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Abstract FuncTion is a static analyzer designed for proving condi-
tional termination of C programs by means of abstract interpretation.
Its underlying abstract domain is based on piecewise-defined functions,
which provide an upper bound on the number of program execution steps
until termination as a function of the program variables.
In this paper, we fully parameterize various aspects of the abstract do-
main, gaining a flexible balance between the precision and the cost of
the analysis. We propose heuristics to improve the fixpoint extrapolation
strategy (i.e., the widening operator) of the abstract domain. In partic-
ular we identify new widening operators, which combine these heuristics
to dramatically increase the precision of the analysis while offering good
cost compromises. We also introduce a more precise, albeit costly, vari-
able assignment operator and the support for choosing between integer
and rational values for the piecewise-defined functions.
We combined these improvements to obtain an implementation of the ab-
stract domain which subsumes the previous implementation. We provide
experimental evidence in comparison with state-of-the-art tools showing
a considerable improvement in precision at a minor cost in performance.

1 Introduction

Programming errors which cause non-termination can compromise software sys-
tems by making them irresponsive. Notorious examples are the Microsoft Zune
Z2K bug3 and the Microsoft Azure Storage service interruption4. Termination
bugs can also be exploited in denial-of-service attacks5.Therefore, proving pro-
gram termination is important for ensuring software reliability.

The traditional method for proving termination is based on the synthesis of a
ranking function, a well-founded metric which strictly decreases during the pro-
gram execution. FuncTion [36] is a static analyzer which automatically infers
ranking functions and sufficient precondition for program termination by means

3 http://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
4 http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-

service-interruption/
5 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1890

http://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-interruption/
http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-interruption/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1890
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of abstract interpretation [13]. The tool is based on the abstract interpretation
framework for termination introduced by Cousot and Cousot [14]

The underlying abstract domain of FuncTion is based on piecewise-defined
ranking functions [40], which provide an upper bound on the number of program
execution steps until termination as a function of the program variables. The
piecewise-defined functions are represented by decision trees, where the decision
nodes are labeled by linear constraints over the program variables, and the leaf
nodes are labeled by functions of the program variables.

In this paper, we fully parameterize various aspects of the abstract domain,
gaining a flexible balance between the precision and the cost of the analysis.
We propose options to tune the representation of the domain and value of the
ranking functions manipulated by the abstract domain. In particular, we intro-
duce the support for using rational coefficients for the functions labeling the leaf
nodes of the decision trees, all the while strengthening their decrease condition
to still ensure termination. We also introduce a variable assignment operator
which is very effective for programs with unbounded non-determinism. Finally,
we propose heuristics to improve the widening operator of the abstract domain.
Specifically, we suggest an heuristic inspired by [1] to infer new linear constraints
to add to a decision tree and two heuristics to infer a value for the leaf nodes
on which the ranking function is not yet defined. We identify new widening op-
erators, which combine these heuristics to dramatically increase the precision of
the analysis while offering good cost compromises.

We combined these improvements to obtain an implementation of the ab-
stract domain which subsumes the previous implementation. We provide exper-
imental evidence in comparison with state-of-the-art tools [34,21,22] showing a
considerable improvement in precision at a minor cost in performance.

Outline. Section 2 offers a glimpse into the theory behind proving termination by
abstract interpretation. In Section 3, we recall the ranking functions abstract do-
main and we discuss options to tune the representation of the piecewise-defined
functions manipulated by the abstract domain. We suggest new precise widen-
ing operators in Section 4. Section 5 presents the result of our experimental
evaluation. We discuss related work in Section 6 and Section 7 concludes.

2 Termination and Ranking Functions

The traditional method for proving program termination dates back to Turing
[35] and Floyd [17]. It consists in inferring a ranking function, namely a function
from the program states to elements of a well-ordered set whose value decreases
during program execution. The best known well-ordered sets are the natural
numbers 〈N,≤〉 and the ordinals 〈O,≤〉, and the most obvious ranking func-
tion maps each program state to the number of program execution steps until
termination, or some well-chosen upper bound on this number.

