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Abstract. A primary pseudoperfect number (PPN) is an integer K > 1 such that the recipro-
cals of K and its prime factors sum to 1. PPNs arise in studying perfectly weighted graphs and
singularities of algebraic surfaces, and are related to Sylvester’s sequence, Giuga numbers,
Znám’s problem, and Curtiss’s bound on solutions of a unit fraction equation.

In this paper, we show that K is congruent to 6 modulo 36 if 6 divides K , and uncover a
remarkable 7-term arithmetic progression of residues modulo 288 in the sequence of known
PPNs. On that basis, we pose a conjecture which leads to a conditional proof of a new record
lower bound on any nontrivial solution to the Erdős-Moser Diophantine equation.

1. INTRODUCTION. In 1922 Curtiss [10] proved Kellogg’s [15] conjectured bound
on solutions to a unit fraction equation

n∑
i=1

1

xi
= 1 =⇒ max

1 ≤ i ≤n
xi ≤ Sn − 1, (1)

where Sylvester’s sequence [1, 25, 27], [22, A000058],

Sn = 2, 3, 7, 43, 1807, 3263443, 10650056950807,
113423713055421844361000443, . . . ,

(2)

is defined by the recurrence Sn = S1S2 · · · Sn−1 + 1, with S1 = 2.
The equation in (1) also appears in finite group theory. Suppose we have a finite

group G, and assume it has conjugacy classes C1, . . . ,Cn . The number of elements of
Ci divides the order N of G, so we can write #Ci = N/mi with mi an integer and

N = #C1 + · · · + #Cn = N

m1
+ · · · + N

mn
.

It follows that 1 = ∑
i 1/mi . Curtiss’s result now says that the number of groups with

a prescribed number n of conjugacy classes is finite. For more on this, see Landau [16]
or Lenstra [17].

The present article is concerned with the particular unit fraction equation

1

K
+

∑
p |K

1

p
= 1. (3)
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Here and throughout the paper, p denotes a prime. Equation (3) is related to perfectly
weighted graphs [8] and singularities of algebraic surfaces [6]. The companion equa-
tion

−1

L
+

∑
p |L

1

p
= 1

occurs in the study of Giuga numbers [4, 24], [13, A17], [22, A007850], and a gener-
alization of (3),

r∏
i=1

1

xi
+

r∑
i=1

1

xi
= 1,

arises in Znám’s problem [7, 9], [22, A075461] and the inheritance problem [1]. See
also [2] for recent work on the equation in (1).

In Section 2 we summarize the known facts about solutions to the unit fraction equa-
tion (3). In Section 3 we reduce the solutions modulo 288 and uncover a remarkable
7-term arithmetic progression of residues, leading to two conjectures. In the final sec-
tion, we relate solutions of (3) to possible solutions of the Erdős-Moser Diophantine
equation:

1n + 2n + · · · + (k − 1)n + kn = (k + 1)n. (4)

Assuming a weak form of one of our conjectures, we give a conditional proof of a new
record lower bound on any nontrivial solution of (4).

2. PRIMARY PSEUDOPERFECT NUMBERS. Recall that a positive integer is
called perfect if it is the sum of all of its proper divisors, and pseudoperfect if it is the
sum of some of its proper divisors [13, B1, B2], [22, A000396, A005835].

Definition 1 (Butske, Jaje, and Mayernik [8]). A primary pseudoperfect number
(PPN for short) is an integer K > 1 that satisfies the unit fraction equation (3). See
[20, 26, 27] and [22, A054377]. Note that, just as 1 is not a prime number, so too 1 is
not a PPN.

Multiplying equation (3) by K gives the equivalent integer condition

1 +
∑
p |K

K

p
= K . (5)

For example, 42 = 2 · 3 · 7 is a PPN, because 42/2 = 21, 42/3 = 14, 42/7 = 6, and
1 + 21 + 14 + 6 = 42. From (5) we see that all PPNs are square-free, and that every
PPN except 2 is pseudoperfect. As with perfect numbers, it is unknown whether there
are infinitely many PPNs or any odd ones.

Notation. For an integer r ≥ 1, we denote by Kr any PPN with exactly r (distinct)
prime factors.

Remarkably, there exists precisely one Kr for each positive integer r ≤ 8. This was
conjectured by Ke and Sun [14] and Cao, Liu, and Zhang [9], and then verified in
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Table 1. The primary pseudoperfect numbers with r ≤ 8 prime factors.

r Kr Prime Factorization
1 2 2
2 6 2 · 3
3 42 2 · 3 · 7
4 1806 2 · 3 · 7 · 43
5 47058 2 · 3 · 11 · 23 · 31
6 2214502422 2 · 3 · 11 · 23 · 31 · 47059
7 52495396602 2 · 3 · 11 · 17 · 101 · 149 · 3109
8 8490421583559688410706771261086 2 · 3 · 11 · 23 · 31 · 47059

· 2217342227 · 1729101023519

[8] (see also Anne [1]) using computational search techniques. Table 1 lists all known
PPNs and their prime factors.

