
IEEE SIGNAL PROCESSING MAGAZINE   [33]   SEPTEMBER 2012

 Digital Object Identifier 10.1109/MSP.2012.2187037

[ Yih-Fang Huang, Stefan Werner, Jing Huang, 

Neelabh Kashyap, and Vijay Gupta]

 Date of publication: 20 August 2012

1053-5888/12/$31.00©2012IEEE

T
 his article provides a survey on state estimation 
(SE) in electric power grids and examines the 
impact on SE of the technological changes being 
proposed as a part of the smart grid develop-
ment. Although SE at the transmission level has 

a long history, further research and development of innova-
tive SE schemes, including those for distribution systems, are 
needed to meet the new challenges presented by the require-
ments of the future grid. This article also presents some exam-
ple topics that signal processing (SP) research can contribute to 
help meet those challenges. 

INTRODUCTION
Since the pioneering work of F.C. Schweppe in 1970 [1], SE has become a 
key function in supervisory control and planning of electric power grids. It 
serves to monitor the state of the grid and enables energy management systems 
(EMS) to perform various important control and planning tasks such as establishing near 
real-time network models for the grid, optimizing power flows, and bad data detection/analysis (see, e.g., [2] and [3] 
and the references therein). Another example of the utility of SE is the SE-based reliability/security assessment 
deployed to analyze contingencies and determine necessary corrective actions against possible failures in the power 
systems. 

In view of the ongoing development of a smarter grid, more research on SE is needed to meet the challenges that the 
envisioned smart grid functionalities present. Among others, environmental compliance, energy conservation, and 
improved dependability, reliability, and security will impose additional constraints on SE and require improved perfor-
mance in terms of response time and robustness [4]. In this article, we provide a brief survey of some SE technologies 
developed over the last four decades and examine the challenges and opportunities presented by the evolution of the legacy 
grid into a smarter grid, within a framework relevant to SP research. 
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There are at least three major aspects in the future power 
grid that will directly impact SE research. First, more advanced 
measurement technologies like phasor measurement units 
(PMUs) have offered hope for near real-time monitoring of 
the power grid; see, e.g., [5]. Typically, a PMU takes 30 
measurements/s, thereby offering the possibility of a much more 
timely view of the power system dynamics than conventional 
measurements. More importantly, 
all PMU measurements are syn-
chronized, as they are time-
stamped by the global positioning 
system’s (GPS’s) universal clock. 
However, PMUs with their higher 
measurement frequency put enor-
mous strain on the communica-
tion and data processing infrastructure of the grid. This drives 
the need for resource-efficient, event-triggered SE solutions 
that employ on-demand (event-triggered) sensing, estimation, 
and communication. 

Second, new regulations and market pricing competition 
may require utility companies to share more information and 
monitor the grid over large geographical areas. This calls for 
distributed control, and hence, distributed SE to facilitate 
interconnection-wide coordinated monitoring [6]. Recent 
advances made by the SP and automatic control communities 
in the field of distributed estimation would be particularly 
beneficial in achieving this. 

Finally, to facilitate smart grid features such as demand 
response (DR) and two-way power flow, utility companies will 
need to have more timely and accurate models for their distribu-
tion systems. This calls for SE at the distribution level, which plac-
es more stringent requirements on SE algorithms. So far, utility 
companies have done little in implementing SE in distribution 
systems, even though SE has been deployed extensively in trans-
mission systems for decades. However, as the electric power grid 
becomes smarter, more distribution automation (DA) will be need-
ed and SE at the distribution level will become more important. 
The control mechanism in the distribution system will most likely 
be distributed and active in nature, so will be the corresponding 
SE functions. This necessitates the development of new distribut-
ed SE algorithms that avail themselves of the substantially 
increased number of real-time measurements. 

Discussions in this article are, thus, motivated by these three 
aspects, and are organized in a way that is compatible with the 
hierarchy of the power grid, particularly, the transmission level, 
the subtransmission level, and the distribution level (see Figure 1). 
We envision that SE in the future grid would likely be carried out 
at different levels, specifically, the transmission system operator 
(TSO) level, the local level or subtransmission level, and the distri-
bution level; see, e.g., the multilevel SE paradigm presented in [7]. 
The TSO is an entity that operates the transmission grid to supply 
electricity from the generating companies (GENCOs) [8] to the 
utility companies and then to the consumer. Substations are a 
vital link between the transmission and distribution networks and 
are responsible for converting voltage and current levels. The 

trend of deregulation of vertically integrated utilities, particularly 
in the United States, would mean that market forces would play an 
increasing role in the future grid. 

EVOLUTION OF STATE ESTIMATION
The state of a power system can be described by the voltage 
magnitudes and phase angles at every bus. This information, 

along with the knowledge of the 
topology and impedance parame-
ters of the grid, can be used to 
characterize the entire system. 
The EMS/supervisory control 
and data acquisition (SCADA) sys-
tem is a set of computational 
tools used to monitor, control, 

and optimize the performance of a power system. SE is a vital 
component here; the relationship between SE and the SCADA 
system is shown in Figure 2. The data acquisition system 
obtains measurement from devices like remote terminal units 
(RTUs) and, more recently, phasor data concentrators (PDCs). 
The state estimator calculates the system state and provides the 
necessary information to the supervisory control system, which 
then takes action by sending control signals to the switchgear 
(circuit breakers). 

