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A variety of two-dimensional (2D) empirical mode decomposition (EMD) methods have been proposed in the
last decade. Furthermore, the multidimensional EMD algorithm and its parallel class, multivariate EMD
(MEMD), are available in recent years. From those achievements, it is possible to design an efficient 2D nonlinear
filter for geophysical data processing. We introduce a robust 2D nonlinear filter which can be applied to enhance
the signal of 2D geophysical data or to highlight the feature component on an image.We did this by replacing the
conventionally used smooth interpolation in the ensemble empirical mode decomposition (EEMD) algorithm
with a piecewise interpolation method. The one-dimensional (1D) EEMD procedures were consecutively
performed in all directions, and then the comparable minimal scale combination technique was applied to the
decomposed components. The theoretical derivation, model simulation, and real data applications are demon-
strated in this paper. The proposed filteringmethod is effective in improving the image resolution by suppressing
the random noise added in the simulation example and strong low frequency track corrugation noise bandswith
background noise in the field example. Furthermore, the algorithm can be easily extended to higher dimensions
by repeating the same procedure in the succeeding dimension. To evaluate the proposed method, one data set
is processed separately by using the enhanced analytic signal method and the multivariate EMD (MEMD)
algorithm, and the results from these two methods are compared with that of the proposed method. A general
equation for generating three-dimensional (3D) EEMD components based on the comparable minimal scale
combination principle is derived for further applications.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Conventional filtering methods mostly are applications of the
Fourier analysis or a newer approach, wavelet analysis (Foufoula-
Georgiou and Kumar, 1994; Jeng et al., 2011; Stollnitz et al., 1995). In
recent years, the empirical mode decomposition (EMD) technique is
rapidly developing as a new tool in data analysis and filtering. The
EMD is an adaptive, data-driven nonlinear data processing method
which decomposes data into mono-component signal. Since it was
invented by Huang et al. (1998), this method has evolved from the pro-
totype to a variety of EMD based data processing algorithms in explora-
tion geophysics and engineering (Battista et al., 2007; Jeng and Chen,
2011, 2012; Jeng et al., 2007; Lin and Jeng, 2010; Macelloni et al.,
2011, Rehman and Mandic, 2010a,b,c; Xue et al., 2013; Zhou et al.,
2012). However, most of the published algorithms are one dimensional
or pseudo-two-dimensional (pseudo-2D). In general, the pseudo-2D
EMD method manages 2D data as a set of one dimensional traces, and
analyzes each trace using conventional one dimensional (1D) EMD
886 2 29333315.
algorithm. After decomposing each trace of the data, the components
of the same sifting level in each trace are sorted out to one gather to
construct a pseudo-2D EMD component (Han and van der Baan, 2013;
Huang, 2001) or pseudo-2D EEMD (ensemble empirical mode decom-
position) component (Chen and Jeng, 2011, 2013; Jeng and Chen,
2011). As proposed by Wu and Huang (2009), the EEMD technique is
a noise assisted data analysis method to alleviate the mode mixing
problem caused by the intermittent signal. The pseudo-2D approach is
successfully used in analyzing temporal–spatial (one temporal dimen-
sion and one spatial dimension) data or two dimensional spatial data
polarized in one direction and without intermittency. For the data
lacking distinguishable directionality or being intermittent, the func-
tionality of the pseudo-2D EMD analysis is drastically limited, and the
analyzed results will be unstable and exhibiting obvious inter-slice dis-
continuity (Wu et al., 2009). Although the intermittent problem can be
overcome by employing the pseudo-2D EEMD technique (Wu and
Huang, 2009;Wu et al., 2009), the inter-slice discontinuity still remains.

Various real 2D EMD algorithms have been proposed during
the last decade. They include using radial basis functions as basis
vectors for constructing 2D surface (Nunes et al., 2003, 2005), making
use of Delaunay triangulation and piecewise cubic interpolation for 2D
decomposition (Damerval et al., 2005), applying the variable sampling
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and thin plate spline techniques to two dimensional interpolation
(Linderhed, 2005), employing the finite elementmethod in two dimen-
sional surface fitting (Xu et al., 2006), and so on. Although the stated
approaches differ greatly, the essential idea is to fit surfaces rather
than to fit curves when sifting the data. In other words, a surface
envelope will replace the line envelope in the 2D EMD data sifting.
These new methods have made significant progresses in the 2D EMD
analysis, but some basic problems persist. The major difficulties of
determining the surface envelope by using the aforementioned new
two-dimensional algorithms are the uncertainty of determining the
optimum local extrema, the huge cost of computation, and the problem
ofmodemixing (Bhuiyan et al., 2009;Wu et al., 2009). To determine the
optimum local extrema and take control of the mode mixing problem,
Wu et al. (2009) presented their multidimensional EEMD (MDEEMD)
algorithm which applies the one-dimensional EEMD analysis sequen-
tially to the data in each dimension to obtain a collection ofmultidimen-
sional components, and then combines the appropriate components
based on the minimal scale combination strategy to attain a set of
MDEEMD filter bank. This method skillfully circumvents the difficulties
of finding the optimum local extrema in multidimensional data, and
eliminates the mode mixing. In particular, it is easy to apply. Even
though the MDEEMD method performs better than many other
methods, some difficulties need further study, mainly the spline tech-
nique. The cubic spline used in the MDEEMD is efficient but may intro-
duce false extrema during the sifting process, and the end effect from
the spline envelope can cause unexpected errors.