Here are five related observations on Table 1 and Sylvester’s sequence (2).

(a) K1 = 2, K2 = 2 · 3 = 6, K3 = 6 · 7 = 42, and K4 = 42 · 43 = 1806, but K5 �=
1806 · 1807.

(b) K5 = 47058 and K6 = 47058 · 47059 = 2214502422, but K7 �= 2214502422 ·
2214502423.

(c) K6 = 2214502422 and K8 = 2214502422 · 2217342227 · 1729101023519.
(d) K1, K2, K3, K4 = 2, 6, 42, 1806 are each 1 less than the terms S2, S3, S4, S5 =

3, 7, 43, 1807.
(e) Kr < Sr+1, for r = 1, 2, . . . , 8.

These patterns can all be explained.

Proposition 1. For any integer K , set K ′ := K (K + 1).

(i) Assume that K + 1 is prime. Then K is a PPN if and only if K ′ is also a PPN.
(ii) Assume that we can factor K 2 + 1 = (p − K )(q − K ), for some primes p >

K and q > K . Then K is a PPN if and only if K · p · q is also a PPN.
(iii) If K + 1 = Sn is a term in Sylvester’s sequence, then K ′ + 1 = Sn+1 is the next

term in it.
(iv) The inequality Kr ≤ Sr+1 − 1 holds for any PPN with r ≥ 1 prime factors.

Proof. (i) This follows easily from Definition 1 and the relation 1
K ′ = 1

K − 1
K+1 .

(ii) The proof is similar; for details, see Brenton and Hill’s more general Proposi-
tion 12 in [6], as well as [1, Lemma 2] and [8, Lemma 4.1].
(iii) Sylvester’s sequence satisfies Sn+1 = (Sn − 1)Sn + 1. Setting Sn = K + 1 gives (iii).
(iv) This follows directly from Curtiss’s bound (1).

Now, as 3, 7, 43, 47059 are prime, but 1807 = 13 · 139 and 2214502423 = 72 ·
45193927 are composite, and as the numbers 2217342227 and 1729101023519 in the
factorization

22145024222 + 1 = (2217342227 − 2214502422)(1729101023519 − 2214502422)

are prime, the observations (a), (b), (c), (d), and (e) are explained.
Analogs of (i) and (ii) for K − 1 and K 2 − 1, involving PPNs and Giuga numbers,

are given in [24, Theorem 8].
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3. PPNS AND ARITHMETIC PROGRESSIONS. According to Table 1, the PPNs
having r = 2, 3, 4, 5, 6, 7, 8 prime factors, i.e.,

Kr = 6, 42, 1806, 47058, 2214502422, 52495396602,

8490421583559688410706771261086,

are all multiples of 2 · 3 = 6:

Kr

6
= 1, 7, 301, 7843, 369083737, 8749232767,

1415070263926614735117795210181.

Proposition 2. Let K be any PPN divisible by 6. Then K ≡ 6 (mod 62).

Proof. Denote by μ (≥ 0) the number of prime factors of K congruent to −1 modulo
6. Since 6 | K and K is square-free, K

6 ≡ (−1)μ (mod 6). Now, reducing equation (5)
modulo 6 gives

1 + K

2
+ K

3
+

∑
3< p |K

K

p
= K =⇒ 1 + 3(−1)μ + 2(−1)μ ≡ 0 (mod 6) (6)

and hence μ is even. This proves the proposition.

In particular, for r = 2, 3, 4, 5, 6, 7, 8 we find, respectively, that

Kr − 6

62
= 0, 1, 50, 1307, 61513956, 1458205461,

235845043987769122519632535030.

Let us write N (mod M) = R if the remainder upon division of N by M is R, so that
both the congruence N ≡ R (mod M) and the inequalities 0 ≤ R < M hold. In light
of Proposition 2 and the values (K2, K3) = (6, 42), one might predict that if we divide
K2, . . . , K8 by some number M , the remainders will form the arithmetic progression
(AP for short)

Kr (mod M) = 6, 42, 78, 114, 150, 186, 222, for r = 2, 3, 4, 5, 6, 7, 8, (7)

respectively. This requires M to exceed 222 and to divide each of the differences

1806 − 78 = 1728 = 26 · 33,

47058 − 114 = 46944 = 25 · 32 · 163,

2214502422 − 150 = 2214502272 = 27 · 32 · 89 · 21599,

52495396602 − 186 = 52495396416 = 26 · 32 · 47 · 1939103,

8490421583559688410706771261086 − 222

= 8490421583559688410706771260864 = 26 · 32 · 338293

· 43572628606668095873923.