The conventional state estimator built into the EMS consists 
of four main processes as shown in Figure 2. The topology pro-
cessor tracks the network topology and maintains a real-time 
database of the network model. Observability analysis is a pro-
cess that is run to ensure the measurement set is sufficient to 
perform SE. Next, the bad-data processor identifies any gross 
errors in the measurement set and eliminates bad measure-
ments. The state estimator operates on the set of good measure-
ments to calculate the system state. Finally, the bad-data 
processing identifies any gross errors in the measurement set 
and eliminates the bad measurements. 

Depending on the timing and evolution of the estimates, SE 
schemes may be classified into two basic distinct paradigms: 
static SE (SSE) and forecasting-aided SE (FASE). We will pro-
vide a brief overview of the formulation, development, and evo-
lution of those two SE paradigms. Additionally, we will discuss 
multiarea SE (MASE), which may become a fruitful area of 
research as the distributed approach is showing more promises 
for the future grid. 

STATIC STATE ESTIMATION
For the last four decades, much of the research on SE has 
been focused on SSE, primarily due to the fact that the tradi-
tional monitoring technologies, such as those implemented 
in the SCADA system, can only take nonsynchronized mea-
surements once every two to four seconds. Furthermore, to 
reduce the computational complexity required in imple-
menting SE, the estimates are usually updated only once 
every few minutes. Hence, the usefulness of SSE as a means 
to provide real-time monitoring of the power grid is quite 
limited in practice. 

STATE ESTIMATION HAS BECOME 
A KEY FUNCTION IN SUPERVISORY 

CONTROL AND PLANNING OF 
ELECTRIC POWER GRIDS.
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In an N-bus system, the 12N2 1 2 3 1 state vector has the 
form x5 3u2, u3, c, uN, |V1|, c, |VN| 4T where ui denote the 
phase angles and |Vi| the magnitudes of the voltages at the ith 
bus. The phase angle u1 at the reference bus is assumed known 
and is normally set to zero radians. To estimate the state x, a 
set of measurements z [ RL31, L . 2N2 1, is collected. 
These measurements consist of nonsynchronized active and 
reactive power flows in network elements, bus injections and 
voltage magnitudes at the buses. The measurements are typi-
cally obtained within SCADA systems, and are related to the 
state vector by an overdetermined system of nonlinear equa-
tions, specifically, 

 z5 h 1x 2 1 n, (1)

where h 1 # 2  is a set of L nonlinear functions of the state vector 
(determined by Kirchhoff’s laws and the power network admit-
tance matrix) and n is a zero-mean Gaussian measurement 
noise vector with covariance matrix Cn [ RL3L. 

In the traditional SSE approach, the state vector is estimated 
from the measurement equation in (1) using the weighted least-
squares (WLS) method; see, e.g., [1]. In particular, the SSE 
problem is solved by finding 

 x̂5 arg min
x
3z2 h 1x 2 4TW21 3z2 h 1x 2 4, (2)

where weighting matrix W is commonly taken as diagonal with 
elements related to background noise covariance as W5 Cn. 
The solution for x̂ is obtained in an iterative fashion by lineariz-
ing (1) around the available estimate (at iteration j) and apply-
ing the Gauss-Newton algorithm to improve the estimate, using 
the following equations: 

 G 1 j 2Dx 1 j 2 5HT 1 j 2W21 3z2 h 1x 1 j 2 2 4 (3)

 x̂ 1  j1 1 2 5 x̂ 1  j 2 1Dx 1  j 2 , (4)

where G 1  j 2 5HT 1  j 2W21H 1  j 2  is the gain matrix at iteration j. 
Equation (3) is usually referred to as the normal equation. The 
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[FIG1] Electricity ecosystem of the future grid featuring various players and levels of interaction.
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Jacobian matrix, H 1  j 2 [ RL3 12N212, needed at each iteration, is 
the first-order partial derivative of h 1x 2 , with respect to x, eval-
uated at x̂ 1  j 2 , i.e., H 1 j 25 5'h 1x 2 /'x6x5x̂ 1 j2. The iterative pro-
cess is terminated when the norm of the residual falls below a 
predefined value, i.e., for some d . 0, 7z2 h 1 x̂ 1  j 2 2 7 2 # d, and 
the covariance matrix of the final estimate is given by 
G21 1  j 2 5 3HT 1  j 2W21H 1  j 2 421. 

One of the main problems in solving the normal equation 
in (3) is computational complexity. An approach to reduce 
this complexity is to realize that G 1  j 2  is sparse and symmet-
ric, then implement various iterative solutions, e.g., Krylov 
subspace methods, to find Dx 1  j 2  in (3). A more common 
approach in the literature is to take advantage of the sparse-
ness of matrix H 1  j 2 , which is in general even more sparse 
than G 1 j 2 , and employ a robust and computationally effi-
cient QR factorization of the weighted Jacobian, e.g., using a 
sequence of Givens rotations (or Householder reflections) of 
the weighted Jacobian matrix W21/2 H 1  j 2 . A good treatment 
of this topic and the related important references can be 
found in [3]. Specifically, let Q 1  j 2 [ RL3L be an orthogonal 
transformation that triangularizes the weighted Jacobian as 
follows: 

 Q 1  j 2W21/2 H 1  j 2 5 cR 1  j 2
0
d , (5)

where R 1  j 2 [ R
12N2123 12N212  is upper/lower triangular. We 

may now rewrite (3) as 

 3RT 1  j 2 0 4 cR 1  j 2
0
dDx 1  j 2

 5 3RT 1  j 2 0 4 Q 1  j 2W21/2 3z2 h 1x 1  j 2 2 4, (6)

which allows us to solve for Dx 1  j 2  in two stages 

 cy1 1  j 2
y2 1 j 2 d 5Q 1  j 2W21/2 3z2 h 1x 1  j 22 4 (7)

 R 1  j 2Dx 1  j 2 5 y1 1  j 2 , (8)

where y1 1  j 2 [ R
12N21231, as seen in (7), is formed by taking 

the 2N2 1 first element of the transformed (weighted) mea-
surement error vector. The correction term Dx 1  j 2  is obtained 
via backward (or forward) substitution. 