In parallel to the development of multidimensional EMD, the
multivariate EMD (MEMD) for time series analysis is also emerging
(Neukirch and Garcia, 2014; Rehman and Mandic, 2010c, 2011;
Rehman et al., 2013). TheMEMD originates from the idea of bivariate
EMD for processing complex signals (Rilling et al., 2007; Tanaka and
Mandic, 2007). It follows the development of trivariate EMD (Rehman
and Mandic, 2010a), quadrivariate EMD (Rehman and Mandic, 2010b),
and MEMD related algorithms. These methods can also help to solve
the aforementioned unstable and inter-slice discontinuity problems of
the pseudo-2D EMD to a large extent.

In fact, themultidimensional EMDand theMEMDare strongly corre-
lated. The concept of oscillations in EMD is generalized to be rotations
(Mandic et al., 2013), and the sifting and envelope interpolation proce-
dures are similar in both methods. The basic difference is the way of
determining the local maxima and minima because the MEMD tries
to alleviate the problem of numbers that are not ordered. In other
words, the MEMD helps solve issues involving numbers that are un-
defined or cannot be compared with one another (e.g. complex num-
bers). The MEMD algorithm transfers the data into real-valued signals
by employing a signal projecting technique, and generates multivariate
envelope curves by using the rotation invariant EMD (RIEMD) algo-
rithmwhich defines the extrema based on a change in the phase rather
than the amplitude of the signal (Looney and Mandic, 2009). By calcu-
lating the mean of the multivariate envelope curves, the multivariate
signalmean is obtained for EMD sifting. Because the approach considers
extrema in several directions, it generates an equal number of IMFs for
each channel of the data that makes it easier for processing multidi-
mensional data. Similar in spirit to EEMD, an updated version of the
MEMD (the ensemble MEMD) has been proposed in the context of
time series analysis but has not been applied directly to the multidi-
mensional data (Rehman et al., 2013). More detailed discussions of
the multidimensional EMD and the MEMD can be found in Mandic
et al. (2013).

Given that the images can be vectorized, the vectorized EMD
schemes like MEMD or bivariate EMD can be applied.

The focus of this paper is to apply the MDEEMD technique with
modifications to make it more feasible in the 2D geophysical data
processing, especially in the application of data filtering. As it has
been pointed out by the inventors of the EMD and the related methods,
the EEMDusually bring in nonzeronoise elementswhich are impossible
to remove completely (Wu and Huang, 2009). Based on our experi-
ences, the remaining noise could be exaggerated through improper
use of the spline technique. This imperfection may introduce unreli-
able intrinsic mode functions (IMFs) (Appendix A) and end effect
problems. To avoid drawbacks of the spline technique used in most
of the EMD related algorithms, the piecewise cubic Hermite interpo-
lating polynomial (PCHIP) spline is adopted in the sifting process of
the MDEEMD algorithm (Mandic et al., 2013). We then implement
a nonlinear 2D data filtering scheme by utilizing the 2D filter bank
resulting from the modified MDEEMD method. A simulation investi-
gation is presented to show the improvement from the conventional
MDEEMD method. To demonstrate the practical application, the
proposed method is utilized in real 2D magnetic field data as an
efficient 2D nonlinear filtering process. We also provide the results
obtained from the MEMD and the 3D analytic signal enhancement
for comparison.

2. Methods

2.1. MDEEMD method

The method of MDEEMD (Wu et al., 2009) is an extension of its
original 1D EMD and EEMD algorithms (Appendix A). To design the
MDEEMD algorithm, the extension from 1D to 2D is a key step. The
further extension to three or more dimensional decomposition is
straightforward because the identical procedure can be repeatedly
executed on the succeeding dimension. After all the dimensions are
decomposed, a comparable minimal scale combination principle is
employed to attain the MDEEMD components. The strategy of the
method is modified and described briefly as follows. The details of the
original approach can be found in the contribution of Wu et al. (2009).

Mathematically, let us present a 2D spatial data set in an i by jmatrix
form

X i; jð Þ ¼
x1;1 x1;2 ⋯ x1; j
x2;1 x2;2 ⋯ x2; j
⋮ ⋮ ⋮ ⋮

xi;1 xi;2 ⋯ xi; j

0
BB@

1
CCA ð1Þ

At first, EEMD is performed in one direction of X(i,j), horizontal di-
rection for instance, to decompose the data of each row into m compo-
nents, then to collect the components of the same level from the result
of each row decomposition to constitute a 2D spatial data of that level.
Therefore, m set of 2D spatial data as denoted in Eq. (2) are obtained.

RX 1; i; jð Þ ¼
rx1;1;1 rx1;1;2 ⋯ rx1;1; j
rx1;2;1 rx1;2;2 ⋯ rx1;2; j

⋮ ⋮ ⋮ ⋮
rx1;i;1 rx1;i;2 ⋯ rx1;i; j

0
BB@

1
CCA

RX 2; i; jð Þ ¼
rx2;1;1 rx2;1;2 ⋯ rx2;1; j
rx2;2;1 rx2;2;2 ⋯ rx2;2; j

⋮ ⋮ ⋮ ⋮
rx2;i;1 rx2;i;2 ⋯ rx2;i; j

0
BB@

1
CCA

⋮

RX m; i jð Þ ¼
rxm;1;1 rxm;1;2 ⋯ rxm;1; j
rxm;2;1 rxm;2;2 ⋯ rxm;2; j

⋮ ⋮ ⋮ ⋮
rxm;i;1 rxm;i;2 ⋯ rxm;i; j

0
BB@

1
CCA

ð2Þ

where RX(1,i,j), RX(2,i,j),…, and RX(m,i,j) are the m sets of 2D spatial
data as stated (here we use R to indicate row decomposing). The rela-
tion between Eqs. (1) and (2) can be expressed as

X i; jð Þ ¼ RX 1; i; jð Þ þ RX 2; i; jð Þ þ ⋯þ RX m; i; jð Þ ð3Þ
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More specifically speaking, the first row of the matrix RX(m,i,j) is
the mth EEMD component decomposed from the first row of the
matrix X(i,j). The second row of the matrix RX(m,i,j) is the mth

EEMD component decomposed from the second row of the matrix
X(i,j), and so on.

