly preserved (Fig. 2A). At the microscopic scale, most of the 117 

quartz grains are single crystals. The quartzites are well cemented by secondary quartz 118 

overgrown on the individual grains. The overgrowths grew in optical continuity with the grains 119 

they nucleated from, but the original shape of the grain is revealed by thin impurity rims (Fig. 120 

2B). Sand grains/quartz crystals are typically 1±0.5 mm. Static recrystallization is locally well 121 

developed as well as undulose extinction in the quartz crystals. Both mesoscopic and 122 

microscopic analysis– including thin section analysis with the Rf/Φ or the Fry methods (Ramsay 123 

and Huber, 1983) – on the shape and orientation of the individual grains does not indicate high 124 

bulk strain. Here the original shape and orientation of the grains forming the quartzite is not 125 

known, but a sedimentary fabric is present, and existed before deformation.  126 

Individual quartz grains with usually one and more rarely two sets of deformation 127 

lamellae were identified as a feature in nearly all grains of 10 thin sections of quartzite (samples 128 

SQ(TU08/01), TU09/01, TU09/08, TU09/23, TU09/23bis, TU09/29a, TU09/30, TU09/30bis, 129 

TU09/31, TU09/31bis) (Fig. 2). The lamellae appear as sets of sharp parallel dark bands. 130 

Thickness and spacing of the individual bands are highly variable. Thickness ranges from 4-5 to 131 

30 µm, and spacing from <10 µm to ~0.1 mm with an average of ~30µm. The shape is also 132 

variable from straight to curved. Many grains, though, have a highly heterogeneous distribution 133 

of bands, with areas characterized by high density lamellae. Examination by optical microscope 134 

shows that many of these bands contain fluid inclusions. Some bands only extend through 135 

portions of a grain of quartz, but often, the lamellae extend through the whole grain and into the 136 



7 

quartz cement that surrounds the grains (Fig. 2A), indicating that the lamellae formed after the 137 

sandstone was cemented. 138 

The crystallographic orientations of 100 lamellae sets in 100 grains were measured from 139 

sample SQ(TU08/01).  140 

Figures 3A and 3B show the results of lamellae analysis. Plot A in Figure 3 shows that the 141 

distribution of quartz c-axes in these grains have a strong preferential orientation with angles 142 

between sets of 70°/110°. A plot of the great circle containing c and the pole to the lamellae (Fig. 143 

3B) shows remarkable regularity with an evident tendency for the arrows to point toward a plane 144 

trending EW. Unfortunately the outcrop conditions did not allow the collection of oriented 145 

samples so that a full estimation of the stress field is not possible at this time.  146 

The summary of PDF crystallographic orientations are reported in table 1, while the raw 147 

data are included in the supplementary material (Supplementary Material 1). To improve the 148 

reproducibility of the U-stage measurements we follow the recommendations by Ferrière et al. 149 

(2009). A histogram of angles between the c-axis and poles to the lamellae in quartz grains from 150 

sample SQ(TU08/01), in 5° bins, was built using the spreadsheet by Huber et al. (2011) and it is 151 

shown in Fig. 3C. Using a 5º error envelope on a Wulff net, 70% of measured lamellae 152 

correspond to specific crystallographic orientations: {10 4}, ω{10 3}, and π{10 2}. A 153 

significant number of data show polar angles lower than 17.62°. Indexing of crystallographic 154 

orientations has been performed here (Fig. 3C), but the reader should be aware that since the 155 

angles have been calculated based on only one set (the strongest visible set) of lamellae per 156 

quartz grain, indexing is not unequivocal as there is no unique azimuthal relationship within each 157 

grain. 158 

The comparison of the histogram of Fig. 3C with histograms from the literature, for 159 
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example French and Koeberl (2010), show a similar strong concentration of lamellae at specific 160 

planes with sharp peaks, a characteristic that has been recognized as a characteristic of “true” 161 

Planar Deformation Features – PDFs. In the case of the lamellae measured in sample 162 

SQ(TU08/01), though, the peak is centered at angles generally underrepresented in classical 163 

impact diagrams. For small angles, classic histograms populate the fields <6º and between 15º 164 

and 30º (French, 1998; French and Koeberl, 2010). Remarkably in sample SQ(TU08/01), 165 

lamellae parallel to the basal plane (0001), i.e. when the angle between the C-axis and lamellae 166 

pole is < 6º, are absent, while a relatively high proportion of lamellae poles lie between 8º and 167 