Alternatively, to overcome the computational cost associat-
ed with directly solving (3), it has often been argued that the 
gain matrix G 1  j 2  does not change considerably during several 
iterations, which implies that we can assume a piecewise con-
stant Jacobian matrix [1]. This observation is exploited in the 
hybrid method [9] to reduce storage requirements when 
applying orthogonal transformations. In particular, the trian-
gular matrix R in (5) remains constant for those iterations 
when the measurement Jacobian is not reevaluated. Thus, by 
only transforming the left-hand side of (3) [cf. (6)] we may 
acquire the correction term Dx 1  j 2  from RT RDx 1  j 2 5
HT W21 3z2 h 1x 1  j 2 2 4. Compared with (7)–(8), we see that only 
R needs to be stored (and not factors of Q) at the expense of an 
additional forward (or backward) substitution. 

The computational complexity of the aforementioned SE 
approaches may be further reduced by assuming voltage mag-
nitudes and phases to be independent [3]. The state estimate is 
then obtained by solving two decoupled WLS problems since 
the measurement Jacobian becomes block-diagonal. This 
approach renders a particularly efficient implementation of 
the hybrid method both in terms of storage requirements and 
computational cost. 

A more recent approach for reducing the computational cost 
is to use a nested, or multilevel, formulation of the nonlinear 
measurement model [7]. This approach can sustain growth in 
size, complexity, and data. It is designed to function at different 
levels of the modeling hierarchy to accomplish very large-scale 
interconnection-wide monitoring. This method uses the same 
overdetermined set of measurement equations as in (1). The 
equations are then “unfolded” into K  sequential WLS problems 
by  introducing a  set  o f  intermediate  var iables 
Y5 5y1, y2, c, yK6 with the following nested structure: 

 z5 f1 1y1 2 1 n

 y15 f2 1y2 2 1 n1

 (  
 yK215 fK 1yK 2 1 nK21

 yK5 fK11 1x 2 1 nK. (9)

The set Y is chosen such that the solution of the nested system of 
equations (9) offers some desired advantage over solving (1), e.g., 
reduction of the computational complexity or the amount of infor-
mation exchanged between different levels. This is a particularly 
appealing solution when the measurement model can be factor-
ized into separate linear and nonlinear parts, e.g., a hierarchical 
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constitute the EMS/SCADA.
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structure that comprises a linear substation model and a nonlin-
ear transmission level model. 

FORECASTING-AIDED STATE ESTIMATION
Conventional SSE relies on a single set of measurements all 
taken at one snapshot in time. Hence, it disregards the evolu-
tion of the state over consecutive measurement instants. The 
basic idea of FASE is to provide a recursive update of the state 
estimate that can also track the changes occurring during 
normal system operation. One of the advantages of FASE is 
that it includes by design a forecasting feature that can get 
around the problem of missing measurements, as the predict-
ed states may be used in lieu of those measurements. Note, 
however, that FASE is somewhat different from true dynamic 
SE since the transients in power systems usually occur at a 
much faster time scale than those considered in FASE. 

The first step toward a dynamic state estimator was taken 
by Debs and Larson in 1970 [10]. A simple state transition 
model was developed assuming the system was in a quasi 
steady-state. Tracking state estimators [11] came next, but the 
problem here was that no time evolution model was assumed 
explicitly to follow the dynamics of the system. The next 
breakthrough in FASE came from [12] that introduced a more 
appropriate state transition model and used Kalman filtering 
and an exponential smoothing algorithm for forecasting. A 
robust FASE algorithm based on M-estimation was presented 
in [13] as an alternative to the Kalman filter-based approaches 
and more recently, a FASE algorithm was proposed based on 
unscented Kalman filter (UKF) [14]. A more extensive litera-
ture survey and related references may be found in [15]. 

A typical FASE is formulated with the following dynamic 
model [12]: 

 x 1k1 1 2 5 F 1k 2x 1k 2 1 g 1k 2 1w 1k 2 , (10)

where for time instant k, F 1k 2 [ R
12N2123 12N212 is the state-

transition matrix, vector g 1k 2  is associated with the trend 
behavior of the state-trajectory, and w 1k 2  is assumed to be 
zero-mean Gaussian noise with covariance matrix Cw. 

Using (10) and the measurements arriving at instant k1 1, 
z 1k1 1 2 5 h 1x 1k1 1 22 1 n 1k1 1 2 , the majority of the FASE 
algorithms that appear in the literature are based on the 
extended Kalman filter (EKF), whose recursions are given by 

 x̂ 1k1 1 2 5 x| 1k1 1 2 1K 1k1 1 2 3z 1k1 1 2 2 h 1 x| 1k1 1 224,
 (11)

where 

 x| 1k1 1 2 5 F 1k 2 x̂ 1k 2 1 g 1k 2
 K 1k1 1 2 5S 1k1 1 2HT 1k1 1 2Cn

21

 S 1k1125 3HT 1k1 1 2Cn
21 H 1k1 1 2 1M21 1k1 12421

 M 1k1 1 2 5 F 1k 2S 1k 2FT 1k 2 1 Cw

with H 1k1 1 2  being the measurement Jacobian evaluated at 
x| 1k1 1 2 . We note that matrix F 1k 2  and vector g 1k 2  in (10) 

are usually updated recursively using the classic Holt-Winters 
method [12]. This rather naive state-transition model appears 
to work quite well, although it ignores any coupling between 
the state variables. 