Suppose that the previous decomposition is along the x direction,
the next step is to decompose each one of the previously row-
decomposed components, RX(1,i,j), RX(2,i,j),…, and RX(m,i,j), in the y di-
rection into n components. This step will generate n components from
each RX component in Eq. (2). For example, the component RX(1,i,j)
will be decomposed into CRX(1,1,i,j), CRX(1,2,i,j),…,CRX(1,n,i,j); RX(2,i,j)
will be decomposed into CRX(2,1,i,j), CRX(2,2,i,j),…, CRX(2,n,i,j); RX(m,i,j)
will be decomposed into CRX(m,1,i,j), CRX(m,2,i,j),…, CRX(m,n,i,j)
where C means column decomposing. The equations of these rela-
tions are

RX 1; i; jð Þ ¼ CRX 1;1; i; jð Þ þ CRX 1;2; i; jð Þ þ ⋯þ CRX 1;n; i; jð Þ
RX 2; i; jð Þ ¼ CRX 2;1; i; jð Þ þ CRX 2;2; i; jð Þ þ ⋯þ CRX 2;n; i; jð Þ

⋮
RX m; i; jð Þ ¼ CRX m;1; i; jð Þ þ CRX m;2; i; jð Þ þ ⋯þ CRX m;n; i; jð Þ

ð4Þ

Finally, the 2Ddecompositionwill result inm× nmatriceswhich are
the 2D EEMD components of the original data X(i,j). The matrix expres-
sion for the result of the 2D decomposition is

CRX m;n; i; jð Þ ¼
crx1;1;i; j crx2;1;i; j ⋯ crxm;1;i; j
crx1;2;i; j crx2;2;i; j ⋯ crxm;2;i; j

⋮ ⋮ ⋮ ⋮
crx1;n;i; j crx2;n;i; j ⋯ crxm;n;i; j

0
BB@

1
CCA ð5Þ

where each element in thematrix CRX is an i× j sub-matrix representing
a 2D EEMDdecomposed component.Weuse the arguments (or suffixes)
m and n to represent the component number of row decomposition and
column decomposition, respectively rather than the subscripts indicat-
ing the row and the column of a matrix. To simplify the notation, Eq. 5
is rewritten as

CRX m;nð Þ ¼
crx1;1 crx2;1 ⋯ crxm;1
crx1;2 crx2;2 ⋯ crxm;2

⋮ ⋮ ⋮ ⋮
crx1;n crx2;n ⋯ crxm;n

0
BB@

1
CCA ð6Þ

Notice that the m and n indicate the number of components
resulting from row (horizontal) decomposition and then column (verti-
cal) decomposition, respectively. In other words, the suffix m indicates
the mth EEMD component of the row decomposition, and n designates
the nth component of the column decomposition after row decomposi-
tion. That is, sub-matrix crxm,n is a collection of the nth component
resulting from the column decomposition of the previous mth EEMD
component of row decomposition. The decomposition can start with
row or column; both ways are acceptable. However, these m × n ele-
ment matrices are just detailed components representing fragmen-
tary features of 2D objects. A strategy to integrate the detailed
components to a significant 2D feature is to perform the comparable
minimal scale combination principle (Wu et al., 2009). In other
words, by combining the components of the same scale or the com-
parable scales with minimal difference will yield a 2D feature with
best physical significance. This is a fairly easy task when the matrix
shown in Eq. (6) is available. The components of the first row and
the first column are approximately the same or comparable scale
although their scales are increasing gradually along the row or col-
umn. Therefore, combining the components of the first row and the
first column will obtain the first complete 2D component (C2D1).
The subsequent process is to perform the same combination technique
to the rest of the components. For example, ifm= n=4, the combining
procedure is expressed by three pairs of orthogonal arrows as shown
in Eq. (7).

ð7Þ

Consequently, the complete 2D components are

C2D1 ¼
X4

m¼1

crxm;1 þ
X4

n¼1þ1

crx1;n ¼ crx1;1 þ crx2;1 þ crx3;1 þ crx4;1

þcrx1;2 þ crx1;3 þ crx1;4

C2D2 ¼
X4

m¼2

crxm;2 þ
X4

n¼2þ1

crx2;n ¼ crx2;2 þ crx3;2 þ crx4;2

þcrx2;3 þ crx2;4

C2D3 ¼
X4

m¼3

crxm;3 þ
X4

n¼3þ1

crx3;n ¼ crx3;3 þ crx4;3 þ crx3;4;

and

C2D4 ¼
X4

m¼4

crxm;4 þ
X4

n¼4þ1

crx4;n ¼ crx4;4 þ 0 ¼ crx4;4:

A general equation for the combining procedure to generate com-
plete 2D components (C2D) is

C2Dl ¼
Xm

m¼l

crxm;l þ
Xn

n¼lþ1

crxl;n ð8Þ

where l denotes the level of the C2D, and

l ¼ m ¼ n if m ¼ n;
l ¼ m if mbn;
l ¼ n if mNn;

ð9Þ

Following the convention of 1D EMD, the last component of the
complete 2D components is called residue.