15º from the C-axis. 168 

The optical characteristics, the crystallographic orientations, and the shape of the 169 

frequency distribution of the lamellae in the Tunguska samples have many characteristics 170 

consistent with shock metamorphism. Ferrière et al. (2009) define that PFs (Planar Features that 171 

can be produced by tectonic deformation) are commonly oriented parallel to (0001) and {1011}, 172 

two planes that are not represented in our measurements. Furthermore the absence of PDFs 173 

parallel to the basal plane (0001) is commonly interpreted to indicate shock pressures higher than 174 

10 GPa (Grieve et al., 1996). However the combination of angles shown in Figure 3C also 175 

suggests that the mechanism responsible for the Tunguska PDFs differs somewhat from that 176 

experienced in many other examples of ‘impact shock metamorphism’.  177 

 178 

5. Other evidence for shock metamorphism 179 

Optical microscope observations indicate that some of these quartz-rich samples also 180 

contain “toasted” quartz (French, 1998) (Sample TU09-31 in Figure 4A), silicic pseudotachylite 181 

veinlets (Sample TU09-29b in Figure 4B), spiky outgrowths of quartz and feldspar (mainly 182 
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plagioclase) on clastic quartz and feldspar grains (Vernon, 2004) (Sample TU09-23 in Figure 183 

4C), well-developed ‘mosaic structures’ (French, 1998) of individual grains, and siliceous 184 

spherulites. A back-scatter electron image of sample TU09-25 (Figure 4D) shows ‘box-like’ 185 

plagioclase (Osinski, 2003) which grew in the interstices between the spikes of the quartz and 186 

feldspars outgrowth. Figure 1B shows the distribution of these structures in samples collected in 187 

the mapped area. 188 

We devoted particular attention to the spiky outgrowths. These structures are frequent in 189 

the Tunguska quartzites, and the samples show a variety of outgrowth intensities ranging from 190 

samples where the amount of outgrowths is minor, to samples where the sedimentary texture of 191 

the rock is completely overprinted by outgrowth textures. The spikes range from 50 µm to >1 192 

mm in length and from 10 µm to 0.1 mm wide. A classic interpretation of the spiky outgrowths is 193 

that they are associated with rapid melting and quenching (Vernon, 2004). These characteristics 194 

are not compatible with the more slowly varying contact metamorphism that would be created by 195 

basalt emplacement.  196 

Although not considered to be unique diagnostics for shock metamorphism (French and 197 

Koeberl, 2010), the presence of the features described above provides further evidence in support 198 

of the interpretation that shock metamorphism has affected the sedimentary rocks found at 199 

Mount Stojkovic.  200 

 None of the basalt samples that we examined show evidence of shock metamorphism, 201 

e.g. diaplectic basaltic glass, etc. The lack of shock metamorphism in the basalt implies that the 202 

shock event occurred before the final eruption stages of the local Siberian Traps. 203 

6. What is the origin of shock metamorphism at Tunguska? 204 

 The shock metamorphism that we document here could not have been produced by any 205 



10 

extraterrestrial-impact-linked hypothesis for the 1908 Tunguska event. There is no large crater. 206 

Furthermore, the fact that a few trees remained standing near the center of the region of knocked-207 

down trees, and that these, and the knocked-down trees still had preserved bark is completely 208 

irreconcilable with the >10GPa shock metamorphism described above.  209 

 One hypothesis to explain this observation is that recent glacial processes transported the 210 

shocked rocks to this location.  However, as discussed above, there is no evidence that glaciation 211 

ever extended into this region. Nor is there any local evidence of glaciation at Mt. Stojkovic. 212 

 Another hypothesis to explain this observation is that the 1908 airburst occurred over the 213 

site of a previous large impact that created the ~10 km Great Tunguska Depression (Hryanina, 214 

1999), and that Mt. Stojkovic is the central uplift of this ancient impact event. However, the odds 215 

of this happening are extremely small.  The odds are equal to the fraction of Earth's surface that 216 

has been hit by a previous ancient impact that made a crater large enough to be associated with 217 

shocked quartz. If we assume a minimum diameter for such craters that can produce shocked 218 

quartz of ~1 km, and the power-law size-frequency distribution of N ∝ D-1.8
 (Grieve, 1984; 219 

Grieve and Pesonen, 1992), and a frequency D>20 km of 10
-6

/250 Ma (Grieve, 1984), then we 220 

find that <0.006% of Earth's surface should be covered by post-Mesozoic impact features – in 221 

other words there is less than a 1 in 17,000 chance that a random bolide would have an airburst 222 

over the site of a previous large impact event that occurred within the past 250 Ma. Note that this 223 

estimate does not depend on how frequent airburst events are, as airburst events are much too 224 

small to create shock metamorphism by themselves. It only depends on the fractional area of 225 