Since their greatest common divisor is 25 · 32 = 288 > 222, and no proper factor of
288 exceeds 222, the choice M = 288 = 62 · 8 is both necessary and sufficient. This
establishes a remarkable property of these PPNs.
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Proposition 3. Upon division of the primary pseudoperfect numbers K2, K3, K4, K5,
K6, K7, K8 by M = 288, the remainders form the 7-term arithmetic progression (7),
that is,

Kr (mod 62 · 8) = 6 + 62(r − 2) for r = 2, 3, 4, 5, 6, 7, 8. (8)

Moreover, no other modulus will do.

Notice that the inequalities

6 + 62 · (9 − 2) = 258 < 288 < 294 = 6 + 62 · (10 − 2)

hold. Thus, the remainder pattern in (8) might persist for r = 9 (assuming that a K9

exists), but cannot for r ≥ 10. Throwing caution to the wind, we therefore make the
following prediction.

Conjecture 1. There exists exactly one primary pseudoperfect number K9 with nine
prime factors, and K9 (mod 62 · 8) = 258 holds. No further PPNs exist.

Anyone thinking of settling Conjecture 1 by computation should be aware that Cur-
tiss’s upper bound for a ninth PPN is K9 < S10, a 106-digit number.

In case all or part of Conjecture 1 fails, we also predict a strengthening of Proposi-
tion 2 for all PPNs greater than 2, including those with more than eight prime factors,
if any.

Conjecture 2. For all r ≥ 2, we have Kr ≡ 6 + 62(r − 2) (mod 62 · 8). Equivalently
(by Proposition 2), if Kr > 2, then Kr is a multiple of 6 and

Kr − 6

62
≡ r − 2 (mod 8).

Note that the case r = 9 here is weaker than Conjecture 1. Note also that the quan-
tity r − 2 equals the number of prime factors of Kr different from 2 and 3. Thus, each
such factor conjecturally contributes 1 to (Kr − 6)/62 modulo 8 in some variant of the
relation (6).

Although the modulus 62 · 8 cannot be changed in Proposition 3, other moduli pro-
vide interesting APs for subsets of the PPNs. For example, we have APs of com-
plementary subsequences K2, K4, K6, K8 (mod 128) = 6, 14, 22, 30, and K3, K5, K7

(mod 128) = 42, 82, 122, so that

Kr (mod 27) =
{

6 + 4(r − 2) for r = 2, 4, 6, 8,

42 + 20(r − 3) for r = 3, 5, 7.
(9)

Finally, we give a way to generate triples of PPNs congruent modulo 63 · 4 = 864
to 3-term APs.

Proposition 4. Let K be a PPN such that K + 1 and K 2 + K + 1 are prime. Then the
products K ′ := K (K + 1) and K ′′ := K ′(K ′ + 1) are also PPNs, and

K ≡ 0 (mod 6) =⇒ K , K ′, K ′′ ≡ K , K + 62, K + 62 · 2 (mod 63 · 4), (10)

respectively.
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Proof. Since K + 1 and K ′ + 1 = K 2 + K + 1 are prime, Proposition 1 part (i)
implies that K ′ and K ′′ are also PPNs. As 6 | K , Proposition 2 gives K = 6 + 62n, for
some n. Now, we can write

K ′ − K = K 2 = 62 + 62 · 4 · 3n(3n + 1) ≡ 62 (mod 63 · 4),

because 3n(3n + 1) is even. In the same way we get K ′′ − K ′ ≡ 62 (mod 63 · 4), and
(10) follows.

The only known example of Proposition 4 is with K = 6. The primary pseudop-
erfect numbers K , K ′, K ′′ are then 6, 42, 1806, whose remainders modulo 63 · 4 form
the 3-term arithmetic progression 6, 42, 78. Compare to Proposition 3 for r = 2, 3, 4.

It would be interesting to find explanations and extensions to all PPNs, analogous to
the statements and proofs of Propositions 1, 2, and 4, for the APs of certain Kr modulo
62 · 8 and 27 in (8) and (9), respectively.

4. THE ERDŐS-MOSER CONJECTURE AND A CONDITIONAL RABBIT.
Erdős and Moser (EM for short) studied equation (4) around 1953 and made the fol-
lowing prediction.

Conjecture 3 (EM). The only solution to the EM equation (4) in positive integers is
the trivial solution 11 + 21 = 31.

Moser proved the following result toward Conjecture 3.

Theorem 1 (Moser [19]). If (k, n) is a nontrivial solution of (4), then k > 10106
.

This bound was improved to k > 101.485×9321155 in [8], and to k > 10109
by Gallot,

Moree, and Zudilin [12] (see also [5, Chapter 8]). On the other hand, it is not even
known whether the number of solutions is finite. See the surveys [13, D7] and [18].