In [14], Cousot and Cousot formalize the notion of a most precise ranking
function w for a program. Intuitively, it is a partial function defined starting
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from the program final states, where it has value zero, and retracing the program
backwards while mapping each program state definitely leading to a final state
(i.e., a program state such that all program execution traces to which it belongs
are terminating) to an ordinal representing an upper bound on the number of
program execution steps remaining to termination. The domain dom(w) of w is
the set of states from which the program execution must terminate: all traces
branching from a state s ∈ dom(w) terminate in at most w(s) execution steps,
while at least one trace branching from a state s 6∈ dom(w) does not terminate.

Example 1. Let us consider the following execution traces of a given program:

The most precise ranking function for the program is iteratively defined as:

0

0

1 0

0

2
1 0

0

2
1 0

0

where unlabelled states are outside the domain of the function.

The most precise ranking function w is sound and complete to prove pro-
gram termination [14]. However, it is usually not computable. In the following
sections we recall and present various improvements on decidable approxima-
tions of w [40]. These over-approximate the value of w and under-approximate
its domain of definition dom(w). In this way, we infer sufficient preconditions for
program termination: if the approximation is defined on a program state, then
all execution traces branching from that state are terminating.

3 The Ranking Functions Abstract Domain

We use abstract interpretation [13] to approximate the most precise ranking
function mentioned in the previous section. In [40], to this end, we introduce
an abstract domain based on piecewise-defined ranking functions. We recall here
(and in the next section) the features of the abstract domain that are relevant
for our purposes and introduce various improvements and parameterizations to
tune the precision of the abstract domain. We refer to [37] for an exhaustive
presentation of the original ranking functions abstract domain.

The elements of the abstract domain are piecewise-defined partial functions.
Their internal representation is inspired by the space partitioning trees [18] de-
veloped in the context of 3D computer graphics and the use of decision trees
in program analysis and verification [3,24]: the piecewise-defined partial func-
tions are represented by decision trees, where the decision nodes are labeled by
linear constraints over the program variables, and the leaf nodes are labeled
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int f ( int x, int y, int r ) {
while ( r > 0 ) {

r = r + x;
r = r − y;

}
return r;

}
(a)

r − 1 ≥ 0

x− y ≥ 0

⊥ 3r + 1

1

(b)

Figure 1: Decision tree representation (b) of the piecewise-defined ranking func-
tion for a simple C function (a). The linear constraints are satisfied by their
left subtree, while their right subtree satisfies their negation. The leaves of the
tree represent partial functions the domain of which is determined by the con-
straints satisfied along the path to the leaf node. The leaf with value ⊥ explicitly
represents the undefined partition of the partial function.

by functions of the program variables. The decision nodes recursively partition
the space of possible values of the program variables and the functions at the
leaves provide the corresponding upper bounds on the number of program exe-
cution steps until termination. An example of decision tree representation of a
piecewise-defined ranking function is shown in Figure 1.

The partitioning is dynamic: during the analysis, partitions (resp. decision
nodes and constraints) are split (resp. added) by tests, modified by variable
assignments and joined (resp. removed) when merging control flows. In order to
minimize the cost of the analysis, a widening limits the height of the decision
trees and the number of maintained partitions.

The abstract domain is parameterized in various aspects. Figure 2 offers
an overview of the various parameterizations currently available. We discuss
here options to tune the representation of the domain and value of the ranking
functions manipulated by the abstract domain. The discussion on options to
tune the precision of the widening operator is postponed to the next section.

3.1 Domain Representation

The domain of a ranking function represented by a decision tree is partitioned
into pieces which are determined by the linear constraints encountered along the
paths to the leaves of the tree. The abstract domain supports linear constraints
of different expressivity. In the following, we also propose an alternative strategy
to modify the linear constraints as a result of a variable assignment. We plan to
support non-linear constraints as part of our future work.

Linear Constraints. We rely on existing numerical abstract domains for labeling
the decision nodes with the corresponding linear constraints and for manipulat-
ing them. In order of expressivity, we support interval [12] constraints (i.e., of
the form ±x ≤ c), octagonal [30] constraints (i.e., of the form ±xi±xj ≤ c), and
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Figure 2: Overview of the various parameterizations for the components of the
ranking function abstract domain. Highlighted with a double border are the
components for which new parameterizations are introduced in this paper.

polyhedral [15] constraints (i.e., of the form c1 · x1 + · · ·+ ck · xk ≤ ck+1). As for
efficiency, contrary to expectations, octagonal constraints are the costliest label-
ing in practice. The reason for this lies in how constraints are manipulated as a
results of a variable assignment which amplifies known performance drawbacks
for octagons [19,26]. We expand on this shortly.