The decomposition strategy can be extended without difficulty to
higher or any dimensional data. For a 3D data cube of i × j × k elements,
the multidimensional EMD decomposition will yield detailed 3D com-
ponents of m × n × q where m, n and q are the number of the IMFs
decomposed from each dimension having i, j, and k elements, respec-
tively. The matrix expression for the result of the 3D decomposition is
TCRX(m,n,q,i,j,k) where T denotes the depth (or time) decomposition.
Based on the comparable minimal scale combination principle as ap-
plied in the 2D case, the number of complete 3D components will be
the smallest value of m, n and q. The general equation for deriving 3D
components is

C3Dl ¼
Xm

m¼l

Xn

n¼l

tcrxm;n;l þ
Xm

m¼lþ1

Xq

q¼lþ1

tcrxm;l;q þ
Xn

n¼lþ1

Xq

q¼lþ1

tcrxl;n;q ð10Þ



Fig. 1.Comparison of datafittedwith a standard cubic polynomial spline and the PCHIP. The data set is a typical gradientmagnetic survey line of thefield example. The PCHIP ismonotonic,
and fits closer to the data.
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where tcrx indicates the sub-matrix contained in the matrix TCRX
(m,n,q,i,j,k). Building on the convention introduced in Eq. 5, matrix
TCRX(m,n,q,i,j,k) is a 3D matrix having m × n × q elements, and each
element is a 3D sub-matrix having i × j × k elements. In reality, the
IMFs number of each trace is subject to the aim of the study and the
data attribute. In our examples, it is an integer between 7 and 9 at
most, and the higher index IMFs are close to the residue which can be
neglected. To avoid unnecessary computations, we only use the first
six IMFs in each direction for constructing the multi-dimensional
EEMD components, and eliminate the rest components if the IMFs num-
ber is greater than six. In extreme cases where the IMFs number differs
notably between traces even in the same dimension, higher amplitude
noise should be added in implementing the EEMD algorithm to provide
enough IMF scales for sifting the trace formerly having too few IMFs.We
call the procedure "regulation". Investigators can regulate the number
of IMFs to optimize the computation because there is no need to process
insignificant components throughout the analysis. To perform the com-
parable minimal scale combination, the same number of IMFs in each
dimension is also suggested.

The MDEEMDmethod has several advantages. For instance, the sift-
ing procedure of the MDEEMD is a combination of one dimensional
Fig. 2. Synthesis of the noise interfered image. (a) Plain image with pixel values between 0 and
synthesized by adding the random noise (b) on to plain image in (a).
sifting. It employs 1D curve fitting in the sifting process of each dimen-
sion, and has no difficulty as encountered in the 2D EMD algorithms
using surface fitting which has the problem of determining the saddle
point as a local maximum or minimum. Another advantage of using
the MDEEMD method is that the mode mixing is reduced significantly
due to the function of the EEMD (Appendix A). The most advantageous
property of the MDEEMD method is that it is ready to apply to data of
any dimension. Although it can be extended to any dimensional data,
we only present 2D examples for practical reasons because the compu-
tation time of higher dimensional data will be at least proportional to
the number of the IMFs of the succeeding dimension. It could exceed
the computation capacity of a PC based geophysical data processing sys-
temespeciallywhen thenumber of the ensemblemembers in the EEMD
algorithm is large.

2.2. Interpolation method

The essential procedure of the EMD is sifting, which separates undu-
lations of different characteristic scale by removing the incompatible
fluctuations and riding waves at a given level of sifting (Appendix A).
Those removed parts are left for the next level of sifting. By repeating
1. (b) Uniformly distributed random noise with pixel values between 0 and 4. (c) Image



Fig. 3. Spectrogram and marginal spectra of trace 51 selected from the model image. (a) Plain image. (b) Noise. (c) Noise interfered image. (d) Marginal spectra of the image, noise, and
noise interfered image. The color map is in HSV (hue, saturation and value) color space whichmakes the energy distribution more distinct, but the colors of the minimum andmaximum
data are very close.
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the sifting process, a series of IMFs representing signals ranging from
high frequency to low frequency are retrieved to achieve a dyadic filter
bank (Flandrin et al., 2004;Wu andHuang, 2009)which is a set of filters
Fig. 4. Filter bank and filtering simulation of the MDEEMD with cubic spline interpolation. (a)
respectively. Components after C6 are neglected due to lack of physical meaning. (h) Image rec
C4, C5, and C6.
that the frequency ranges of the neighboring filters are partly related.
The first step of performing sifting is to determine the upper and lower
envelopes encompassing all the data by using the spline method, in
Noise interfered image (b) to (g) displaying the 2D filter bank components from C1 to C6,
onstructed by using components C4 and C5. (i) Image reconstructed by using components



Fig. 5. Filter bank and filtering simulation of the MDEEMDwith PCHIP interpolation. (a) Same noise interfered image as shown in Fig. 4a. (b) to (g) displaying the 2D filter bank compo-
nents from C1 to C6, respectively. Similar to the cubic spline result, components after C6 are neglected due to lack of physical meaning. (h) Image reconstructed by using components C5
and C6. (i) Image reconstructed by using components C4, C5, and C6.
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which a standard cubic polynomial spline technique iswidely used to in-
terpolate the data. The spline algorithm implements the interpolation
with continuous derivatives to give a smooth result. This is adequate if
the data being fitted are smooth or oscillating with high frequency,
otherwise artificial local extrema will be generated due to the violation
of monotonicity (no wiggling). To avoid the unrealistic smooth and
redundant computations, we employ piecewise cubic Hermite interpo-
lating polynomial (PCHIP) to fit the data. By trading off some smooth-
ness for stability, the PCHIP fits the given data with a function that
preserves the character andmonotonicity of the data being interpolated
(Kahaner et al., 1988). Because no higher degree (higher than 3) curves
are involved and because the monotonicity constrain is satisfied in the
interpolation, the PCHIP reduces the computation cost and increases
the stability of curvefitting (Wolberg andAlfy, 2002). It is especially use-
ful for sifting the lower frequency components in the EMD data sifting
because it reduces more undesired artificial extrema in the lower fre-
quency components than in the higher frequency components. This is
obvious by considering the fact that at the same sample interval, the
lower frequency components are better sampled than the higher fre-
quency components. If anymonotonicity is found in the lower frequency
components, it should be respected rather than replaced by artificial
wiggles resulting from standard cubic polynomial spline. To have a
more stable interpolation particularly at the ends of the signals, we
moreover adopt the slope extrapolation technique (Chen and Jeng,
2013) to alleviate the end effect problem. We determine the end points
by extrapolating the slope estimated by the two preceding (the right
end) or following points (the left end). In our experiences, the major
discrepancy between standard cubic polynomial spline and PCHIP
usually appears in the lower frequency components. Fig. 1 shows a set
of real data fitted with the PCHIP and a standard non-monotone cubic
interpolation (cubic spline).

