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Abstract

Recent advances in understanding the kidney cancer gene pathways has provided the foundation

for the development of targeted therapeutic approaches for patients with this disease. Kidney
cancer is not a single disease; it includes a number of different types of renal cancers, each with
different histologic features, a different clinical course, a different response to therapy, and differ-
ent genes causing the defects. Most of what is known about the genetic basis of kidney cancer
has been learned from study of the inherited forms of kidney cancer: von Hippel Lindau (VHL
gene), hereditary papillary renal carcinoma (c-Met gene), Birt Hogg Dubé (BHD gene), and
hereditary leiomyomatosis renal cell cancer (fumarate hydratase gene). These Mendelian
single-gene syndromes provide a unique opportunity to evaluate the effectiveness of agents that
target the VHL, c-Met, BHD, and fumarate hydratase pathways.

Kidney cancer affects 36,000 Americans annually, and nearly
12,000 die each year from this disease in the United States (1).
Although patients with kidney cancer who present to their
physician with localized disease often have long-term survival,
patients who present with advanced disease have a 2-year
survival of only 18% (2). Kidney cancer is not a single disease;
it is made up of a number of different types of cancer that occur
in the kidney (3), each with a different histologic type, a
different clinical course, a different response to therapy, and
different genes causing the defect (4, 5). Clear cell is the most
common type (75%), papillary occurs in 10%, and chromo-
phobe renal carcinoma occurs in 5%, with the remaining being
made up of collecting duct, medullary, and oncocytoma. It is
hoped that understanding the genetic basis of cancer of the
kidney will lead to the development of effective forms of
therapy for this disease (Fig. 1).
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Hereditary Kidney Cancer

Kidney cancer occurs in both sporadic (noninherited) and
hereditary (inherited) forms. Most of what is known about the
genetic basis of kidney cancer has been learned from study of
the hereditary forms of kidney cancer (6). There are four well-
defined hereditary types of kidney cancer: von Hippel Lindau
(VHL), hereditary papillary renal carcinoma (HPRC), Birt Hogg
Dubé (BHD), and hereditary leiomyomatosis renal cell
carcinoma (HLRCC).

VHL: Clear Cell Renal Carcinoma

VHL (OMIM 19330) is an inherited cancer syndrome in
which affected individuals are at risk of the development of
tumors in a number of organs, including the kidneys (7).
Patients affected by VHL are at risk of the development of
cerebellar and spinal hemangioblastomas, retinal angiomas,
endolymphatic sac tumors (8), pancreatic neuroendocrine
tumors (9), pheochromocytoma (10), and bilateral, multifocal
kidney cancers (11). VHL-associated renal tumors are always
clear cell renal carcinoma (12). It has been estimated that VHL
patients are at risk of the development of up to 600 tumors and
1,100 cysts per kidney (13).

The VHL gene. Genetic linkage analysis was done in VHL
kindreds to identify the VHL gene on the short arm of
chromosome 3 (14). Germline mutations of the VHL gene
are identified in nearly 100% of VHL families (15). Mutations
of the VHL gene have also been found in a high percentage of
tumors from patients with sporadic, noninherited clear cell
renal carcinoma (16, 17). The VHL gene has the characteristics
of a tumor suppressor gene, and alteration of both copies of the
gene is found in VHL-associated tumors and sporadic clear cell
renal carcinoma (Fig. 2).

Targeting the VHL pathway. The product of the VHL gene
forms a complex with elongin C and elongin B (18, 19), CUL2
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Fig. 1. Kidney cancer is not a single disease; it is made up of a number of different types of cancer that occur in the kidney, each with different histologic types, having a
different clinical course, and associated with alteration of a different gene. From Linehan et al. (3).

(20), and RBX1 (21) to target the hypoxia-inducible factors
HIF1a and HIF2a for ubiquitin-mediated degradation (22 -24).
Understanding the VHL pathway has provided the opportunity
to develop therapies that target downstream HIF pathway genes
vascular endothelial growth factor and platelet-derived growth factor
with agents, such as sunitinib, that have high affinity for the
vascular endothelial growth factor and platelet-derived growth
factor receptors (25). Other approaches, such as targeting HIF
transcription (26) and targeting HIF stability (27), are also being
evaluated in clinical trials.