Assignment Operator. A variable assignment might impact some of the linear
constraints within the decision nodes as well as some functions within the leaf
nodes. The abstract domain now supports two strategies to modify the decision
trees as a result of a variable assignment:

– The default strategy [40] consists in carrying out a variable assignment inde-
pendently on each linear constraint labeling a decision node and each func-
tion labeling a leaf of the decision tree. This strategy is cheap since it requires
a single tree traversal. It is sometimes imprecise as shown in Figure 3.

– The new precise strategy consists in carrying out a variable assignment on
each partition of a ranking function and then merging the resulting parti-
tions. This strategy is costlier since it requires traversing the initial decision
tree to identify the initial partitions, building a decision tree for each re-
sulting partition, and traversing these decision trees to merge them. Note
that building a decision tree requires sorting a number of linear constraints
possibly higher than the height of the initial decision tree [37]. However, this
strategy is much more precise as shown in Figure 3.

Both strategies do not work well with octagonal constraints. It is known that
the original algorithms for manipulating octagons do not preserve their sparsity
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(a) (b) (c)

Figure 3: Impact of the non-deterministic variable assignment x = ? (which resets
the value of x to a randomly chosen value) on a ranking function (a) using the
default assignment strategy (b) and the precise assignment strategy (c). Note
that the default assignment strategy loses all information.

[19,26]. An immediate consequence of this is that a variable assignment on a
single octagonal constraints often yields multiple linear constraints. This effect
is particularly amplified by the default assignment strategy described above. The
precise assignment strategy suffers less from this but the decision trees still tend
to grow considerably in size. We plan to support sparsity-preserving algorithms
for octagonal constraints as part of our future work.

3.2 Value Representation

The functions used for labeling the leaves of the decision trees are affine functions
of the program variables (i.e., of the form m1·x1+· · ·+mk ·xk+q), plus the special
elements ⊥ and > which explicitly represent undefined functions (cf. Figure 1b).
The element > shares the same meaning of ⊥ but is only introduced by the
widening operator. We expand on this in the next section. More specifically, we
support lexicographic affine functions (fk, . . . , f1, f0) in the isomorphic form of
ordinals ωk ·fk+· · ·+ω ·f1+f0 [29,39]. The maximum degree k of the polynomial
is a parameter of the analysis. We leave non-linear functions for future work.

The coefficients of the affine functions are by default integers [40] and we now
also support rational coefficients. Note that, when using rational coefficients, the
functions have to decrease by at least one at each program execution step to
ensure termination. Indeed, a decreasing sequence of rational number is not
necessarily finite. However, the integer parts of rational-valued functions which
decrease by at least one at each program step yield a finite decreasing sequence.

4 The Widening Operator on Ranking Functions

The widening operator O tries to predict a value for the ranking function over
the states on which it is not yet defined. Thus, it has more freedom than tradi-
tional widening operators, in the sense that it is temporarily allowed to under-
approximate the value of the most precise ranking function w (cf. Section 2) or
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Figure 4: Example of value extrapolation. The default heuristics increases the
slope of the function defined for x < 6 with respect to the value of the function
defined in its adjacent partition (i.e., for 6 ≤ x < 11).

over-approximate its domain of definition dom(w), or both — in contrast with
the observation made at the end of Section 2. The only requirement is that these
discrepancies are resolved before the analysis stabilizes.

In more detail, give two decision trees t1 and t2, the widening operator will
go through the following steps to compute t1 O t2 [40]:

Domain Widening. This step resolves an eventual over-approximation of the
domain dom(w) of w following the inclusion of a program state from which a
non-terminating program execution is reachable. This discrepancy manifests
itself when a leaf in t1 is labeled by a function and its corresponding leaf in
t2 is labeled by ⊥. The widening operator marks the offending leaf in t2 with
> to prevent successive iterates of the analysis from mistakenly including
again the same program state into the domain of the ranking function.

Domain Extrapolation. This step extrapolates the domain of the ranking
functions over the states on which it is not yet defined. The default strategy
consists in dropping the decision nodes that belong to t2 but not to t1 and
merging the corresponding subtrees6. In this way we might lose information
but we ensure convergence by limiting the size of the decision trees.