Similar sifting scheme for MEMD can be found in Rehman and
Mandic (2010c, 2011) where the local mean of the standard EMD is
replaced by themean ofmultivariate envelope curves. By using the qua-
ternion calculation, the MEMD results in better mode alignment than
the standard EMD (Rehman and Mandic, 2010a).
The idea of using Hermite polynomials or adopting optimization in
the interpolation is also suggested by Mandic et al. (2013).

2.3. Data reconstruction and filtering

Once the filter bank is established, it should be ready to implement a
nonlinear filter by examining the geological significance of each IMF in
the filter bank, and then reconstruct the data with the selected IMFs.
Theoretically, for an N point data set, the total number of IMFs
decomposed is approximately log2 N (Wu and Huang, 2009). As a
multidimensional data set is considered, the completemultidimension-
al components (CMDCs) are achieved in accordance with the compara-
ble minimal scale combination principle which implies that the CMDCs
number is the smallest number of the IMFs obtained among all
directions. Thereby, it is still a number derived from a given single di-
mension. It should be noted that the CMDCs are combined signals of
comparable minimal scale and are not IMFs, because they do not satisfy
their conditions. In practice, a common length of a geophysical data set
like e.g. in one dimension is roughly between 512 and 4096; thus, the
most possible IMFs number of a geophysical data set is an integer
between 9 and 12, approximately. Based on our experiences and the
finding of Jeng et al. (2007), the number of the CMDCs with geological
significance in the examples of this study is generally less than one
third of the total in the filter bank, and it is feasible to select the best
combination from such a small number of IMFs in a few tries.

3. Simulation example

To assess the effect of the proposed method, we carried out a simu-
lation of noise removal on a noise interfered image. Fig. 2a shows the
plain image of a simple eight-pointed star with a square window in
themiddle. We added a four-fold uniformly distributed white Gaussian
randomnoise (Fig. 2b) on to the plain image to synthesize a noise inter-
fered image of−12 dB corresponding to a signal-to-noise ratio (SNR) of
1:4 (Fig. 2c). The SNR is commonly expressed on the logarithmic dB
scale for evaluating the image resolution or the strength of a signal.
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Fig. 7. Two directional filter banks and filtering simulation of theMEMD. (a) Horizontal filter bank. (b) Vertical filter bank. (c) Image reconstructed by using components of horizontal C4
and vertical C2. The resultant image is obtained by using an equal-weighted and un-normalized combination scheme.
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The −12 dB SNR should be rigorous for testing a filter because typical
SNR values for an image with good resolution is about +40 dB (100:1,
i.e. signal amplitude is 100 fold the noise) on average (Huynh-Thu and
Ghanbari, 2008). However, due to the difference between geophysical
data and image pixels, the same SNR valuemay not have the same effect
on both kinds of data. In addition to the visual demonstration, we pro-
vide spectrograms and marginal spectra (Fig. 3) obtained from a 1-D
EEMD decomposition for comparing the instantaneous frequency and
energy distribution of the signal, noise, and noise interfered image. It
can be easily seen that no negative frequencies are involved; however,
the spectrograms of signal and noise are overlapping in the very low
frequency range (b0.1 wave-number).

We tested the MDEEMD on the noise interfered image with cubic
spline and PCHIP interpolation algorithms separately. Fig. 4 shows the
2D filter bank (Fig. 4b to g) resulting from the MDEEMD with cubic
spline interpolation. The high frequency band of the added random
noise was extracted mostly in components C1 and C2. Component C3
contains the lower frequency noise with some edge information of the
signal. Components C4, C5, and C6 carry the star and window signals
wheremost of them are extracted in C4. To remove the noise, we recon-
struct the image by using the components of significant features.
Because thefilter bank is dyadic, the signal is unable to reside in one sin-
gle component and the instantaneous frequencies of the noise and of
the signal part may overlap. However, the signal should not be affected
by removing the noise components because the IMFs are orthogonal. As
proposed by Huang et al. (1998), if the frequency band of one IMF
Fig. 6. Visual and quantitative comparisons of the two interpolation methods. (a) Two best re
shown in (a). (c) Marginal spectra of trace 51 selected from the original image and images sho
coincides with that of the other (it is called leakage), EMD can still sep-
arate the two IMFs. Of course, in the Fourier concept, the two IMFs are
not orthogonal, but it would not cause a problem in the EMD. This
is one of the major differences between EMD and Fourier theory, and
that is why we stress that the EMD filter bank is dyadic. In this case,
obviously components 4, 5, and 6 capture parts of the signal. Fig. 5 dis-
plays the same noise interfered image (Fig. 5a) processed by using the
MDEEMDwith PCHIP interpolation algorithms. Fig. 5b to g are the com-
ponents of the derived 2D filter bank. Compared with Fig. 4, 5 contains
almost no signal information in C3. The signals of star and window are
distributed in C4, C5, and C6where C4 captures some signals with back-
ground information and lower frequency range of the noise, C5 contains
most information of the signals, and C6 exhibits strong edge informa-
tion of the star signal. It should be noted that in both filter banks, the
signal information resides in components 4, 5, and 6 but distributes
differently. Results of the two best reconstructions of both algorithms
and their spectrograms and marginal spectra are displayed in Fig. 6.
By comparing the signal image spectrogram (Fig. 3a) with those of the
reconstructed images achieved by using the PCHIP and cubic spline
algorithms (Fig. 6b), the PCHIP spectrograms are more similar to the
signal image spectrogram. The marginal spectra in Fig. 6c also show that
better results are obtained by using the PCHIP algorithm because the
PCHIP marginal spectra gain the signal energy in the frequency range
higher than 0.03 wave number and the cubic spline marginal spectra fail.