MULTIAREA STATE ESTIMATION
MASE traces its origins back to the late 1970s, when micropro-
cessor technology was not mature enough to handle the compu-
tational load of SE in very large interconnections and SE was 
implemented on multiprocessor computing architectures. Since 
the power grid is inevitably a large network, a centralized solu-
tion to the associated SE problem poses tremendous computa-
tional complexity. An alternative is to divide the large power 
system into smaller areas, each equipped with a local processor 
to provide a local SE solution. As compared with a centralized 
SE approach, MASE reduces the amount of data that each state 
estimator needs to process (hence reduces complexity) and it 
improves the robustness of the system by distributing the 
knowledge of the state. However, its implementation requires 
additional communication overhead and it comes with the time-
skewness problem that results from asynchronous measure-
ments obtained in different areas. 

In MASE, each area has local measurements formulated by 

 zm5 hm 1xm 2 1 nm,   m5 1, c, M, (12)

where xm5 3x im
T

 xbm
T 4T is the local state vector of area m, 

which is further partitioned into internal state variables, x im
T , 

and border state variables, xbm
T . Internal variables are those 

state variables that are observable for the particular area while 
border variables are states of those buses with lines connect-
ing two areas (so-called tie-lines). 

A local estimate can be obtained from (12) using the techniques 
outlined above with the difference that the measurement Jacobian is 
derived from the local estimate. Taking into account the coupling 
between areas located in close proximity, improved state estimates 
can be obtained by combining local estimates using either a hierar-
chical structure, a decentralized structure, or a combination of 
both. In the hierarchical scheme, a central computer controls the 
local processors which may be either located in disparate geographi-
cal areas (distributed architecture) or in the same area (parallel 
architecture). The local state estimators communicate only with the 
central computer. In a fully decentralized architecture, there is no 
central computer, and each local state estimator communicates 
only with its neighbors. The amount of data exchange of the solu-
tion depends on whether local estimates (or measurements) are 
transmitted at every iteration of the local estimation algorithm or 
upon convergence. A survey of various MASE methods is given in 
[16] along with a good treatment of a two-level hierarchical MASE 
example. More recently, MASE was introduced in [17], which per-
forms SE in a fully distributed manner. 

IMPACT OF PHASOR MEASUREMENT 
UNITS ON STATE ESTIMATION
Conventional SCADA measurements are obtained too infrequently 
to fully capture the dynamics of the power system. Practically, 
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when faults occur, there is usually little time for the controller to 
respond, and this presents a serious challenge to operators. 
Integration of renewable energy sources in distributed generation 
(DG) may also increase the chance of sudden unpredictable 
changes in the system. Consequently, it is necessary to track these 
changes in a timely manner to ensure the dependability and reli-
ability of the power system. Thus, SE schemes that are capable of 
capturing and tracking the near real-time dynamics of the power 
system are needed. 

Recently, synchronized phasor measurement units (PMUs) 
have been increasingly deployed in power systems. These devices 
can directly measure bus voltage magnitudes and phase angles, 
because they are synchronized by the GPS universal clock. The 
PMUs also sample at a much higher frequency (roughly two 
orders of magnitude faster) compared to the traditional sensors in 
the SCADA system. In essence, PMUs provide more accurate and 
more timely measurements with many more samples. The main 
challenges faced by engineers today include 1) combining those 
PMU measurements with conventional measurements to obtain 
an optimal state estimate, and 2) dealing with the large number of 
data rendered by PMUs. This section examines the impact that the 
synchrophasor technology has had on the three SE paradigms 
described in the previous section. 

PHASOR MEASUREMENT UNITS 
PMUs measure not only voltage phasors at buses where they 
are installed but also current phasors through all incident 
buses. Since the current phasor on a line between two buses is 
linearly related to the two voltage phasors at those two buses, 
the PMU measurements across the system, aggregated into 
vector z2, are linearly related to the voltage phasors, 
v5 3R5V16, c, R5VN6  I5V26, c, I5VN6 4T,  where  R5V6 
and I5V6 are the real and imaginary parts of the voltage pha-
sor, respectively [5]. In particular, the measurements from the 
PMUs satisfy 

 z2 5 Av1 u25 cB
Y
d v1 u2 (13)

where each row of matrix B is a unit vector of appropriate dimen-
sion with a “1” placed in the column associated with a particular 
voltage phasor, Y is an admittance matrix of appropriate dimen-
sion corresponding to the current phasors, and u2 is a zero-mean 
Gaussian measurement noise vector. 

PMUs provide synchronized local measurements with glob-
al time stamps. In other words, with local cooperation (shar-
ing of PMU measurements) between substations, SE can be 
made more dynamic and reactive to local disturbances before 
effects cascade through the system. The fact that utility com-
panies are open to sharing PMU data with each other [18] 
makes distributed SE relevant. When a sufficient number of 
PMUs are deployed on the grid, the system is fully observable 
and iterative solutions are avoided as the measurement equa-
tion becomes linear as seen in (13). Even though making the 
system fully observable using PMUs is not yet realizable due to 
financial constraints, it seems likely that in the near future, we 

could see large-scale deployment of PMUs in power grid as the 
deployment costs decrease. However, presently, there is a need 
for state estimators that combine conventional SCADA and 
PMU measurements. 