HPRC: Type 1 Papillary

HPRC (OMIM 164860) is a hereditary cancer syndrome,
inherited in an autosomal dominant fashion, in which affected
individuals are at risk of the development of bilateral,
multifocal, type 1 papillary renal carcinoma (28, 29). It has
been estimated that HPRC patients are at risk of the
development of up to 3,000 tumors per kidney (30).

The HPRC gene: the MET gene. Genetic linkage analysis was
done in HPRC kindreds, and the MET proto-oncogene was
found to be the HPRC-causing gene (31). Activating mutations
in the tyrosine kinase domain have been found in affected
individuals in HPRC kindreds. HPRC is a highly penetrant
hereditary cancer syndrome that tends to be late onset (32).
Recently, however, an early-onset HPRC phenotype has been
described (33). MET mutations have also been found in a
subset of sporadic, type 1 papillary renal carcinomas (ref. 34;
Fig. 3).

Oncogenic signaling via c-Met. The MET oncogene was
isolated from a human osteogenic sarcoma cell line that had
been chemically mutagenized in vitro. Transforming activity
was due to a DNA rearrangement where sequences from the
translocated promoter region (TPR) locus on chromosome 1
were fused to sequences from the MET locus on chromosome 7
(TPR-MET), a rearrangement that was later found in patients
with gastric carcinoma (35, 36). Isolation of the full-length
MET proto-oncogene coding sequence revealed structural
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features of a membrane-spanning receptor tyrosine kinase
(35). The identification of hepatocyte growth factor (HGF) as
the natural ligand for the c-Met receptor protein and the
identity of scatter factor (SF) and HGF united a collection of
findings, showing that a single receptor transduced multiple
biological activities, including motility, proliferation, survival,
and morphogenesis (37 -40).

The biochemical and biological effect of these MET mutants
has been investigated in several model systems, confirming
their suspected oncogenic potential (41-47). Trisomy of
chromosome 7, which contains both MET and HGF/SF genes,
occurs in 95% of sporadic papillary renal carcinoma (48); a
detailed study of trisomy 7 in HPRC revealed nonrandom
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Fig. 2. Clear cell kidney cancer (A) is associated with mutation of the VHL gene
(B). Adapted from Gnarra et al. (16).
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duplication of the mutant MET allele in 100% of tumor
samples (49).

Somatic MET mutations have since been found in several
other human cancers, including gastric and liver cancer (50, 51),
small cell and non-small cell lung cancers (52-54), and meta-
stases of head and neck squamous cell carcinoma (55, 56).
Unlike renal carcinoma, where mutations are typically confined
to exons encoding the tyrosine kinase domain, these mutations
encompass other receptor regions, most notably, the juxtamem-
brane region, where missense and deletion mutations that delay
c-Met down-regulation occur with significant frequency
(~12%) in lung cancers (54).

Cancer drug development targeting the c-Met pathway. At
least three basic strategies have been used to target this
pathway: antagonism of ligand/receptor interaction, inhibition
of tyrosine kinase catalytic activity, and blockade of receptor/
effector interactions. In addition, combinations of convention-
al and c-Met -targeted therapies may offer promise for specific
cancers (57).

A collection of structure/function studies, including the early
discovery that a naturally occurring truncated HGF/SF variant
(HGF/NK2) was a specific competitive mitogenic antagonist,
led to the development of HGF/NK4, a larger, more antago-
nistic HGF/SF fragment (58),° and to an uncleavable form of
pro-HGF/SF (59), both of which block tumor growth and
metastasis in animal models. Similarly, the early development
of c-Met ectodomain/IgG fusion protein with HGF/SF-
neutralizing activity preceded the engineering of a soluble c-
Met ectodomain fragments with pathway-neutralizing and
antitumor activities (60, 61). Neutralizing mouse monoclonal
antibodies against human HGF/SF have also been shown
effective antitumor agents in animal models (62-64). The
recent development of a fully human monoclonal antibody
with HGF/SF-neutralizing and antitumor properties and its
introduction into phase 1 human clinical trials are important
steps forward (35, 65).”

