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Box Spline Wavelet Frames for Image Edge Analysis∗

Weihong Guo† and Ming-Jun Lai‡

Abstract. We present a new box spline wavelet frame and apply it for image edge analysis. The wavelet frame
is constructed using a box spline of eight directions. It is tight and has seldom been used for applica-
tions. Due to the eight different directions, it can find edges of various types in detail quite well. In
addition to step edges (local discontinuities in intensity), it is able to locate Dirac edges (momentary
changes of intensity) and hidden edges (local discontinuity in intensity derivatives). The method is
simple and robust to noise. Many numerical examples are presented to demonstrate the effectiveness
of this method. Quantitative and qualitative comparisons with other edge detection techniques are
provided to show the advantages of this wavelet frame. Our test images include synthetic images
with known ground truth and natural, medical images with rich geometric information.
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1. Introduction. Edge detection is consistent with human perception and is usually the
first step in image interpretation and understanding. Edges provide the topology and struc-
tural information of essential objects in an image. In other words, edges present the skeleton
of an image. Edge information can be used directly for feature extraction, object identifica-
tion, region segmentation, etc. It can also be used as a priori information to help improve
other tasks such as image denoising, image restoration, image reconstruction, and pattern
recognition. The general edge detection task recovers step edges (local discontinuities in in-
tensity), Dirac edges (momentary changes of intensity), and other edges such as hidden edges
(discontinuous locations of some directional derivatives of images). Certainly, edge detectors
produce edges with some compromise among accuracy, completeness, and smoothness. The
goal of this research is to find the details of an image as accurately as possible.

In this paper, we present an edge detector based on box spline wavelet frames. We show
that it is able to detect edges very well. An advantage of frames is that they consist of many
redundant functions which can approximate various edges and features better than linearly
independent functions. Box splines are compactly supported piecewise polynomial functions.
They are smooth and refinable and hence are often used to construct various wavelet functions
such as biorthogonal wavelets, prewavelets, and tight wavelet frames in the multivariate setting
(cf. [19, 24, 28] for their explicit formulas with any degrees of regularity). Although it has
been known for several years that wavelet functions can be used for image edge detection, the
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performance and effectiveness of box spline wavelet frames for such applications are not well
understood. In particular, it is not known which box spline wavelet frame works best for edge
extraction. Following the construction method in [28] and the work [34], we have obtained
box spline wavelet framelets based on various box splines, B111, B221, B222, B1111, B2111, B2211,
on a three and a four direction mesh (cf. [13] or [27]), and B8, which is a box spline based on
eight different directions to be explained in section 3.

We have tested these wavelet frames as well as those based on the tensor product of
univariate linear, quadratic, cubic, and quadratic B-splines for edge detection on various
images. The experiments show that B8 is most effective in catching the details of images.
Qualitative and quantitative comparisons with some other types of edge detectors, such as
Canny, Prewitt, and shearlet based methods, show that the proposed box spline edge detector
produces more accurate edges under similar conditions. For the sake of fair comparison, we
start with a synthetic image with ground truth edges and apply four edge detectors under
various parameter settings to this image. We then compare the best results of the four
methods using Pratt’s figure of merit (Figure 2) and compare results under various parameter
settings using probability of detection (Figure 3). These comparison results show that the
proposed edge detector leads to a higher figure of merit and consistently higher probability of
detection. Visual qualitative comparisons on other natural images (Figures 4–10) imply that
the proposed edge detector is able to catch fine details and is robust to noise. We explain the
details in section 3 and demonstrate the results in section 4 with various applications.

The paper is organized as follows: we start with a literature review of some edge detection
methods in section 2. Section 3 discusses the construction of box spline wavelet frames and how
to use them to remove noise and to detect edges. In particular, we introduce a new box spline
function based on an eight direction mesh and use it to construct wavelet frames. In section 4,
we compare the proposed box spline edge detector with several others and demonstrate that
the proposed approach always performs best in capturing the details of images. In addition,
we present examples to find hidden edges of images in section 4.4. Finally, conclusions are
drawn in section 5.