FUSING CONVENTIONAL MEASUREMENTS 
WITH PMU MEASUREMENTS
SSE using both PMU and traditional SCADA measurements has 
been studied extensively. There are two ways to include PMU mea-
surements in the SE process [5]: 

1) A single state estimator, where PMU measurements are 
mixed with the traditional power flow measurements; 
2) A two-stage scheme, where the state estimate obtained from 
the traditional SCADA measurements in (3) is improved by 
using a second estimator that employs PMU measurements 
only. 
The latter method has the advantage of leaving the existing 

SCADA software intact. 
Let us consider first the approach when conventional 

SCADA measurements as formulated by (1) are mixed with 
PMU measurements as formulated by (13). To jointly process 
the measurements we first need to relate the PMU state v of 
complex phasors (Cartesian coordinates) to the conventional 
state vector x (polar coordinates), through a simple nonlinear 
transformation of the type v5 g 1x 2 . Thus, a single estimator, 
static or dynamic, that incorporates both conventional and 
PMU measurements can be derived based on the following 
augmented measurement model: 

 cz1

z2
d 5 c h 1x 2

Ag 1x 2 d 1 cn1

n2
d , (14)

where z1 and n1 are the conventional measurements and noise 
vectors, and z2 and n2 denote the PMU measurements and 
(transformed) noise vectors, respectively. 

Instead of mixing the measurements, we may instead use a 
two-step approach where the conventional state estimate x̂ 
from (3) is converted into voltage phasors, i.e., v̂15 g 1 x̂ 2 , and 
then used as additional measurements in an augmented form 
of the linear measurement model (13) 

 c v̂1

z2
d  5 cB

|

Y
d v1 cu1

u2
d , (15)

where B|, like B in (13), simply sifts out the relevant phasors, and 
u1 and u2 are the noise vectors of (transformed) conventional and 
PMU measurements, respectively. We may now solve for the 
unknown phasors v using a linear WLS approach [5]. 

The problem of distributed SE incorporating phasor measure-
ments was first introduced by Zhao and Abur [19] who presented a 
hierarchical scheme for distributed SE using PMU measurements. 
Jiang et al. [20] used PMU measurements in each region to obtain 
a hierarchical state estimator that functions in three steps. 
Inclusion of PMU measurements in multilevel state estimators has 
also been considered in [7]. 

In spite of these promising works, many well-known challeng-
es remain in combining PMU measurements with conventional 
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measurements to obtain an optimal state estimate. We outline 
some of those challenges below: 

 ■ Significantly increased computational burden: The dimen-
sions of the vectors and matrices involved in the SE process 
are increased due to the inclusion of PMU measurements. 

 ■ Data tsunami: The sampling rate of PMUs is around two 
orders of magnitude higher than the conventional measure-
ments. Novel techniques need to be developed to extract rele-
vant state information from this tidal wave of measurement 
data. 

 ■ Degraded numerical stability: Since PMU measurements 
are significantly more accurate than traditional measurements, 
inclusion of those measurements in the estimation process 
often results in ill-conditioned gain or measurement noise 
covariance matrices. 

 ■ Time skewness: Synchronized PMU measurements are sam-
pled much faster than nonsynchronized conventional mea-
surements. These two sets of measurements have significantly 
different sampling rates and are not synchronized with each 
other.
Some of the above-mentioned challenges will be further dis-

cussed in the “Signal Processing and the Smart Grid” section.  

DISTRIBUTION SYSTEM STATE ESTIMATION
Research on distribution system SE (DSSE) dates back to the 
early 1990s; see, e.g., [21]. It is known that DSSE could play an 
important role in DA. However, DA has not been truly brought 
into fruition, probably due to the lack of proper infrastructure. 
The states of the future smart grid will undoubtedly be more 
dynamic, especially in the distribution system. The smart grid is 
envisioned to include the DG of various types of intermittent 
renewable sources, the integration of a potentially high level 
penetration of plug-in hybrid electric vehicles, and DR. While 
those changes can potentially increase 
the overall energy effectiveness of the dis-
tribution systems, they can also stress the 
grid, complicate the system operation, 
and introduce more possibilities for 
frauds, brownouts and even blackouts. 
Moreover, events occurring in the smart 
grid and the subsequent impacts can be 
too fast to be controlled by any human 
intervention. Therefore, it is important 
for the utility companies to have more 
efficient supervisory planning, enhanced 
DA, and improved situation awareness 
throughout the vast and complicated dis-
tribution systems. The system operators 
need to have more timely and reliable 
knowledge to properly monitor, proac-
tively control, and economically dispatch 
power through the distribution system. 
This confers an instrumental role to SE 
in the development of future distribu-
tion systems. 

This section first presents some key characteristics in the exist-
ing distribution systems that make DSSE different from SE at the 
transmission level. It then surveys the ongoing research efforts 
made to develop viable DSSE algorithms. We also discuss the need 
of DSSE algorithms suitable for active control of the future distri-
bution systems. 