In [23] the authors approximated the EM equation by the EM congruence

1n + 2n + · · · + (k − 1)n + kn ≡ (k + 1)n (mod k), (11)

as well as by the supercongruence modulo k2, and proved the following connection
with PPNs.

Proposition 5. The EM congruence (11) holds if and only if the inclusion

1

k
+

∑
p |k

1

p
∈ Z (12)

is true and p | k implies (p − 1) | n. In particular, every primary pseudoperfect num-
ber K provides a solution k := K to (11) with exponent n := lcm{p − 1 : p | K }.

Part of this is implicit in [19]: Moser’s work shows that (4) implies (12); see
[8, p. 409].

In [18] Moree wrote, “In order to improve on [Theorem 1] by Moser’s approach
one needs to find additional rabbit(s) in the top hat. The interested reader is wished
good luck in finding these elusive animals!” Moree’s top hat is a von Staudt-Clausen
type theorem. Instead, we find a conditional rabbit in a hypothesis weaker than Con-
jecture 1.
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Proposition 6. If there are no primary pseudoperfect numbers Kr with r ≥ 33, and if
the Erdős-Moser equation (4) has a nontrivial solution (k, n), then k > 103.99×1020

.

Proof. In [12, Section 5.1] it is shown that if (k, n) is a solution of (4) with n > 1,
then the number of distinct prime factors of k is at least 33. Thus if no Kr exists with
r ≥ 33, then by Proposition 5 the left-hand side of (12) cannot equal 1 and so, being
a positive integer, must be ≥ 2. In the analysis of Moser’s proof, this leads now to the
inequality

1

m − 1
+ 2

m + 1
+ 2

2m − 1
+ 4

2m + 1
+

∑
p|M

1

p
≥ 4

1

6
(13)

(instead of ≥ 3 1
6 as in [18, equation (14)] and [19, equation (19)]), where m − 1 =

k and M = (m2 − 1)(4m2 − 1)/12. Now, m − 1 = k > 233 > 8 × 109 and so (13)
implies

∑
p | M

1

p
> 4.166666. (14)

From (14) it follows that M >
∏

p≤x p if
∑

p≤x
1
p < 4.166666. We show that the last

inequality in turn holds if x = x0 := 3.6769 × 1021. First, recall that the theorem of
Mertens states that limx→∞(

∑
p≤x

1
p − log log x) = B1, where B1 = 0.261497 . . . is

Mertens’s constant [22, A077761]. Now, with x = x0 compute Dusart’s explicit form
of Mertens’s theorem [11, Theorem 6.10], namely,

∣∣∣∣ ∑
p ≤ x

1

p
− log log x − B1

∣∣∣∣ ≤ 1

10 log2 x
+ 4

15 log3 x
(x ≥ 10372). (15)

In [11, Theorem 5.2] Dusart also proved that

∑
p ≤ x

log p >

(
1 − 1

log3 x

)
x (x ≥ 89967803).

Hence

log M > log
∏

p ≤ x0

p =
∑
p ≤ x0

log p >

(
1 − 1

log3 x0

)
x0 > 3.6768 × 1021.

Now, 3M < m4 = (k + 1)4, so log(k + 1) > (log 3 + log M)/4 > 9.192 × 1020.
Therefore k > e9.19×1020

> 103.99×1020
. This proves the proposition.

Remark. If we assume the Riemann hypothesis, then we may replace (15) with
Schoenfeld’s conditional inequality [21]

∣∣∣∣ ∑
p ≤ x

1

p
− log log x − B1

∣∣∣∣ ≤ 3 log x + 4

8π
√

x
(x ≥ 13.5)
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(see [3, equation (7.1)]), and infer that
∑

p≤x1

1
p < 4.166666 if x1 := 3.6847 × 1021.

Using x1 in place of x0 in the rest of the proof, we arrive at the slightly better, but
doubly conditional bound k > 104×1020

.
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

The Annual Register of the American Mathematical Society for the year 1916 shows
a membership of 732; during the year the attendance at general and sectional meet-
ings numbered 490; and 205 papers were presented. The treasurer’s report shows a
balance of $10,198.38. The library contains 5,377 volumes.

School and Society has collected data showing that the universities of the United
States granted 607 doctorates during the academic year 1915–1916. Of this num-
ber 332 degrees were granted in the sciences, 34 being in mathematics. The number
receiving the doctorate in mathematics is not large, being only slightly more than 5
per cent of the total, and is evidently not nearly sufficient to supply the demand for
high-class instructors in the colleges and universities of America. If distributed geo-
graphically over the United States, but two doctors in mathematics could be supplied
to every three states of the Union.

— Excerpted from “Notes and News” 24 (1917) 138–144.

240 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124

http://home.earthlink.net/~jsondow/
http://www.kierenmacmillan.info/
http://www.kierenmacmillan.info/