2. Review of edge detectors. In this section we review some existing edge detectors.

2.1. Partial derivative based edge detectors. An important class of existing edge detec-
tors is based on partial derivatives of the input image. Image pixels with maximum gradients
or zero Laplacians are classified as edges [3, 14, 20, 29, 32, 21]. These gradient based edge
detectors typically include three steps. First, noise is reduced if the input image is noisy;
usually a Gaussian convolution is applied. Second, the partial derivatives are estimated by
convolving with some kernels. Various kernels have been developed for this purpose with dif-
ferent accuracies along different directions (cf. [49, 47]). Prewitt and Canny edge detectors, for
instance, differ only in the kernels used to approximate the partial derivatives. Third, edges
are located where the norms of the gradients are above a threshold. Standard thresholding
techniques treat pixels with gradient magnitude greater than a threshold as edges. Hystere-
sis thresholding uses two different thresholds. Any pixel with gradient magnitude above the
larger threshold is characterized as an edge; so are those pixels that are in the neighborhood
of this pixel and with their gradient magnitudes higher than the smaller threshold. This
hysteresis thresholding technique leads to connected edges and is sometimes referred to as
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linking. Nonmaximum suppression is sometimes used to thin edges in a method such as the
Canny method.

Edge detectors of this type are robust to low-level noise, but they tend to mistakenly
detect fake edges due to excessive noise/artifacts. To alleviate this issue, one can further
incorporate local mutual information (cf., e.g., [17]).

2.2. Continuous wavelet based edge detector and shearlet based edge detector. Mal-
lat’s wavelet based method [31] can detect both the location and the types (such as step and
Dirac) of edges through analyzing local Lipschitz regularity, a quantity related to how fast the
wavelet transfrom coefficients change across scales. We first briefly review the definitions of
Lipschitz regularity and wavelet transform; then we review a theorem that relates the two of
them. Refer to [31] for more details.

Definition 2.1 (Lipschitz regularity). Let 0 ≤ α ≤ 1. A function f(x) is uniformly Lipschitz
α over an interval (a, b) if there exists a constant C such that for any x0, x1 ∈ (a, b), |f(x0)−
f(x1)| ≤ C|x0 − x1|α. The Lipschitz regularity of f(x) is defined as the upper bound α0 of all
α satisfying the above condition.

The Lipschitz regularity of a function is related to continuity/singularity. For instance,
if f(x) is differentiable at x0, then it is Lipschitz 1 near x0. Lipschitz regularity is difficult
to verify directly, but Mallat and Zhong proposed a theorem to relate the local Lipschitz
regularity with the dyadic wavelet transform. Recall that a nonzero function ω ∈ L1(R) is
called a wavelet if

∫∞
−∞ ω(x)dx = 0 (cf. [11, p. 3]). With a wavelet function, we can define the

wavelet transform as follows.

Definition 2.2 (wavelet transform). Let ω be a wavelet function. The continuous wavelet

transform of f with respect to ω at scale s is defined as Wsf(x) :=
∫∞
−∞ f(y)ω((y−x)/s)

s dy. For

dyadic wavelet transforms, the scale s is chosen as s = 2j and x = 2jn for j, n ∈ Z.

A wavelet transform can be used to characterize local regularities of functions. See Theo-
rem 1 in [31] and/or Theorems 2.91–2.92 in [11] for a proof of the following theorem.

Theorem 2.3. Let 0 < α ≤ 1. A function f(x) is uniformly Lipschitz α over (a, b) if and only
if there exists a constant K > 0 such that the wavelet transform satisfies |W2jf(x)| ≤ K(2j)α

for all x ∈ (a, b) and j = 1, 2, . . . .

According to this theorem, if a function f has a Lipschitz regularity for 0 < α ≤ 1, the
value of supx∈(a,b) |W2jf(x)| should decrease as the scale j decreases. If supx∈(a,b) |W2jf(x)|
increases instead, then f does not have a Lipschitz regularity and thus must have an impulse
(Dirac) at x. If supx∈(a,b) |W2jf(x)| does not change much across the scales, it indicates that
α = 0 and there is a jump at x. These facts form a basis for using a wavelet transform to
detect edges.