DISTRIBUTION SYSTEM STATE ESTIMATION 
FEATURES AND ALGORITHMS
Figure 3 depicts the general relationship among the SE functions 
at both transmission and distributions levels as well as their corre-
sponding data acquisition and management systems. The distribu-
tion SCADA (DSCADA) system is the counterpart at the 
distribution level of the SCADA system at the transmission level. 
At the transmission level, many functions of the EMS are based on 
the real-time modeling of the system generated by SE. One of the 
objectives in the development of DSSE is to make it comparable to 
the transmission level SE. However, the transmission level SE 
algorithms cannot be directly applied to distribution systems since 
the operation and planning philosophy of the distribution systems 
are quite different from those in the transmission systems. In the 
current distribution systems, the major distinct features for DSSE 
can be summarized as follows [22]: 

■ The number of existing telemetered devices that can provide 
real-time measurements is quite limited, and it is far from 
being sufficient to provide observability, not to mention bad 
data detection capability. 
■ The load data (also known as pseudomeasurements) 
obtained from historical load profiles and existing automated 
meter readings (AMRs) devices have limited accuracy. 
■ Many of the telemetered measurements at the feeders are 
current, rather than power, which also complicates the mea-
surement functions. 

Transmission Level EMS/SCADA

RTU

Distribution Level

Area 1 Area 2

Meter Meter

RTU RTU

RTURTU MeterMeter

. . .

DMS/DSCADA DMS/DSCADA

DSSE

Control

Pseudomeasurement
Generator DSSE

Control

Pseudomeasurement
Generator

[FIG3] Relationship between the transmission level SE and distribution SE.
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 ■ Three-phase imbalance and low reactance/resistance (X/R) 
ratios further complicate the measurement functions, making 
the decoupled WLS algorithms for SE at the transmission level 
not suitable for DSSE.
Additional features may arise as the power grid continues to 

evolve, since the distribution systems will undergo vast changes 
with the development of the smart grid. For example, as DG 
becomes more common with a larger number of microgrids 
integrated into the grid, the distribution system will be more 
like a meshed network as opposed to a radial network, like in 
the traditional grid. As compared to the research and develop-
ment that have been done for SE at the transmission level, 
much less has been done for SE at the distribution level. This is 
perhaps due to 1) DA has not been brought into fruition due to 
insufficient infrastructure; and 2) SE at the distribution level 
has far fewer measurements as compared to the number of 
states to be estimated. The conventional method for solving the 
DSSE problem is based on the WLS algorithm according to (2), 
similar to SE at the transmission level. However, DSSE differs 
from SE at transmission level in many other aspects. Most of 
the existing DSSE algorithms use nodal voltages as state vari-
ables. A typical formulation of three-phase nodal voltage-based 
SE can be found in [21]. The authors of [21] also employed the 
same measurement equations as defined in (1), while specifying 
the corresponding Jacobian elements for branch currents, real 
and reactive power flow, real and reactive power injections, and 
nodal voltage magnitudes measurements. A good survey paper 
on DSSE algorithms and the choice of estimators for DSSE is 
given in [23]. 

Various other SP techniques have been explored for studies on 
DSSE. For example, [24] proposes to model the distribution sys-
tem as a Bayesian network and employs the belief propagation 
algorithm to solve a DSSE problem. As another example, DSSE is 
formulated as a constrained optimization problem which assumes 
an initial set of DG outputs to be modeled as equality constraints 
as follows [25]: 

 x̂5 arg min
x

 c 1
2

 rTCr
21 r1

1
2
1x2 x 2T P21 1x2 x 2 d

 such that:  rm5 zm2 hm 1x 2
  hos 1x 2 5 0, (16)

where the vectors with subscript m represent those subvectors 
that result from measurements; hos 1 x̂ 2  denotes the operational 
and structural constraints, r is the residual vector for the mea-
surements and constraints, i.e., r5 3rm

T  0T 4T with rm being the 
residual vector for the measurements, Cr is the covariance 
matrix of the residual vector r, x is the vector of available a prio-
ri information on the states, and P is the corresponding covari-
ance matrix. We refer the reader to [25] for detailed treatment 
of this approach. Some heuristic algorithms have also been pro-
posed for DSSE by considering it as a nonlinear optimization 
problem. As an example, [26] formulates DSSE as a hybrid par-
ticle swarm optimization problem assuming that the teleme-
tered devices can provide magnitude measurements of voltage 

and current at both the secondary side buses of substations and 
at RTUs. 

DISTRIBUTION SYSTEM STATE ESTIMATION 
FOR ACTIVE CONTROL
The passive nature of control mechanism implemented in the 
existing distribution systems limits the number of distributed gen-
erators that can be connected. Coupled microgrids can potentially 
allow for a high penetration level of DGs into the distribution sys-
tem [27]. A microgrid can be either connected to the main grid 
under normal conditions, or separated from the main grid during 
an emergency event or when the quality of the power from the 
main grid falls below certain standards. In practice, the topology 
changes can be too fast to be dealt with by any human initiated 
action. Therefore, supervisory control of microgrids should facili-
tate intelligent autonomous operation. Hence, active control sys-
tems and control functions are preferred for practical purposes. 
The proper operation of the active control systems calls for timely 
and accurate knowledge of the operating status of the entire sys-
tem. Recent efforts in generalized SE [22] and autonomous SE 
[28] are good initial steps towards achieving this goal. The gener-
alized SE algorithm presented in [22] integrates the estimation of 
the topology information with the SE process using real-time 
measurements by modeling parts of the distribution systems at 
the bus-section/switching-device level. In other words, some 
topology information is considered as part of the state being esti-
mated, instead of being treated as known and fixed, during the 
estimation process. The autonomous SE algorithm proposed in 
[28] automatically identifies the network topology of the distribu-
tion system, and then extracts the operating status of the system. 
The implementation of this algorithm, however, requires upgrad-
ing and adding monitoring devices that can stream the necessary 
data to the control center. 