Value Widening. This step resolves an eventual under-approximation of the
value of w and an eventual over-approximation of the domain dom(w) of w
following the inclusion of a non-terminating program state. These discrep-
ancies manifest themselves when the value of a function labeling a leaf in t1
is smaller than the value of the function labeling the corresponding leaf in
t2. In this case, the default strategy consists again in marking the offending
leaf in t2 with > to exclude it from the rest of the analysis.

Value Extrapolation. This step extrapolates the value of the ranking function
over the states that have been added to the domain of the ranking function in
the last analysis iterate. These states are represented by the leaves in t2 that
are labeled by a function and their corresponding leaves in t1 are labeled by
⊥. The default heuristic consists in increasing the gradient of the functions

6 We requires the decision nodes belonging to t1 to be a subset of those belonging to
t2. This can always be ensured by computing t1 O (t1 t t2) instead of t1 O t2.
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(a) (b)

Figure 5: The ranking function (b) obtained after widening using the evolving
strategy on a given ranking function (a). Highlighted in red are the linear con-
straints inferred by the strategy, which limit the domain extrapolation to the
increasingly smaller pieces on which the given ranking function is defined.

with respect to the functions labeling their adjacent leaves in the decision
tree. The rationale being that programs often loop over consecutive values
of a variable, we use the information available in adjacent partitions of the
domain of the ranking function to infer the shape of the ranking function for
the current partitions. An example is shown in Figure 4.

In the rest of the section, we suggest new heuristics to improve the default strate-
gies used in the last three steps performed by the widening operator. These yield
new widening operators which combine these heuristics to dramatically increase
the precision of the analysis while offering good cost compromises.

Note that, to improve precision, it is customary to avoid the use of the
widening operator for a certain number of analysis iterates. In the following, we
refer to this number as delay threshold.

4.1 Domain Extrapolation

The default strategy for the domain extrapolation never infers new linear con-
straints and this hinders proving termination for some programs. In the following,
we propose an alternative strategy which limits the number of decision nodes to
be dropped during the analysis and labels them with new linear constraints. It is
important to carefully choose the new added constraints to avoid slowing down
the analysis unnecessarily and to make sure that the analysis still converges.

We suggest here a strategy inspired by the evolving rays heuristic presented
in [1] to improve the widening operator of the polyhedra abstract domain [15].
The evolving strategy examines each linear constraint c2 in t2 (i.e., the decision
tree corresponding to the last iterate of the analysis) as if it was generated by
rotation of a linear constraint c1 in t1 (i.e., the decision tree corresponding to
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the previous iterate of the analysis). This rotation is formalized as follows [1]:

evolve(u, v) = w

where wi =

{
0 if ∃j ∈ {1, . . . , n}.(uivj − ujvi)uiuj < 0

ui otherwise

where u and w are the vectors of coefficients of the linear constraints c2 in t2
and c1 in t1, respectively. In particular, evolve sets to zero the components of u
that match the direction of rotation. Intuitively, the evolving strategy continues
the rotation of c2 until one or more of the non-null coefficients of c2 become
zero. The new constraint reaches one of the boundaries of the orthant where
c2 lies without trespassing it. This strategy is particularly useful in situations
similar to the one depicted in Figure 5a: the ranking function is defined over
increasingly smaller pieces delimited by different rotations of a linear constraint.
In such case, the evolving strategy infers the linear constraints highlighted in red
in Figure 5b, thus extrapolating the domain of the ranking function up to the
boundary of the orthant where the function is defined.

More specifically, the evolving strategy explores each pair of linear constraints
on the same path in the decision tree t2 and modifies them as described above to
obtain new constraints. The strategy then discards the less frequently obtained
constraints. The relevant frequency is a parameter of the analysis which in the
following we call the evolving threshold. In our experience, it is usually a good
choice to set the evolving threshold to be equal to the delay threshold of the
widening. The remaining constraints are used to substitute the linear constraints
that appear in t2 but not in t1, possibly merging the corresponding subtrees.

Note that, by definition, the number of new linear constraints that can be
added by the evolving strategy is finite. The strategy then defaults to the default
strategy and this guarantees the termination of the analysis.