The spectrograms and marginal spectra indicate that the combina-
tion of components 4, 5 and 6 derived by using the PCHIP algorithm
constructed images of both methods. (b) Spectrograms of trace 51 selected from images
wn in (a).



Fig. 8. Error ratios of the four best MDEEMD reconstructions and the compatible MEMD result. The error ratio (Err) is defined as Err = 1-Corr where Corr is the correlation coefficient
between the filtered result and the original image.
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contains more signal information than that of the cubic spline. It is also
noted that during the sifting, the PCHIP interpolation reduces more
undesired artificial extrema in the lower frequency components (higher
index IMFs) than in the higher frequency components (lower index
IMFs); therefore, the signal content is moved towards higher index
IMFs containing lower frequency signals.

To make an objective comparison and give more insight of the EMD
based multidimensional filtering scheme, we also present the results
acquired from MEMD. Fig. 7 demonstrates the MEMD filter bank of
this example. We applied the MEMD to the noise interfered image
both horizontally (Fig. 7a) and vertically (Fig. 7b). We then recon-
structed the image by combining the significant components selected
from both filter banks (Fig. 7c). The reconstruction process is a simple
equal-weighted and un-normalized addition. In this simulation exam-
ple, the signal information is concentrated in one component in both
filter banks, allowing the selection to be done visually.

Fig. 8. shows error ratios of all the methods employed in the simula-
tion example. It should be noted that the result just gives a quick quan-
titative comparison for the specific example, and may not be adequate
for other cases.
Fig. 9. Original magnetic data measured at the Chubin relic. (a) Total intensity data.
(b) Vertical magnetic gradient data acquired by using a gradiometer of two sensors with
0.5 m spacing. The bottom sensor was 1 m above the ground. Data source is from Jeng
et al., 2003. The "NE-SW" trend is about horizontal in the figure by referring to themarked
north direction.
4. Field example

To test the effect of the proposedmethod in real data processing and
to evaluate if it is competitive with other techniques of signal enhance-
ment andfiltering,we applied the PCHIPMDEEMDmethod to a set of 2D
magnetic data acquired at an archaeological site by Jeng et al. (2003).
The 6m× 3m survey grid with 0.25 m intervals was established within
the Chubin relic which is situated in the mountainous range of central
Taiwan. The survey target was three slate caskets excavated previously
and then reburied in a thin layer of soil and broken slate fragments.
The surfacewas covered by unwoven cloth to prevent growth of vegeta-
tions. Both total intensity and gradient data were measured by placing
the bottom sensor 1mabove the groundand the top sensor 0.5mhigher
than the bottom sensor. Totally 11 survey lines with 275 (25 × 11) grid
points were laid out in the survey area, and the base station is located at
the first grid point. The field operator reoccupied the base station every
10 to 40 minutes for time correction. Fig. 9 shows maps of the original
total intensity (Fig. 9a) and gradient data (Fig. 9b). The magnetic re-
sponses of the buried caskets were interfered by strong low frequency
noise bands running in an NE-SW direction. The gradient data acquisi-
tion is generally capable of removing the remote and regional effects;
however, improvements are limited in this case.

In addition to the drift (trend) of themagnetometer, the total inten-
sity data are affected by background noise like the diurnal and secular
variation. A common practice of magnetic data processing is to perform
time correction ahead of any further procedure. Evidently, it is conceiv-
able that more efforts should be made in the field for collecting reliable
base station data. We are expecting that the proposed method may be
effective in removing the trend and background noise as well. For this
reason and having an insight into the proposed method, we processed
both the original total intensity data and the time corrected total inten-
sity data to investigate the filtering effects. For the gradient data no time
corrections are needed, and only the de-meaned (deviation from the
mean) was performed because the gradient data are immune to the
trend and background noise.

We demonstrate the2D PCHIP MDEEMD filter bank of the original
total intensity data and two possible reconstructions in Fig. 10. To deter-
mine an acceptable number of the ensemble member in the MDEEMD
algorithm, usually we take a small amount of data to process, start the
number of the ensemble member from a small value between 5 and
10, and then gradually increase the number if the previous results are
not satisfying. After an appropriate number is determined, it will be
applied to process the whole data set.