Earth’s surface that has previously experienced a large enough impact to induce shock 226 

metamorphism. This is a conservative estimate because it assumes a higher impact frequency 227 

than most other studies have inferred. If a more conventional value for impact frequency is 228 
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assumed (cf. discussion in Hughes, 1998) this would lead to an even smaller estimated 229 

probability of a modern airburst happening over a previous >1 km impact structure. 230 

A third hypothesis is that the Great Tunguska Depression is indeed an ancient volcanic 231 

center associated with the Siberian Traps, but that this center was associated with a terrestrial 232 

shock-metamorphism event, a ‘Verneshot’ (Phipps Morgan et al., 2004). A Verneshot is a 233 

hypothesized kimberlite-pipe-like diatreme that forms during a hyperexplosive volcanic gas 234 

eruption. Mt. Stojkovic could therefore be the edifice created during this Verneshot event that 235 

happened during the rifting and flood basalt volcanism that was building the Siberian Traps. 236 

Although no kimberlites have been found in Tunguska, carbonatites have. The nearest known 237 

carbonatite (60°49’N, 101°53’E) (Pokrovskii et al., 2001) lies ~8 km south of the epicenter (Fig. 238 

1A), and is thought to have formed at the time of the formation of the Siberian Traps (Pokrovskii 239 

et al., 2001). Relatively nearby, many other pipe-like structures (Svensen et al., 2009) and 240 

carbonatites (Pokrovskii et al., 2001) (Supplementary material 2) are also found, structures that 241 

we infer are also related to Siberian trap forming volcanism. In this scenario, the recent 242 

Tunguska event could then be a similar but much smaller terrestrial volcanic gas eruption linked 243 

to renewed plume activity and rifting in this region that is reusing the lithospheric pipe-of-244 

weakness created during the Permian explosive event. This idea provides a potential explanation 245 

for why the 1908 Tunguska epicenter is essentially collocated with the center of the earlier 246 

megashock event. 247 

Possible gas release structures were observed at the time of the 1908 Tunguska outburst. 248 

Local eyewitnesses reported that the event was associated with the appearance of dozens of new, 249 

~50 m diameter, funnel-shaped ‘holes’ in the ground, as well as a larger (~1 km long) linear ‘tear 250 

in the ground’ (Kundt, 2001). These ‘holes’, now filled with water, are preferentially located in 251 
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the lower, most swampy areas of the Great Tunguska Depression, and subsequent Russian 252 

geologists have referred to them as ‘volcanic craters’ (Sapronov and Sobolenko, 1975; Hryanina, 253 

1999).  254 

The idea that the continental lithosphere can have persistent zones of weakness predates 255 

Plate Tectonics. It also underlies the basic conception of the Wilson Cycle. Although the physical 256 

mechanisms remain very uncertain, it is also currently accepted that tectonic/volcanic episodes 257 

have often reoccurred at sites of rifting and volcanism. For example, this behavior is known to 258 

have happened along the Reelfoot Rift (Late Proterozoic) now co-located with the New-Madrid-259 

Rough Creek-Mississippi Embayment (~90 Ma) rift/volcanic lineament (Ervin and McGinnis, 260 

1975; Cox and Van Arsdale, 1997; McBride et al., 2003). Other examples include the Rio Grande 261 

Rift, the Oslo Graben, and the East African Rifts (Williams, 1982), the Benou Rift/Cameroon 262 

Line (Fitton, 1983), and the Baikal Rift system (Logatchev and Zorin, 1987). A possible 263 

explanation is that recurrent thermal anomalies are due to different plumes re-using the same 264 

drainage system at the base of the lithosphere, with plume material preferentially migrating along 265 

pathways where the lithosphere is already relatively thin. 266 

 A fourth possibility would be that the 1908 Tunguska event is terrestrial in origin, a 267 

volcanic gas eruption that reused the persistent lithospheric weakness created by a prior large 268 

bolide impact. This hypothesis seems more contrived to us, yet it also implies that a volcanic gas 269 

eruption was the source of the 1908 Tunguska event.  270 

 The findings above raise the possibility that the Tunguska region is the site of Earth's first 271 

reasonably well-documented hyperexplosive volcanic gas eruption. This explanation for the 272 

Tunguska events is consistent with several earlier suggestions that some sites with shocked 273 

quartz have a terrestrial origin (Bucher, 1963; McCall, 1964; Nicolaysen and Ferguson, 1990; 274 
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Luczaj, 1998) rather than being caused by an impact. It also shares elements of Kundt’s (2001) 275 

proposal that the 1908 Tunguska event and other cryptoexplosions were caused by the ejection of 276 

high-pressure gases from below, and that they are related to the genesis of kimberlites. In 277 

summary, we think that Tunguska may hold an even bigger mystery than a recent bolide airburst 278 