SIGNAL PROCESSING AND THE SMART GRID
While some researchers may consider power grid SE research 
somewhat mature, new techniques for SE must be developed as 
the power grid becomes more complex, more interconnected, and 
more intelligent. Looking ahead, any progress that the SP com-
munity can make will greatly facilitate and benefit the develop-
ment of the smart grid. In return, research on SE within the 
framework of one of the most complex man-made systems can 
invigorate the SP research community. As an example, a recent 
paper addressed the issue of malicious attack on the power grid 
using SP-based techniques [29]. This section presents some 
SP-related topics arising from the development of smart grid. 
These topics are general and apply to SE at both transmission and 
distribution levels. 

FORECASTING-AIDED STATE ESTIMATION 
As the power grid continues to evolve, it becomes necessary to 
closely track state changes to ensure the dependability, reliability, 
and security of the power system. To this end, there are some open 
research topics on FASE worth exploring that require application 
of innovative SP techniques. 
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Two specific examples are apparent: First, existing FASE algo-
rithms in the literature are mostly implemented with EKF whose 
limitations are well known. Examples of such limitations include 
lack of optimality, slow convergence speed, and sensitivity to the 
linearization error. Fast converging algorithms with good tracking 
capabilities may be developed by exploiting the equivalence 
between the incremental Gauss-Newton algorithm and the EKF 
[30]. There are solutions, which are not yet applied to FASE, that 
aim at reducing the linearization errors of the EKF, e.g., the iterat-
ed EKF, where the point of linearization is reevaluated at the cor-
rection step. One may also consider the second-order EKF which 
performs a second-order Taylor expansion of the nonlinear mea-
surement equation. Additionally, the UKF offers an interesting 
alternative to EKF-based methods, promising higher accuracy 
without significant additional computational overhead. 

Second, the FASE realm lacks a complete analysis, including 
building adequate state evolution models, and obtaining proof 
of optimality. Assumptions about the state-space equations are 
often made without a rigorous justification. For example, 
almost all FASE algorithms proposed so far assume that there is 
no correlation between the state variables, making the state 
transition matrix F 1k 2  simply diagonal. More accurate dynamic 
models are needed to incorporate coupling between state vari-
ables. Furthermore, efficient algorithms that are robust to 
model uncertainty, e.g., sudden topology changes, are of partic-
ular interest. For example, H` filters in power system SE 
deserve further investigation. Computational intelligence tools 
such as artificial neural networks (ANNs) and fuzzy logic-based 
approaches have also gained increasing popularity in the field of 
FASE; see, e.g., [15]. 

State estimators employing PMU measurements can also 
be cast into the FASE framework, where either the PMU mea-
surements are mixed with conventional measurements or 
included in a post-processing step. In the mixed approach, 
extended or UKFs could be derived for the mixed data model 
similar to (14). If the PMU measurements are included in a 
postprocessing step, a linear Kalman filter can be used. 
However, mixing measurements of different qualities into a 
single state estimator may cause the covariance matrix of the 
combined noise vector 3n1

T 1k 2  n2
T 1k 2 4T in (14) to become ill 

conditioned. In addition, the dimensions of the vectors and 
matrices involved in the SE process are increased due to the 
additional PMU measurements, which may lead to significant-
ly increased computational complexity. This problem can be 
cast into a constrained Kalman filtering problem, where high-
quality measurements are employed as deterministic equality 
or inequality constraints. For example, more robust FASEs 
with a reduced order KF may be derived by applying the ideas 
proposed in [31]. 

Furthermore, as mentioned previously, there is a need for 
improved state transition models, which are specifically designed 
with the future power grid in mind. Environmental awareness and 
climate change have also led to the emergence of renewable and 
sustainable methods of electricity generation which comes with 
the challenge of variability. However, there are statistical models 

available to predict the behavior of these sources. It is an open 
research problem to develop techniques to incorporate these into 
new state transition models, which in turn, leads to improved 
state estimators. 

DISTRIBUTED ESTIMATION AND MASE
Electricity market deregulation may require utility companies to 
monitor the grid over a very large geographical area. Meanwhile, 
the number of monitoring devices may also grow significantly 
making the number of measurements prohibitively large for the 
centralized SE techniques to be effective. A more feasible approach 
would be to distribute the SE function throughout the intercon-
nection. This kind of distributed SE facilitates interconnection-
wide coordinated monitoring as well as the development of many 
other smart grid functions like self healing [32]. 

Distributed approaches can enhance the computational per-
formance and the reliability of SE algorithms. Efficient and reli-
able communication is the backbone for the distributed SE 
algorithms. However, various challenges in communication 
prevent the realization of such approaches. Communication 
delay consists of a great portion of the response time, which has 
to be shortened to compute state estimates that are meaningful 
for those time-sensitive functions like self healing. The prob-
lems of optimizing the locations of distributed processors to 
minimize the communication delays while keeping the commu-
nication overhead within the practical constraints need to be 
addressed. The time skewness among measurements is another 
issue which can potentially be detrimental to the control deci-
sions made based on the state estimates. One way to tackle this 
is to enforce all measurements synchronized by GPS, which 
requires significant investment in upgrading the infrastructure. 
Another, more economical, way of handling this is to design fil-
ters to mitigate the time skewness effects by utilizing the statis-
tics of the delays [33]. Therefore, the development of new 
distributed algorithms is a challenging but essential task for the 
development of future smart grids. 