Because the EEMD is a noise-assisted algorithm, the added noise in-
creases the number of IMFs in each direction. However, we regulated
the number up to six to avoid unnecessary computations. The time



Fig. 10.MDEEMDwith PCHIP interpolation filter bank and reconstructedmaps of the original total intensity data. The numbers of IMFs in each direction are considerably increased due to
the added noise for EEMD algorithm, but themaximumnumber of IMFs is regulated to six to facilitate computation. (a) Total intensity data as shown in Fig. 9a. (b) to (g) being the 2Dfilter
bank components from C1 to C6, respectively. (h) Magnetic map reconstructed by using components C2 and C3. (i) Magnetic map reconstructed by using components C2, C3, and C4.
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corrected total intensity data and de-meaned gradient data were proc-
essed by the same way, and the results are shown in Figs. 11 and 12,
respectively. In the three figures, it is obvious that the C1 component
extracts the horizontal (NE-SW trend on the map) noise with some
high frequency background information between the trends. Compo-
nents C2, C3, and C4 hold signal energy from high to low frequency.
Component C5 shows some signal information, but the frequency is so
low that it also contains a significant amount of the regional trend.
Fig. 11.MDEEMD with PCHIP interpolation filter bank and reconstructed maps of the time cor
2003). (b) to (g) being the 2D filter bank components from C1 to C6, respectively. (h) Magne
by using components C2, C3, and C4.
Component C6 is close to residue which would not be considered for
data reconstruction. Thus same components, i.e. C2, C3, and C4 are se-
lected in the three filter banks for reconstructing the magnetic map
showing the possible locations of the buried caskets.

To further assess the filtering extent of the proposedmethod, the de-
meaned gradient data are also processed by using the MEMD method.
The filter banks of two directions and the reconstructed maps are
shown in Fig. 13. In Fig. 14, we compare the results obtained from
rected total intensity data. (a) Time corrected total intensity (data source from Jeng et al.,
tic map reconstructed by using components C2 and C3. (i) Magnetic map reconstructed
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MDEEMD and MEMD with the filtered result achieved by Jeng et al.
(2003). Fig. 14a shows the MDEEMD reconstructed map of de-meaned
gradient data. Obviously, the magnetic responses of the three caskets
are significantly enhanced. The buried casket A reveals a dipole
anomaly, probably indicating that the magnetization is nearly hori-
zontal. Anomaly of casket B is slightly asymmetric, and the magneti-
zation could down-dip to the southeast. With a strong positive
anomaly, the vertical magnetization of casket C is highly possible.
Fig. 14b demonstrates the MEMD reconstructed map. The pattern of
magnetic anomalies is similar to that of theMDEEMD result, but the sig-
nal is weaker. Fig. 14c shows the result achieved by using the 3-D ana-
lytic signal enhancement (redrawn from Jeng et al., 2003). The 3D
analytic signal enhancement is a technique for magnetic signal im-
provement (Hsu et al., 1996; Roest et al., 1992; Tabbagh et al., 1997)
which is effective in resolving the outlines and detailed features of the
source bodies. It may be premature to judge which method is the best,
but with the comprehensive visual comparison we conclude that the
MDEEMD filtering indeed presents a convincing result in this case.

5. Discussion and conclusions

In this study, we propose a nonlinear 2D filtering scheme by
reconstructing the 2D EEMD analyzed data. Constituents of the data
having different frequency characteristics can be examined in a single
feature distribution. With appropriate fusions of the IMFs, it can sepa-
rate the signal from the noise content of data. In the demonstrated
examples, we successfully remove large parts of the noise added in
the simulation data and effectively recover signal responses of buried
targets by applying the proposed filtering scheme. Specially, this tech-
nique can be extended to be applicable formultidimensional data filter-
ing, but then the main concern is to overcome the computation cost.
With regard to this issue, we suggest that the number of the ensemble
members in the EEMD algorithm should be chosen as small as possible.
In this study, we use 40 runs for the synthetic example and 100 runs for
the data example.We also found that the number of data points of each
dimension may differ in real data. This could cause some difficulties in
designing the computer program because the last IMF (or residue) of
Fig. 12.MDEEMDwith PCHIP interpolation filter bank and reconstructedmaps of the de-meane
Jeng et al., 2003). (b) to (g) being the 2D filter bank components from C1 to C6, respectively. (
structed by using components C2, C3, and C4.
an uneven data set is not multidimensional. A common practice to
solve this problem without sacrificing the integrity of the theory is to
regulate the number of IMFs as we mentioned in Section 2.1 and dem-
onstrate in the field example.

Although the PCHIP interpolation technique we used in the sifting is
useful in our examples, we do not intend to abandon the popular
smooth spline interpolation method. The PCHIP is appropriate for
treating data with substantial monotonicity or of low sampling density;
the smooth spline interpolation works as well otherwise.

One possible dilemma raised from the comparable minimal scale
combination algorithm is that the CMDCs are not IMFs and that there
could be negative frequencies existing in the combined signal. However,
it should not be an issue in our case based on the following three rea-
sons. Firstly, a geological significant event could be a combination of
several IMFs (usually two or three in our case); therefore, the significant
events (signals) that we tried to recover in the spatial-amplitude
domain are not necessary mono-component and mono-frequency. In
other words, mono-component instantaneous attributes presentation
may not be the best strategy for showing geological events (Chen and
Jeng, 2013). Secondly, negative frequencies are the consequence of
mathematical operation, e.g. the Fourier transform or Hilbert transform.
One technique in geophysical data processing is to present the data in
instantaneous attributes domain by using the Hilbert transform for
indentifying complex structures, and instantaneous frequency is one
of the attributes. In this study, we do not deal with the instantaneous
attributes, and certainly do not apply any transform. Lastly, all the
IMFs are zero mean, and thus have no negative instantaneous frequen-
cies if we perform the transform (Chen and Jeng, 2013; Huang et al.,
2009). Although negative instantaneous frequencies may still occur in
the attribute domain for some other reasons (Huang et al., 2009), the
chance is very slim because our algorithm is not Fourier-based. If the
negative instantaneous frequency is still an issue, it can be corrected
by using the local averaging with the end effect removal technique
(Chen and Jeng, 2013).