On the other hand, it is known that a continuous wavelet based edge detector has diffi-
culty in distinguishing nearby edges and has a poor angular accuracy (cf. [31]). This is due
to the well-known fact that wavelets are perfect in describing isotropic structures but not so
good dealing with anisotropic phenomena. More recently, shearlets [15, 22] have been used
for edge detection and analysis (cf. [46]). It is claimed that shearlets are effective in detecting
the location and orientation of edges as well as the number of edges at each point. A shearlet
transform decomposes an image with respect to scale, location, and orientation. The orien-
tation information at each scale is directly available. The locations of image edges are then
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determined by the changes in shearlet transform coefficients across scales. The orientations
of edges are extracted from the directions in which the shearlet transform coefficients are
significant, while the number of edges at each point is determined by the number of peaks of
the shearlet transform coefficients.

2.3. Segmentation based edge detectors. Although image segmentation is different from
edge detection, they are related, and one can also extract edges from the segmentation results.
Image segmentation [33, 2, 4] partitions the image domain into different subregions that are
each homogeneous with respect to some characteristics such as intensity. The borders of
those subregions form the edges. To give more mathematical details, we take the two-phase
Mumford–Shah method as an example. Let g be the intensity function of an input image. The
method separates the image domain into two parts Ω1 and Ω2, one inside the edge contour
Γ and the other outside, such that g can be approximated by C1 functions f1, f2 in Ω1,Ω2,
respectively. The separation is done by minimizing the functional

E(f1, f2,Γ) =
1

2

∫
Ω1

(g − f1)
2 +

1

2

∫
Ω2

(g − f2)
2 + α

∫
Ω1

|∇f1|2 + α

∫
Ω2

|∇f2|2 + β · Length(Γ)

with respect to functions f1, f2 and contour Γ. In the special case where f1, f2 are constant
with values c1, c2, respectively, the implementation of the Mumford–Shah model is simplified
by the Chan–Vese method [4] based on the level set approach (cf. [35]). It represents the edge
contour Γ by the zero level set of a Lipschitz function Φ : Ω → R and the regions inside and
outside the contour Γ by the regions with positive and negative Φ values, respectively. Let
H(·) be the Heaviside function defined as H(z) = 1 for positive z and 0 elsewhere. Then the
minimizer Φ of

1

2

∫
Ω
[H(Φ)(g − c1)

2 + (1−H(Φ))(g − c2)
2] + β

∫
Ω
|∇H(Φ)|

gives the segmentation of the domain and the edge contours. The edges are detected from the
0 level set of Φ.

2.4. Other methods. Other edge detection approaches include the Mumford–Shah Green
function [30], morphological gradient [41, 36, 38], fractal geometry [48, 44], and high-order
and variable-order total variation [42] based methods.

3. Box spline tight wavelet frames. Tight wavelet frames are the generalizations of
discrete orthonormal wavelets [39, 40, 9, 10, 12, 34, 28, 26]. An advantage of using frames
is that frames consist of many redundant functions which can approximate various edges
and features better than using only linearly independent functions. Box splines are refinable
functions, and one can easily choose various directions to obtain a box spline function with
a desired order of smoothness (see [13], Chapter 12 of [27], [23]). They have been used to
construct various wavelet functions including tight wavelet frames. In this section, we first
review general box spline tight wavelet frames and then present our derivation of a new box
spline wavelet frame based on B8.
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3.1. Review of general box spline tight wavelet frames. We begin with the definition of
tight wavelet frames based on a multiresolution approximation of L2(R

2). Given a function
ψ ∈ L2(R

2), we define

ψj,k(y) = 2jψ(2jy − k)

with k ∈ Z
2 a translation and j ∈ Z a dilation. Let Ψ be a finite subset of L2(R

2), and let
Λ(Ψ) := {ψj,k, ψ ∈ Ψ, j ∈ Z, k ∈ Z2}.

Definition 3.1. We say that Λ(Ψ) is a frame if there exist two positive numbers A and B
such that

A‖f‖2L2(R2) ≤
∑

g∈Λ(Ψ)

|〈f, g〉|2 ≤ B‖f‖2L2(R2)

for all f ∈ L2(R
2). Λ(Ψ) is a tight frame if it is a frame with A = B. In this case, after a

renormalization of the g’s in Ψ, we have∑
g∈Λ(Ψ)

|〈f, g〉|2 = ‖f‖2L2(R2)

for all f ∈ L2(R
2).

It is known by the polarization identity (cf. [11, p. 101]) that when Λ(Ψ) is a tight frame,
any f ∈ L2(R

2) can be represented by g ∈ Λ(Ψ) in the following format:

f =
∑

g∈Λ(Ψ)

〈f, g〉g ∀f ∈ L2(R
2).