4.2 Value Widening

The default strategy for the value widening marks with > the leaves in t2 (i.e.,
the decision tree corresponding to the last iterate of the analysis) labeled with
a larger value than their corresponding leaves in t1 (i.e., the decision tree cor-
responding to the previous iterate of the analysis). This resolves eventual dis-
crepancies in the approximation of the most precise ranking function w at the
cost of losing precision in the analysis. As an example, consider the situation
shown in Figure 6: Figure 6a depicts the most precise ranking function for a
program and Figure 6b depicts its approximation at the iterate immediately
after widening. Note that one partition of the ranking function shown in Fig-
ure 6b under-approximates the value of the ranking function shown in Figure 6a.
The default strategy would then label the offending partition with >, in essence
giving up on trying to predict a value for the ranking function on that partition.

A simple and yet powerful improvement is to maintain the values of the
offending leaves in t2 and continue the analysis. In this way, the analysis can
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(a) (b) (c)

Figure 6: The ranking function (c) obtained after widening using the retrying
strategy on a given ranking function (b). Note that the given ranking function
(b) under-approximates the value of the ranking function shown in (a).

do various attempts at predicting a stable value for the ranking function. Note
that using this retrying strategy without caution would cause the analysis to not
converge for a number of programs. Instead, we limit the number of attempts to
a certain retrying threshold, and then revert to the default strategy.

The retrying strategy for ordinals of the form ωk · fk + · · · + ω · f1 + f0 (cf.
Section 3.2) behaves analogously to the other abstract domain operators for
manipulating ordinals [39]. It works in ascending powers of ω carrying to the
next higher degree when the retrying threshold has been reached (up to the
maximum degree for the polynomial, in which case we default to >).

4.3 Value Extrapolation

The default heuristic for the value extrapolation consists in increasing the gra-
dient of the ranking function with respect to its value in adjacent partition of
its domain. Note that, many other heuristics are possible. In fact, this step only
affects the precision of the analysis, and not its convergence or its soundness.

In this paper, we propose a selective extrapolation heuristic, which increases
the gradient of the ranking function with respect to selected partitions of its do-
main. More specifically, the heuristic selects the partitions from which the current
partition is reachable in one loop iteration. This strategy is particularly effective
in combination with the evolving strategy described in Section 4.1. Indeed, the
evolving strategy often splits partitions by adding new linear constraints and, in
some cases, this affects the precision of the analysis since it alters the adjacency
relationships between the pieces on which the ranking function is defined.

We plan to investigate other strategies as part of our future work.
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5 Implementation and Experimental Evaluation

The ranking functions abstract domain and the new parameterizations intro-
duced in this paper are implemented in FuncTion [36] and are available online7.
The implementation is in OCaml and consists of around 3K lines of code. The
current front-end of FuncTion accepts programs written in a (subset of) C,
without struct and union types. It provides only a limited support for arrays,
pointers, and recursion. The only basic data type are mathematical integers,
deviating from the standard semantics of C. The abstract domain builds on the
numerical abstract domains provided by the APRON library [25].

The analysis proceeds by structural induction on the program syntax, iter-
ating loops until a fixpoint is reached. In case of nested loops, a fixpoint on the
inner loop is computed for each iteration of the outer loop, following [4,31]. It is
also possible to refine the analysis by only considering the reachable states.

Experimental Evaluation. The ranking functions abstract domain was evaluated
on 242 terminating C programs collected from the 5th International Competition
on Software Verification (SV-COMP 2016). Due to the limitations in the current
front-end of FuncTion we were not able to analyze 47% of the test cases. The
experiments were performed on a system with a 3.20GHz 64-bit Dual-Core CPU
(Intel i5-3470) and 6GB of RAM, running Ubuntu 16.04.1 LTS.

We compared multiple configurations of parameters for the abstract domain.
We report here the result obtained with the most relevant configurations. Unless
otherwise specified, the common configuration of parameters uses the default
strategy for handling variable assignments (cf. Section 3.1), a maximum degree
of two for ordinals using integer coefficients for affine functions (cf. Section 3.2),
and a delay threshold of three for the widening (cf. Section 4). Figure 7 presents
the results obtained using polyhedral constraints. Figure 8 shows the successful
configurations for each test case. Using interval constraints yields fewer successful
test cases (around 50% less successes) but it generally ensures better runtimes.
The exception is a slight slowdown of the analysis when using rational coefficients,
which is not observed when using polyhedral constraints. We did not evaluate
the use of octagonal constraints due to the performance drawbacks discussed in
Section 3.1. We used a time limit of 300 seconds for each test case.