Althoughwedonot dealwith theMDEEMD instantaneous attributes
in this study, it is still an interesting research topic deserving further
investigation.
d gradient data. (a) Original magnetic map of de-meaned gradient data (data source from
h) Magnetic map reconstructed by using components C2 and C3. (i) Magnetic map recon-
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Appendix A. One dimensional EMD and EEMD methods

The EMD method assumes that signals arise from local oscillations,
and any signal can be decomposed into a set of mono-components
called intrinsicmode functions (IMFs) and a residue. The IMFsmust sat-
isfy two conditions: (1) the number of extrema (maxima and minima)
and the number of zero crossings should be equal, or differ at most by
Fig. 13.MEMD filter banks and reconstructedmaps of the de-meaned gradient data. (a) Horizo
(Y-MEMD) filter bank. (c) Single directional MEMD reconstructed maps: X-MEMD C2 + C3 (l
maps shown in (c).
one; (2) the envelope defined by the local maxima and that by the
local minima are symmetrical to zero (Huang and Wu, 2008; Huang
et al., 1998). In contrast to the Fourier analysis, which decomposes a
signal into a sum of mono-frequency, constant-amplitude harmonics,
the IMFs are amplitude/frequency-modulated oscillations that give the
embedded non-stationary and nonlinear characteristics of the signal. To
decompose the signal into IMFs, an adaptive, data-driven nonlinear
working technique called “sifting” is carried out to reduce unwantedfluc-
tuations and ridingwaves. This technique can be summarized as follows:

(a) Determine the upper and lower envelopes encompassing all the
data y(t) by using the splinemethodwhich interpolates between
all the maxima and minima to obtain the upper and lower enve-
lopes, respectively.

(b) Calculate the meanm1(t) of the two envelopes.
ntal (X-MEMD) filter bank. The top right map is the de-meaned gradient data. (b) Vertical
eft); Y-MEMD C2 + C3 (right). (d) Two directional reconstruction by combining the two



Fig. 13 (continued).
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(c) Subtract the mean m1(t) from the data y(t) to obtain the first
component h1(t)which is the prototype of the IMF component c1.

(d) Test whether h1 (t) is an IMF or not. If it is not, h1(t) is treated as
the data, and then steps (a) to (c) will be repeated j times until
the obtained h1j(t) satisfies the conditions of an IMF.

A criterion for the sifting process to stop is by carrying out the
Cauchy type of convergence test which guarantees enough physical
sense retained in the IMF components. The convergence test is
performed by calculating the size of the standard deviation, SD, com-
puted from the two consecutive sifting results. For a given data set
with S + 1 samples, the size of the standard deviation after j times
of sifting, SDj, is

SDj ¼

XS

t¼0

dj−1 tð Þ−dj tð Þ
���

���2

XS
t¼0

d2j−1 tð Þ
ðA� 1Þ

where dj is the difference between the input data and themean of the
two envelopes at j times of sifting. Suggested values of SDj are be-
tween 0.2 and 0.3 (Huang et al., 1998); however, this is an empirical
criterion, and a rigorous justification is needed.

When h1j(t) satisfies the conditions of an IMF, it is designated as the
IMF c1 indicating that the first IMF decomposed from the data. Compo-
nent c1 then can be separated from the rest of the data by subtracting it
from the original data, and a residue r1 results. The residue may contain
lower frequency components and is treated as the new data for gener-
ating the next level's IMF. The decomposition process is stopped when
the residue rn is less than a predetermined stoppage value or the residue
becomes a monotonic function in which no more IMF can be extracted.
Consequently, the original data set is iteratively decomposed into a set
of IMFs and a residue as follows

y tð Þ ¼
Xn

i¼1

ci þ rn ðA� 2Þ
where ci, i = 1,…,n, are the n IMF components of different frequency
band, and rn is the residue after repeating the sifting procedure n times.

A frequently encountered difficulty of the EMD is mode mixing (i.e.
signals of different scales are mixed in a single IMF or a signal of the
same scale residing in different IMF components). Mode mixing is par-
ticularly serious when the data are attenuated or contain intermitting
signal, and it can distort the physical meaning and uniqueness of an
IMF.Wu andHuang (2009) proposed a newnoise-assisted data analysis
method—the ensemble EMD (EEMD)—to overcome the mode mixing
problem. The EEMD derives each IMF component from the mean of an
ensemble of the same level of IMFs, and each IMF in the ensemble con-
sists of the signal plus a white noise of finite amplitude. The EEMD algo-
rithm contains steps as follows:

(a) Add a white Gaussian noise series w(t) of SD 1, finite amplitude,
and zeromean to the original data y(t), then the noise added data
Y(t) is

Y tð Þ ¼ y tð Þ þw tð Þ � R ðA� 3Þ

where R is the ratio of the standard deviation of the added noise
amplitude to that of the data y(t).

(b) Decompose the white noise added data into IMFs.
(c) Repeat step (a) and step (b) k times with different white noise

series of same amplitude level each time.
(d) Obtain the (ensemble) means of corresponding IMFs of the

decompositions

c j tð Þ ¼ E j tð Þ
k

¼ 1
k

Xk

l¼1

c jl ðA� 4Þ

where E j tð Þ ¼ ∑
k

l¼1
c jl represents the ensemble of the jth level of

IMF.

Because different white noise series have no correlation with one
another, they cancel each other out when taking the ensemble mean,
and only the signal resides if k (the number of the ensemble members)
is infinitive. The added white noise series, therefore, provide uniformly
reference scales in the time-frequency domain for the signal but cause



Fig. 14. Visual comparison of the representativeMDEEMD result with that of other competitive methods. Rectangles A, B, and C indicate buried caskets. (a) MDEEMD reconstructedmap.
(b) MEMD reconstructed map. (C) 3-D analytic signal enhancement map. This sub-figure is redrawn from Jeng et al. 2003.
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no interference. This approach effectively reduces themodemixing, and
is a substantial improvement over the EMD method.
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