Let φ ∈ L2(R
2) be a compactly supported refinable function; i.e., φ satisfies the refinable

equation

φ̂(ω) = P (ω/2)φ̂(ω/2),

where φ̂ is the Fourier transform of φ and P (ω) is a Laurent polynomial in eiω = (eiξ , eiη). P
is often called the mask of a refinable function φ. We look for another Laurent polynomial Qi

such that

(3.1) P (ω)P (ω + �) +

r∑
i=0

Qi(ω)Qi(ω + �) =

{
1 if � = 0,

0, � ∈ {0, 1}2π\{0}.

The conditions (3.1) are called the unitary extension principle (UEP) as in [39, 40, 12]. With
these Qi’s we can define wavelet frame generators or framelets ψ(i) in terms of the Fourier
transform by

(3.2) ψ̂(i)(ω) = Qi(ω/2)φ̂(ω/2), i = 1, . . . , r.

Then, if φ has Lipschitz regularity with α > 0, Ψ = {ψ(i), i = 1, . . . , r} generates a tight
frame; i.e., Λ(Ψ) is a tight wavelet frame (cf. [28]).
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Furthermore, assuming ω = (ξ, η), letting Q be a rectangular matrix defined by

(3.3) Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q1(ξ, η) Q1(ξ + π, η) Q1(ξ, η + π) Q1(ξ + π, η + π)
Q2(ξ, η) Q2(ξ + π, η) Q2(ξ, η + π) Q2(ξ + π, η + π)
Q3(ξ, η) Q3(ξ + π, η) Q3(ξ + π, η) Q3(ξ + π, η + π)
Q4(ξ, η) Q4(ξ + π, η) Q4(ξ + π, η) Q4(ξ + π, η + π)

...
...

...
...

Qr(ξ, η) Qr(ξ + π, η) Qr(ξ + π, η) Qr(ξ + π, η + π)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and letting P = (P (ξ, η), P (ξ + π, η), P (ξ, η + π), P (ξ + π, η + π))�, (3.1) is simply

(3.4) PP� +Q∗Q = I4×4,

i.e.,

(3.5)
∑

�∈{0,1}2π
|P (ω + �)|2 = 1.

The construction of tight wavelet frames involves finding the Q that satisfies (3.4), which is
called a perfect reconstruction condition. It was observed in [28] thatQ can be easily found if P
satisfies the quadrature mirror filter (QMF) condition PTP = 1, i.e.,

∑
�∈{0,1}2π |P (ω+ �)|2 =

1. In this case, Q has a very simple expression. However, the mask P of a refinable function
φ usually does not satisfy the QMF condition but the following sub-QMF condition instead:

(3.6)
∑

�∈{0,1}2π
|P (ω + �)|2 ≤ 1.

For example, the masks of bivariate box splines on a three, a four, and an eight direction mesh
below satisfy (3.6). Recall that any Laurent polynomial P (ω) can be rewritten as

P (ω) = P(0,0)(2ω) + eiξP(1,0)(2ω) + eiηP(0,1)(2ω) + ei(ξ+η)P(1,1)(2ω)

for some Pm,m ∈ {0, 1}2. These Pm(·) are called polyphases of P (·).
Theorem 3.2 (Lai and Stöckler, 2006). Suppose that P satisfies the sub-QMF condition (3.6)

and that there exist Laurent polynomials P̃1, . . . , P̃N such that

(3.7)
∑

m∈{0,1}2
|Pm(ω)|2 +

N∑
i=1

|P̃i(2ω)|2 = 1,

where Pm,m ∈ {0, 1}2, are polyphases of P . Then there exist 4+N compactly supported tight
frame generators with wavelet masks Qm,m = 1, . . . , 4+N , such that P,Qm,m = 1, . . . , 4+N ,
satisfy (3.4).

Although there is no Riesz–Féjer theorem in the multivariate setting, we are able to find
additional Laurent polynomials P̃i to satisfy (3.7) for bivariate box spline functions (cf. [28]).