– it may be the smoking gun that a Verneshot occurred here during the eruption of the Siberian 279 

Traps. In any case, we have confidently identified another major enigma associated with the site 280 

of the 1908 Tunguska event — namely what is the origin of the shock metamorphism found 281 

here?  282 

 283 
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Figure Captions 404 

 405 

Figure 1. 406 

Maps of the “Great Tunguska Depression”. (A) Topographic and geological map of the area 407 

around the tree-fall epicenter of the 1908 Tunguska event. Contour elevations in meters. Green 408 

circles represent samples of basalt, pink triangles represent quartzite and purple squares represent 409 

mudstone. The epicenter and the known carbonatite – blue circle (the reference number from 410 

Pokrovskii et al. 2001) - are also shown on the map region. (B) Zoom into the region around Mt. 411 

Stojkovic with newly collected quartzite (pink) and basalt (green) sample locations shown. 412 

Complete sample identification includes “TU09/”, except for sample SQ, which is SQ(TU08/01). 413 
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 414 

Figure 2. 415 

Sample TU09/23, black arrows are showing parallel laminations in the quartzite. Microscopic 416 

features defining the shock metamorphic suite of the Tunguska quartzite samples. (A) Quartz 417 

grain in sample SQ(TU08/01) containing one set of deformation lamellae (crossed polarized 418 

light). The rim of the original clast and the cement overgrowth with deformation lamellae is 419 

visible. (B) two sets of deformation lamellae in a quartz grain from sample SQ(TU08/01). (C) 420 

Quartz grains in sample TU09/31 containing deformation lamellae (crossed polarized light). (D) 421 

Detail of deformation lamellae in sample TU09/31 (crossed polarized light). 422 
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 423 

Figure 3. 424 

Geometric characteristics of the planar deformation lamellae. (A) Lower hemisphere equal-area 425 

projection of quartz c-axes (solid circles) and deformation lamellae (PDFs) (open circles) for 426 

sample SQ. The great circles are the deformation lamellae themselves. (B) Lower hemisphere 427 

equal-area projection showing arcs of great circles connecting optic axes (tail) to pole to lamellae 428 

(head) for grains measured in sample SQ. (C) Histogram of orientation of deformation lamellae 429 

in sample SQ(TU08/01) showing the frequency distribution of the polar angle (angle between the 430 

C-axis of each quartz crystal and the lamellae pole). All measured PDF orientations are 431 

reported; “indexed” (gray) and “unindexed” (black) portions of the histogram bars are 432 

based on measurements using the Huber et al (2011) spreadsheet. Note that the unindexed 433 

PDF orientations are mainly concentrated with angles of 5–15° between the c-axis and 434 

poles to PDFs. 435 
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 436 

Figure 4.  437 

(A) Grain of toasted quartz (plain polarized light) from sample TU09-31. (B) Pseudotachylite 438 

derived from quartzite, with a heterogeneous mixture of plastically deformed wallrock fragments 439 

(light-colored) mixed with discontinuous areas of lighter (silica rich) and darker (k-feldspar-440 

rich), aphanitic material (Sample TU09-29b, plane polarized light). On the lower-left angle of the 441 

photograph is a spherulite consisting mainly of quartz with some alkali feldspar intergrowths. (C) 442 

Spiky outgrowths of quartz and feldspar (mainly plagioclase) on clastic quartz and feldspar 443 

grains (Sample TU09-23, crossed polarized light). At the center of the photograph is a shocked 444 

quartz clastic grain containing PDFs with extensive dendritic overgrowths of quartz and 445 

recrystallization of its boundaries. (D) Scanning electron back-scattered image of “box-like” 446 

plagioclase (Osinski, 2003) that has grown in interstices between the spikes (Sample TU09-25). 447 

 448 
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Table 1 449 

Summary of PDF crystallographic orientations. 450 

Table 1 451 

No. of investigated grains 100 

No. of measured sets 100 

No. of PDF sets/grain 1 

  

Miller-Bravais  Indices * Absolute Frequency (%) 

c (0001) 0 

e {1014} 37 

ω {1013} 10 

Π {1012} 13 

r, z {1011} 1 

m {1010} 0 

ξ {1122} 2 

s {1121} 0 

ρ {2131} 0 

x {5161} 0 

a {1120} 0 

{2241} 0 

{3141} 0 

t {4041} 0 

k {5160} 0 

Unindexed 30 

Total 100 

 452 

* The measured grains contain one PDF set, therefore indexing is not unique. 453 

  454 
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Supplementary material #1 455 