Highly selective synthetic inhibitors of c-Met ATP binding,
effective in the nanomolar concentrations in cultured cells,
have been developed and tested in various model systems
(66-73). Of these, the novel indolinone compounds SU11274
and PHA665752 displayed a minimum of 50-fold selectivity for
c-Met relative to several other tyrosine kinases and potently

5 http://www.kringle-pharma.com/en/index. html.
7 http://www.amgen.com/science/pipe_AMG102.html.
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blocked HGF-stimulated activities in cultured cells and tumor-
igenicity in well-characterized c-Met-driven xenograft models
(70). Analysis of SU11274 using cells that express HPRC-
associated MET mutants revealed interesting differences in
sensitivity (69), and gastric cancer cells with MET gene
amplification displayed significantly increased sensitivity to
PHAG665752 (73), strongly reinforcing the concept that
knowledge of genetic alterations should help predict the
efficacy of c-Met tyrosine kinase inhibitors for specific patient
groups. Not surprisingly, the number of pharmaceutical and
biotechnology companies that have announced drug develop-
ment programs targeting the c-Met tyrosine kinase has grown
considerably in the last 3 years.®

The requirement of the COOH-terminal docking site for
wild-type or mutant c-Met-transforming activity in cultured
cells (43, 44) and the known roles of intracellular effectors,
including Gab1, phosphatidylinositol 3-kinase, growth factor
receptor binding protein 2, Src homology and collagen, and
signal transducer and activator of transcription 3, in cell
transformation (38, 40) suggest that targeting one or more of
these interactions could effectively disrupt c-Met-driven
oncogenesis. Knowledge of the unique structure of the growth
factor receptor binding protein 2 SH2 domain provided the
basis for the development of small synthetic growth factor
receptor binding protein 2 selective binding antagonists (74).
Further refinement of these early structures has yielded
compounds that block HGF/SF - stimulated cell motility, matrix
invasion, and morphogenesis in normal and tumor-derived
cultured cells, as well as vascular endothelial cells, at low
nanomolar concentrations (75).

Beyond effector targeting, compounds that block HSP90/
client interactions, such as geldanamycin (76), also potently
block c-Met oncogenic signaling (77), thus potently, in fact, as
to suggest that other mechanisms of drug action may be
involved (78). Phase 1 and 2 clinical trials of geldanamycin-
related compounds are under way for a variety of cancers where
the c-Met pathway is active. Combining agents, such as
geldanamycin, which attenuate the supply of new receptors to
the cell surface with inhibitors of other specific receptor
functions, could lower the effective dose of each, reducing the
likelihood of drug toxicity and the selection pressure for drug-
resistant mutations.

& http://www.exelixis.com/pipeline.shtml#XL880, http://www.amphoracorp.
com/pipeline/default.aspx, and http://www.methylgene.com/content.asp.
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BHD: Chromophobe Renal Cell Carcinoma

BHD (OMIM 135150) is a hereditary cancer syndrome in
which affected individuals are at risk of the development of
cutaneous fibrofolliculomas (79), pulmonary cysts, and renal
tumors (80, 81). BHD-associated renal tumors may be
chromophobe renal cell carcinoma (33%), hybrid oncocytic
renal cell carcinoma (50%), clear cell renal cell carcinoma
(9%), or oncocytoma (5%).” Clinical management of BHD-
associated renal tumors is similar to that of VHL and HPRC
renal tumors; surgical removal is often recommended when the
renal tumors reach the 3-cm threshold (82).