We next recall the definition of bivariate box spline functions on a direction set D. For
instance, by letting e1 = (1, 0), e2 = (0, 1), e3 = e1 + e2, e4 = e1 − e2, e5 = (2, 1), e6 =
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(2,−1), e7 = (1, 2), e8 = (1,−2), one can define D as the set of these vectors with some
repetitions. Then the box spline φD associated with direction set D may be defined in terms
of Fourier transform by

(3.8) φ̂D(ω) = PD

(ω
2

)
φ̂D

(ω
2

)
,

where PD is

PD(ω) =
∏
ξ∈D

1 + e−iξ·ω

2
.

We refer the interested readers to [7, 13, 27] for many properties of box splines. An explicit
polynomial representation of bivariate box splines enables us to evaluate these box splines
easily [23, 27]. Note that it is easy to show that the mask PD satisfies (3.6). To construct
the associated tight framelets, we mainly find additional Laurent polynomials to satisfy (3.7).
However, it is not an easy task as there is no existence theory or constructive procedure except
for box splines on a three and a four direction mesh. This will be further explained in the
next subsection.

3.2. The eight direction box spline. When using a box spline wavelet frame, we have
the flexibility to choose a direction set. We can choose a box spline function with as many
directions as possible to increase the redundancy. However, the more directions there are, the
smoother the box spline function will be, and the longer the length of the low pass and high
pass filters will be; hence, it will be more difficult to find tiny details in the image. Empirical
results show that the wavelet frame based on a box spline with eight directions is the ideal
one for edge/feature/detail detection. In this paper we shall present a tight framelet based
on box spline φ8 := φD8 with

(3.9) D8 = {e1, e2, e1 + e2, e1 − e2, 2e1 + e2, 2e1 − e2, e1 + 2e2, e1 − 2e2}.

Since D8 contains eight directions, we call φ8 an eight direction box spline. This box spline
is new and has not been studied in the literature. It is a bivariate spline function of total
degree ≤ 6, which is in C5. Also φ8 is compactly supported and nonnegative. All the integer
translations of φ8 are linearly dependent. Thus they are redundant. But they form a partition
of unity after a scale. The mask P8 := PD8 can be found easily and is

P8(ξ, η) =

(
1 + eiξ

2

)(
1 + eiη

2

)(
1 + ei(ξ+η)

2

)(
1 + ei(ξ−η)

2

)

·
(
1 + ei(ξ+2η)

2

)(
1 + ei(2ξ+η)

2

)(
1 + ei(ξ−2η)

2

)(
1 + ei(2ξ−η)

2

)
.

(3.10)

For convenience, we shall write P8(ξ, η) =
∑

j,k pj,ke
−ijξe−ikη. To use Theorem 3.2, we need to

show that (3.7) is satisfied for some P̃i. For box splines on a three and a four direction mesh,
it is known that the polynomial equation (3.7) has a solution (cf. [28] and [25]). Furthermore,
in [16], the researchers showed that (3.7) has a solution in general if the inequality in (3.6)
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is strict. The researchers in [6] proposed using semidefinite programming (SDP) to find
P̃1, . . . , P̃N satisfying (3.7). However, SDP is currently only able to solve this problem for
small scales.

Recently, the researchers in [5] presented an algebraic approach proving that (3.7) has a
solution for box splines on a three and a four direction mesh. For the box spline φ8, it was
challenging to solve (3.7) for a number of reasons. First, the number, N , of extra Laurent
polynomials P̃j is unknown. The degrees of these polynomials are also unknown, although our
intuition is that the degrees should be less than or equal to 6, the degree of the 8 direction box
spline φ8. We solved (3.7) using brute force. We started with N = 1 and used Maple to try to
solve (3.7), but it was not successful. We then increased the value of N to 2 and did the same
thing. The smallest value for which Maple could find a solution is N = 10, which corresponds
to a large system of multivariate quadratic equations involving more than 50 variables. We
then decoupled these equations and broke the system into smaller subsystems. Eventually, we
were able to solve the system within a very small tolerance (e.g., 10−10) and find ten Laurent
polynomials P̃j , j = 1, . . . , 10, to satisfy (3.7), i.e.,

1−
∑

ν∈{0,π}2
|P8(ω + ν)|2 ≈

10∑
j=1

|P̃j(2ω, 2η)|2, ω = (ξ, η) ∈ [0, 2π]2.