We can observe that using the retrying strategy always improves the overall
analysis result: configurations 3, 6, 7, and 9 are more successful than the corre-
sponding configurations 1, 4, 5, and 8, which instead use the default strategy. In
particular, configuration 3 is the best configuration in terms of number of suc-
cesses (cf. Figure 7). However, in general, improving the precision of the widening
operator does not necessarily improve the overall analysis result. More specifi-
cally, configurations 4 to 9 seem to perform generally worse than configuration
1 and 3 both in terms of number of successes and running times. However, al-
though these configurations are not effective for a number of programs for which
configuration 1 and 3 are successful, they are not subsumed by them since they
allow proving termination of many other programs (cf. Figure 8).

7 https://github.com/caterinaurban/function

https://github.com/caterinaurban/function
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N
Value Widening Assignment

Success Time TO
N Q delay retrying evolving selective default precise

128 0.35s 5
1 X X

140 0.44s 3
124 0.35s 5

2 X X
138 0.78s 3
138 0.40s 6

3 X X X
152 0.48s 3
125 1.28s 11

4 X X X
127 1.01s 10
118 0.28s 5

5 X X X
106 0.21s 3
136 1.74s 17

6 X X X X
139 1.18s 14
129 0.35s 5

7 X X X X
124 0.26s 4
116 0.92s 11

8 X X X X
102 0.31s 10
134 1.40s 16

9 X X X X X
123 0.63s 19
128 1.41s 18

10 X X X X X
120 0.48s 16
133 3.41s 50

11 X X X
132 6.59s 56
122 8.70s 92

12 X 6 X X
120 6.22s 98

Figure 7: Evaluation of FuncTion using polyhedral constraints. For each con-
figuration N, the bottom row corresponds to the results obtained by restricting
the analysis to the reachable states, and the top row to the results obtained
without reachability information. Highlighted in blue is the best configuration
in terms of number of successes. Time is the mean time per successful test case.

Another interesting observation is that using rational coefficients in config-
uration 2 worsens the result of the analysis compared to configuration 1 which
uses integer coefficients (cf. Figure 8). Instead, using rational coefficients in con-
figuration 10 allows proving termination for a number of programs for which
configuration 9 (which uses integer coefficients) is unsuccessful.

The configurations using the evolving strategy (i.e., 4, 6, 8, 9, and 10) tend
to be slower than the configurations which use the default strategy. As a conse-
quence, they suffer from a higher number of timeouts (cf. Figure 7). Even worse
is the slowdown caused by the precise strategy to handle variable assignments
(cf. configurations 11 and 12) and a higher delay threshold for the widening
(cf. configuration 12). We observed that a delay threshold higher than six only
marginally improves precision while significantly worsening running times.
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Figure 8: Test case coverage for the evaluation of FuncTion using polyhedral
constraints. The horizontal axis enumerates the test cases. For each configu-
ration of FuncTion given on the vertical axis (without and with reachability
information, as in Figure 7), a colored area corresponds to successful test cases.

Finally, we observed that there are some configurations for which decreasing
the precision of the linear constraints (from polyhedral to interval constraints)
allows proving termination of some more programs. In particular, this concerns
configuration 2 as well as some of the other configurations when limiting the
analysis to the reachable states. However, this happens very rarely: overall, only
three programs can be proven terminating only using interval constraints.

We also compared FuncTion against the tools participating to SV-COMP
2016 : AProVE [34], SeaHorn [21,38] and UAutomizer [22]. We did not
compare with other tools such as T2 [6] and 2LS [9] since FuncTion does not
yet support the input format of T2 and bit-precise integer semantics (like 2LS
does). As we observed that most of the parameter configurations of the abstract
domain do not subsume each other, for the comparison, we set up FuncTion
to use multiple parameter combinations successively, each with a time limit of
25 seconds. More specifically, we first use configuration 3, which offers the best
compromise between number of successes and running times. We then move onto
configurations that use the evolving strategy and the selective strategy, which are
successful for other programs at the cost of an increased running time. Finally, we
try the even more costly configurations that use the precise strategy for handling
variable assignments and a higher delay threshold for the widening.