Quartz deformation lamellae in sample SQ(TU08/01) 456 

Def. Lamellae C-axis 

obs T obs P Dir (N or S) obs T obs P Dir (E or W) 

11 14 s 108 17 w 

148 10 n 51 4 w 

119 9 n 21 12 e 

150 6 n 42 5 e 

147 15 s 48 8 e 

132 9 s 29 4 e 

138 14 s 40 0 e 

29 2 n 129 3 w 

141 20 s 356 41 e 

34 2 n 147 10 e 

153 4 n 51 33 w 

128 12 n 26 4 w 

140 14 s 40 21 e 

158 15 s 61 25 e 

20 7 s 112 25 e 

33 13 s 129 28 w 

137 8 s 40 30 e 

142 20 s 37 13 e 

124 7 n 22 7 w 

125 8 s 27 10 e 

33 3 n 133 11 e 

140 6 s 45 24 w 

20 10 s 106 38 w 

20 6 s 119 13 w 

116 11 s 13 7 e 

38 6 n 155 22 e 

28 7 s 118 24 w 

15 0 n 113 3 e 

43 10 s 145 10 w 

23 6 n 104 36 w 

22 2 s 127 6 w 

127 1 n 24 14 w 

31 2 s 133 7 w 

125 11 n 18 20 w 

149 3 n 46 12 w 
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133 15 s 29 18 e 

137 2 s 37 11 w 

359 20 s 104 16 w 

25 14 n 125 18 e 

164 8 n 63 21 w 

147 2 s 45 5 w 

34 9 n 133 4 e 

32 5 s 138 26 e 

131 10 s 35 5 e 

152 1 s 49 9 e 

11 1 s 111 5 e 

136 6 n 35 7 w 

10 0 n 111 12 e 

13 15 s 82 20 e 

139 15 n 44 30 e 

135 13 s 33 32 e 

118 8 s 12 10 w 

126 17 s 23 1 e 

153 5 s 60 14 e 

27 10 s 115 24 e 

40 10 s 142 2 w 

128 2 n 24 6 e 

135 5 s 45 31 w 

126 6 s 12 18 w 

21 10 n 121 2 e 

3 5 n 113 27 e 

12 10 s 116 8 w 

138 7 n 35 11 w 

135 1 s 43 21 e 

119 9 s 197 6 e 

199 14 s 125 7 e 

35 3 s 134 11 e 

22 0 n 121 12 e 

40 6 n 148 24 e 

27 18 s 157 29 w 

35 17 n 135 8 e 

35 16 n 131 27 e 

124 13 n 15 27 w 

33 20 s 134 13 w 
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142 5 s 38 7 w 

32 9 s 133 8 w 

148 17 n 39 10 w 

193 7 n 109 23 w 

120 20 n 11 18 w 

22 11 s 120 20 w 

147 12 s 46 18 w 

134 8 n 19 22 w 

15 21 n 117 21 e 

133 22 s 212 11 w 

202 6 s 134 30 e 

32 11 s 134 15 w 

153 9 s 47 15 e 

144 4 n 51 13 e 

125 4 e 22 12 n 

41 16 s 145 19 w 

142 0 n 45 3 w 

14 26 s 105 33 w 

127 7 s 27 1 w 

157 25 s 54 21 e 

127 16 n 200 9 e 

32 12 s 133 16 w 

140 8 n 31 18 w 

143 21 s 43 14 e 

190 12 s 109 6 w 

24 12 n 123 10 e 

 457 

  458 
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Supplementary material #2 459 

Location of carbonatite outcrops identified by Pokrovskii et al. (2001) 460 

Sample Latitude Longitude 

1 59.557653 100.042645 

2 62.413006 101.535756 

3a 63.150639 104.188855 

3b 63.097101 104.361366 

4 63.114947 100.810021 

5 62.448698 101.714216 

6 62.234547 105.455918 

7 61.883576 104.617158 

8 61.621835 103.683220 

9 61.669425 101.000378 

10 60.818767 101.886727 

11 60.432105 101.886727 

12 60.307183 101.975957 

13 60.271491 99.1384490 

14 60.402362 98.9064520 

15 60.420208 99.0908600 

16 60.087083 98.8886060 

17 59.980007 98.5197900 

18 60.319080 97.9249240 

19 60.896100 96.7173480 

Tunguska Shock 

Centre 

60.901667 101.927778 

 461 

Figure 1 462 

Map view of location of carbonatite outcrops identified by Pokrovskii et al. (2001) 463 
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