MASE can most likely benefit from recent advances in distrib-
uted estimation, which has recently been an active field of 
research in the SP community. In distributed estimation, several 
nodes (or areas in case of MASE) estimate a common parameter 
vector through local collaborations. In the case of MASE, the mea-
surements of each area only relates to a small part of the whole 
state vector. Thus, the resulting computational and communica-
tion costs of a distributed estimation approach depend on whether 
local knowledge of the whole state vector is required or not. For 
example, by redefining the correction vector in (3) as 
Dx5 3Dx1

T
 c DxM

T 4T, an iterative WLS solution for the MASE 
would take the form 

ca
M

m51
Hm

T 1 j 2Wm
21Hm 1  j 2 dDx 1 j 2 5a

M

m51
Hm

T 1  j2Wm
21 3zm2hm 1xm 1  j22 4

 x̂ 1  j112 5 x̂ 1  j21Dx 1 j2 , (17)

where Hm 1  j 2  is the measurement Jacobian of area m obtained 
with the local state estimate x̂m 1  j 2 . The simplest method 
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seems to be to express (17) in terms of averages 1/M gmHm
T  

Wm
21 Hm and 1/M gmHm

T Wm
21 3zm2 hm 1xm 2 4  across the areas. 

The so-called consensus algorithms (also related to gossip algo-
rithms) can be expected to be of relevance here; see, e.g., [34] 
and [35]. Thus, two separate consensus algorithms can be used 
to compute these quantities, and in turn, the quantity Dx to be 
used at the j th iteration of the estimator. However, this meth-
od requires communication corresponding to two consensus 
algorithms being executed in parallel. Perhaps more impor-
tantly, it requires the two algorithms to converge before the 
quantity Dxcan be computed and hence the iteration of the 
estimation algorithm can be done. In other words, this 
approach requires the consensus algorithm to be executed at a 
much faster time scale than the consensus algorithm. While 
there has been some characterization of the performance loss 
when the time-scales do not separate smoothly [36]–[38], the 
general problem still remains open. Since the problem is remi-
niscent of the classical information fusion and the distributed 
Kalman filtering problems studied in SP literature, this prob-
lem may be of independent interest. Furthermore, taking into 
account the sparseness of the problem, dynamic Kalman filter-
based solutions for sparse systems, e.g., [39], can be useful 
when the amount of information shared between neighbors is 
kept to a minimum to reduce the need for an excessive com-
munication infrastructure. 

In summary, the SP community can contribute to the 
research on MASE for the future grid by building upon recent 
advances in distributed estimation, e.g., by not only developing 
new resource efficient algorithms but also analyzing their 
behavior in terms of convergence speed and stability. 

EVENT-TRIGGERED APPROACHES TO STATE ESTIMATON
To realize the envisioned functionalities, the future grid will be 
equipped with a myriad of smart meters which will collect and 
transmit massive amount of data, and the control center will 
need to process those data, convert data into information and 
transform information into actionable intelligence. In fact, the 
deployment of PMUs at the transmission level has already 
resulted in more data than the legacy grid’s control center can 
handle. When the smart grid is fully deployed, there is a risk 
that the grid’s operator will be drowned in data, a phenomenon 
that is termed data tsunami. In the development of smart grid, 
the designers must be mindful of preventing this effect, allow-
ing the control center to “separate the wheat from the chaff”  
in a timely manner. Furthermore, it is desirable to make the 
communication infrastructure throughout the grid energy- and 
bandwidth-efficient. Hence, an event-triggered approach to 
sensing, communicating and information processing would be 
quite appealing. The challenge here is to provide analytical per-
formance guarantees in a distributed event triggering algorithm 
in a dynamically changing environment. 

The event-triggered approach can be adopted for SE. An 
example to consider is for MASE as described in the previous sec-
tion, where distributed estimation can be employed. In the event-
triggered MASE, the local areas update their state estimates only 

when needed and cooperate (transmit the estimates) only when 
such an action is informative. An adaptive estimation paradigm, 
referred to as set-membership adaptive filter (SMAF), offers a via-
ble solution to this approach [40]. The SMAF algorithms feature 
selective update of estimates. This is in contrast with convention-
al adaptive estimation algorithms such as recursive least squares 
and least mean squares, which update parameter estimates con-
tinually regardless of the benefits of such updates. In SMAF, esti-
mates are updated only when the measurements offer sufficient 
innovation, as measured by some function of estimation error. 
Accordingly, distributed estimation derived from SMAF commu-
nicates only when such an action is informative. 

CONCLUSIONS
SE is a fundamental functionality to ensure smooth, reliable and 
secure operation of power grids. At the transmission level and, 
particularly in the context of static estimation, SE has a rich his-
tory. New developments that are in the offering for the smart 
grid render such existing methods inadequate. Of particular 
interest are the challenges introduced by new metering infra-
structure such as PMUs, variable and distributed sources includ-
ing renewables, and structural changes resulting from 
integration of microgrids. The demands on SE are also much 
more stringent now and concerns such as reliability, dependabil-
ity, security, and distributed nature and dynamic SE necessitate a 
paradigm shift from the existing algorithms. The SP community 
has much to offer in meeting these exciting challenges. 
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