We ran FuncTion on the same machine as above, while for the other tools we
used the results of SV-COMP 2016 since our machine was not powerful enough
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� N × # Success Time TO

FuncTion − − − − 195 5.25s 7

AProVE [34] 7 36 188 11 224 15.66s 15

SeaHorn [21,38] 31 22 164 25 186 8.57s 52

UAutomizer [22] 10 36 185 11 221 14.04s 6

Figure 9: Comparison of FuncTion against tools participating in SV-COMP
2016. � denotes the number of programs for which only FuncTion was suc-
cessful, N the number of programs for which only the other tool was successful,
× the number for which both tools were successful and # the number for which
neither tool was. Time corresponds to the mean time per success of the tool.

Figure 10: Test case coverage for the comparison of FuncTion against tools
participating in SV-COMP 2016. The horizontal axis enumerates the test cases.
Each colored area corresponds to successful test cases.

to run them. The time limit per test case was again 300 seconds. Figure 9 shows
the result of the comparison and Figure 10 shows the successful tools for each
test case. We can observe that, despite being less successful than AProVE or
UAutomizer, FuncTion is able to prove termination of an important number
of programs (i.e., 80% of the test cases, cf. Figure 9). Moreover, FuncTion is
generally faster than all other tools, despite the fact that these were run on more
powerful machines. Finally, we can observe in Figure 10, that for each tool there
is a small subset of the test cases for which it is the only successful tool. The
four tools together are able to prove termination for all the test cases.

6 Related Work

In the recent past, termination analysis has benefited from many research ad-
vances and powerful termination provers have emerged over the years.

AProVE [34] is probably the most mature tool in the field. Its underlying
theory is the size-change termination approach [27], originated in the context of
term rewriting systems, which consists in collecting a set of size-change graphs
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(representing function calls) and combining them into multipaths (representing
program executions) in such a way that at least one variable is guaranteed to de-
crease. Compared to size-change termination, FuncTion avoids the exploration
of the combinatorial space of multipaths by manipulating ordinals.

Terminator [10] is based on the transition invariants method introduced
in [33]. More specifically, the tool iteratively constructs transition invariants by
searching within a program for single paths representing potential counterexam-
ples to termination, computing a ranking function for each one of them indi-
vidually (as in [32]), and combining the obtained ranking functions into a single
termination argument. Its successor, T2 [6], has abandoned the transition invari-
ants approach in favor of lexicographic ranking functions [11] and has broadened
its scope to a wide range of temporal properties [7].

UAutomizer [22] is a software model checker based on an automata-theoretic
approach to software verification [23]. Similarly to Terminator, it reduces prov-
ing termination to proving that no program state is repeatedly visited (and it
is not covered by the current termination argument), and composes termina-
tion arguments by repeatedly invoking a ranking function synthesis tool [28].
In contrast, the approach recently implemented in the software model checker
SeaHorn [21] systematically samples terminating program executions and ex-
trapolates from these a ranking function [38] using an approach which resembles
the value extrapolation of the widening operator implemented in FuncTion.

Finally, another recent addition to the family of termination provers is 2LS
[9], which implements a bit-precise inter-procedural termination analysis. The
analysis solves a series of second-order logic formulae by reducing them to first-
order using polyhedral templates. In contrast with the tools mentioned above,
both 2LS and FuncTion prove conditional termination.

7 Conclusion and Future Work

In this paper, we fully parameterized various aspects of the ranking function ab-
stract domain implemented in the static analyzer FuncTion. We identified new
widening operators, which increase the precision of the analysis while offering
good cost compromises. We also introduced options to tune the representation of
the ranking functions manipulated by the abstract domain. In combining these
improvements, we obtained an implementation which subsumes the previous
implementation and is competitive with state-of-the-art termination provers.

In the future, we would like to extend the abstract domain to also support
non-linear constraints, such as congruences [20], and non-linear functions, such
as polynomials [5] or exponentials [16]. In addition, we plan to support sparsity-
preserving algorithms for manipulating octagonal constraints [19,26]. We would
also like to investigate new strategies to predict a value for the ranking func-
tion during widening. Finally, we plan to work on proving termination of more
complex programs, such as heap-manipulating programs. We would like to in-
vestigate the adaptability of existing methods [2] and existing abstract domains
for heap analysis [8], and possibly design new techniques.
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