Identification of the BHD gene. Genetic linkage analysis was
done in BHD kindreds to localize (83) the BHD gene on the
short arm of chromosome 17 (84). Germline mutations of the
BHD gene have been found in 51 (84%) of 61 BHD kindreds
evaluated at the National Cancer Institute (85). Twenty-two
different mutations have been identified, which are mainly
frameshift or nonsense mutations (i.e.,, mutations that would
be predicted to truncate the BHD protein folliculin). Mutations
were distributed throughout the gene with no correlation
between location or type of mutation and phenotypic features
of BHD. More than half of BHD kindreds carry an insertion or
deletion in a mononucleotide tract of eight cytosines within
exon 11, representing a hypermutable “hotspot” for mutation
in BHD. Patients who inherited the C deletion mutation
developed renal tumors at a significantly lower frequency (6%)

9 http://www.kosan.com/tech productopps. htm.
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than patients who inherited the C insertion mutation (33%;
Fig. 4).

The BHD gene: a novel tumor suppressor gene. The BHD
gene has the characteristics of a tumor suppressor gene. When
Vocke et al. searched for somatic alterations of the BHD gene
in tumor tissue from BHD patients carrying germline BHD
mutations, somatic mutations or loss of heterozygosity was
detected in 54 (70%) of 77 tumors; intragenic mutations were
found in 41 of 77 tumors, and loss of heterozygosity of the
17p11.2 chromosomal region containing the BHD gene was
found in 13 (17%) of 77 tumors (86). In all cases, the
germline BHD mutant allele was retained, and the wild-type
BHD allele was lost. Consistent with these results, BHD
mRNA expression was hardly detectable in BHD-associated
renal tumors by in situ hybridization (87). Studies are
currently under way to identify the BHD gene function and
to determine how alteration of this gene leads to kidney
cancer (Fig. 5).

HLRCC

HLRCC (OMIM 605839) is a hereditary cancer syndrome in
which affected individuals are at risk of the development of
cutaneous and uterine leiomyomas and kidney cancer (88).
HLRCC-associated kidney cancer is markedly different from
that found in VHL, HPRC, or BHD. HLRCC-associated kidney
cancer is an extremely aggressive form of the disease; it tends to
spread early when the tumors are small. HLRCC kidney cancer
is characterized by a microcystic histologic pattern with
prominent organophilic nucleoli (89). Affected women in
HLRCC kindreds are at risk of developing uterine leiomyomas.

www.aacrjournals.org
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Nearly 90% of the affected women in the North American
kindreds seen at the National Cancer Institute were found to
have uterine leiomyoma, and 50% had had a hysterectomy
before the age of 30 years (refs. 90, 91; Fig. 6).

The HLRCC gene: fumarate hydratase. The HLRCC gene
was found to be the Krebs cycle enzyme fumarate hydratase (FH;
ref. 92). Mutations of the FH gene have been found in 52 (93%)
of 56 HLRCC kindreds evaluated at the National Cancer
Institute. Thirty-one different germline FH mutations have been
identified, consisting of 20 missense, 8 frame shifts (3 insertions
and 5 deletions), 2 nonsense, and 1 splice site. Mutations
were found throughout the gene except exon 5. Twenty (65%) of
the 31 mutations resulted in the substitutions of single amino
acid residues that were highly conserved (refs. 90, 91; Fig. 7).

FH Pathway. Recently, we reported that HLRCC tumor
specimens expressed high levels of both HIF-1a and HIF-2« as
well as the HIF target gene GLUTI when compared with
adjacent renal epithelium (93). Elevated HIF levels could be
traced to reduced HIF proline-hydroxylation, not to loss of VHL.
Using enzyme kinetic analysis, we found fumarate to be a very
potent competitive inhibitor of HIF prolyl hydroxylase. Fur-
thermore, we showed that a small elevation in intracellular
fumarate, whether induced pharmacologically or by molecular
knockdown of FH, is sufficient to up-regulate HIF, GLUT1
expression, glucose uptake, and lactic acid production (Fig. 8).
These findings identify biallelic loss of FH as a single gene defect
capable of inducing the Warburg effect (the tendency of cancer
cells to rely on glycolysis as their energy source). Further
experimentation will be needed to fully explore the link between
dysregulation of the tricarboxylic acid cycle and tumorigenesis
and to more thoroughly elucidate the role of HIF in this process
(Fig. 8).

Targeting the FH pathway in HLRCC kidney cancer. One
approach currently being evaluated in HLRCC kidney cancer is
to target the HIF pathway with agents such as bevacizumab.
Another approach being evaluated is to target the HSP90
pathway with agents such as 17-allylamino-17-desmethoxygel-
danamycin (17-AAG). 17AAG, a small-molecule inhibitor of
Hsp90, the benzoquinone ansamycin, has shown antitumor
activity in several human xenograft models and is currently in
clinical trials, both as a single agent and in combination with
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Fig. 5. The BHD gene has the characteristics of a tumor suppressor gene.
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BHD-associated kidney tumors. From Vocke et al. (86).
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Fig. 6. HLRCC clinical, radiologic, and histologic manifestations can include
cutaneous leiomyoma (A and B), uterine leiomyoma (data not shown), and kidney
cancer (C and D). FromToro et al. (98).

other therapeutics. Recently, Vanharanta et al. (94), in an
expression profile study, reported that NAD(P)H dehydroge-
nase quinone 1 (NQO1) was markedly overexpressed in FH-
deficient uterine fibroids compared with wild-type FH-express-
ing fibroids. We confirmed very high expression of NQO1
protein in FH-deficient HLRCC tumor specimens compared
with tumor tissue from other hereditary renal cancers (Fig. 9).
High NQO1 expression predicts for enhanced sensitivity to 17-
AAG. In one study, ectopic expression of NQO1 in NQO1-null
colon carcinoma cells resulted in a 32-fold increase in the
cytotoxicity of 17-AAG (95). This dramatic sensitization to 17-
AAG is due to the ability of NQO1 to reduce the benzoquinone
moiety of the drug, which results in its markedly improved
antitumor activity (96). Thus, HLRCC is expected to be
particularly sensitive to 17-AAG. Animal xenograft studies in
support of this hypothesis are currently under way.

Conclusion

In summary, recent understanding of the kidney cancer gene
pathways has provided the opportunity to develop pathway-
specific therapies for the different histologic types of this
disease. The potential opportunity in studying hereditary cancer
syndromes was recently highlighted by Fishman and Porter,
who attributed the difficulty of drug discovery to the paucity of
targets solidly linked to major diseases. They propose as a
solution to validate targets identified in rare Mendelian
disorders, where the inheritance of a single-gene mutation is
linked to the disease (97). They note that the relationship
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between disease and the signaling pathway is clearest in genetic
disorders, and that there is a clear rationale for extrapolating
from genetic to sporadic disease (97).

Encouraging progress has been made with agents that target
the VHL/HIF pathway in patients with advanced clear cell renal
carcinoma, and clinical trials currently under way will provide
insight into the clinical effectiveness of the combination of
agents that target multiple parts of this pathway. Increased
insights into the VHL, c-Met, BHD, and FH pathways should
provide additional opportunities for the development of more
effective forms of therapy for patients with each histologic type
of kidney cancer.

Open Discussion

Dr. Atkins: How do you decide when to start treating
patients with von Hippel-Lindau (VHL) with sunitinib?

Dr. Linehan: We have managed many people with many
different kinds of tumors, and some of these people we have
operated on two or three times. If you let the tumors keep
growing, the patients will need surgery. If you let the tumors
grow too big, they will spread.

Dr. Flaherty: We've considered using sorafenib in this
patient population, but we have been cautious about using
these drugs because of long-term tolerability. We've considered

| Fumarate | HIF

I [Fopon] # e 4 7 l"F

Metabolite concentration (umole/gram protein)
Fumarate
Control 0.30
FH siRNA 0.57

Lactate Glucose
67.38 355
112.08 20.94

Fig. 8. Loss of FH impairs function of the

e pyruvate  se—Lactate

Acrobic Anacrobic

tricarboxylic acid cycle and results in
elevation of fumarate, which in turn stabilizes
HIF. Elevated HIF drives transcription of key
components of the glycolytic pathway,
including GLUT1 and lactate dehydrogenase
(LDH). Data in the table support the
hypothesis that FH expression is inhibited by
small interfering RNA (siRNA), as do HIF-1a
and GLUT1 immunocytochemistry of
HLRCC tumor specimens compared with
normal kidney tissue. Data were taken from
Isaacs et al. (93).

Clin Cancer Res 2007;13(2 Suppl) January 15, 2007

676s

www.aacrjournals.org



Identification of the Genes for Kidney Cancer

Fig. 9. Markedly elevated NQO1 expression
is restricted to HLRCC when compared with
VHL/clear cell and type 1 papillary hereditary
kidney cancer. NQOT1 protein expression is
visualized by immunocytochemistry.

VHL/Clear Cell

Papillary Type |

starting at half-dose sorafenib, 200 mg twice a day, which had
activity in phase 1 trials. It might not be a full drug test, but in
patients in whom long-term therapy might be needed, more
intensive therapy is probably not doable.

Dr. Linehan: When would you stop therapy?

Dr. Flaherty: With sorafenib at a continuous standard dose
of 400 mg twice a day, patients tolerate the drug better after
several months of continued therapy. At 200 mg twice a day, we
figured it would be even more tolerable and less challenging.
We have had patients with renal cell carcinoma and melanoma
who have been taking sorafenib for a couple of years, and their
tolerance of single-agent therapy is good.

Dr. Sosman: Dr. Linehan, could you go back to an earlier
phase of the disease to determine when the patients have a
certain number of renal tumors or renal cysts and do a
randomized study?

Dr. Linehan: Do you think sunitinib or sorafenib would be
a better agent to study?

Dr. Sosman: In terms of tolerability, I might say bevacizu-
mab, but that is risky.

Dr. George: We studied PTK/ZK in 11 patients with VHL.
We looked for objective response in patients with hemangio-
blastoma in the cerebellum and spine, which we didn't see. In
addition, we used magnetic resonance imaging to determine
different biologic effects. We are still analyzing that data. In
terms of prevention, we have little experience with the long-
term use of these drugs. It is difficult to determine therapy
length and risks. We have seen complications, including
spontaneous hemorrhage and hemangioblastoma.

Dr. McDermott: 1 have two patients with VHL who are
currently receiving sorafenib. The first patient is a 56-year-old
woman who has had metastatic kidney cancer for 7 years. She
initially received interleukin 2 and achieved a PR. However,
over the last 2 years, she has developed slow disease
progression at several sites. She wondered if she should take
sorafenib. Because of bleeding risk, I was hesitant to prescribe
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it because she did not have metastatic disease symptoms.
Earlier this year, she developed leg weakness, secondary to
renal cell carcinoma metastasis to her spine. After recovering
from spinal surgery, she began taking sorafenib and has
tolerated it without complication for 3 months. The second
patient is a 44-year-old man with all of the known
complications of VHL syndrome. He was referred to me to
receive sorafenib for his metastatic kidney cancer to the brain
and skin. His skin lesions have resolved, and his brain tumor
has gotten smaller. However, because he was debilitated from
his VHL, he could not tolerate continuous dosing of sorafenib.
Furthermore, he has experience gross hematuria, likely from a
retroperitoneal mass that has eroded into his ureter. While my
experience is limited, because this class of drugs will not cure
kidney cancer in patients with VHL, I would only recommend
using them in patients with symptomatic kidney cancer
because of the potential complications in both the malignant
and benign tumors. Carefully monitored clinical trials for
patients with VHL and renal cell carcinoma, while difficult to
complete, should be initiated.

Dr. Atkins: Are there sporadic variants of hereditary
leiomyomatosis renal cancer (HLRCC), and are there abnor-
malities in Birt Hogg Dubé (BHD) gene in patients with
chromophobe tumors?

Dr. Linehan: For the HRLCGC, if they exist, they are unusual.
The BHD mutations have not been looked at extensively;
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infrequently.
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alterations of fumarate hydratase. The model that we proposed
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