The ten Laurent polynomials are given below:

P̃1(ξ, η) =
42

14561
− 542

4269
ei(ξ+4η) +

42

14561
e2iξ +

191

1576
eiξ,

P̃2(ξ, η) =
281

1476
− 51

26513
ei(4ξ+η) +

281

1476
e2iη − 605

1597
ei(ξ+η),

P̃3(ξ, η) =
1

192
− 9

32
ei(2ξ+3η) +

1

192
e4iξ +

283

1152
e2i(ξ+η) +

29

1152
e2iξ,

P̃4(ξ, η) =
192

15731
− 233

19415
ei(3ξ+2η) +

192

1573
e4iη − 172

741
e2iη ,

P̃5(ξ, η) =
139

2849
− 278

2849
ei(ξ+3η) +

139

2849
e2iξ,

P̃6(ξ, η) =
76

4195
− 843

3208
ei(3ξ+η) +

76

4195
e2iη +

227

1002
ei(ξ+η),

P̃7(ξ, η) =
412

2807
− 211

1364
ei(ξ+2η) +

412

2807
e2iξ − 263

3788
e2i(ξ+η) − 263

3788
e2iη ,

P̃8(ξ, η) =
152

2475
− 288

779
e2i(ξ+η) +

152

2475
e2iη +

494

2001
ei(ξ+η),

P̃9(ξ, η) =
19

15834
− 100

983
e3i(ξ+η) − 19

15834
e3iξ +

100

983
e3iη ,

P̃10(ξ, η) =
230

10131
− 230

10131
e3iξ .

By Theorem 3.2, we will have 14 tight wavelet frame generators using the constructive
steps in [28]. These 14 tight frames ψ� in terms of Fourier transform can be expressed by

(3.11) ψ̂�
8(ξ, η) = Q�(ξ/2, η/2) φ̂8(ξ/2, η/2), � = 1, . . . , 14,
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where Q�(ξ, η) =
∑

j

∑
k q

(�)
jk e

−ijξe−ikη. In the following subsection, we explain how to obtain

one low pass and several high pass filters from these ψ�
8 and φ8 and use them for edge detection.

3.3. Image decomposition and reconstruction. Our edge detector based on box spline
frames involves three steps. First, we use the box spline wavelet frame to decompose the input
image into many levels of subimages which consist of a low pass part and several high pass
parts of the image. Next we set the low pass part to zero and threshold the high pass parts.
Finally, we use the resulting high pass parts to get the edge map. The motivation is that edges
of an image are represented in high frequencies, while the smoothing parts of an image are
represented in terms of translations and dilations of the refinable box spline function. Thus,
we set the coefficients of the low pass part in terms of translations and dilations of the box
spline to be zero. Meanwhile, since noise is also represented in high frequencies, we apply a
percentage thresholding technique (see Algorithm 1) to remove some noise.

Next, we explain how to do image decomposition and reconstruction. For convenience,
we use the 14 tight wavelet frame functions {ψ1, . . . , ψ14}, constructed in the previous section
based on the box spline function φ8, to illustrate the decomposition and reconstruction. For
an image f with finite energy (f ∈ L2(R2)), let aj,k be the value of the inner product of f
with the φj,k(·) := 22jφ8(2

j · −k), i.e., aj,k = 〈f, φj,k〉 for k ∈ Z
2 and j ∈ Z. Note that since

φ8 is compactly supported and
∫
φ(x)dx = 1, aj,k can approximate the grayscale value at k

when j is large enough. Similarly, let b�j,k be the value of the inner product of f with box

spline wavelet framelets ψ�
j,k(·) := ψ�(2j · −k)’s for all j ∈ Z,k ∈ Z

2, and � = 1, . . . , 14, i.e.,

b�j,k = 〈f, ψ�
j,k〉.

Recall that we have

φj,m(·) =
∑
k∈Z2

pk−2mφj+1,k(·) and ψ�
j,m(·) =

∑
k∈Z2

q�k−2mφj+1,k(·)

by using the refinable property (3.10) and wavelet frame construction (3.11) for all integers.
Note that the refinable function φ and tight wavelet frames ψ1, . . . , ψ14 are locally supported,
and the coefficients {pk−2m} and {q�k−2m} are finite sequences for all � = 1, . . . , 14. Here

pk−2m’s and q�k−2m’s are associated with the coefficients of the low pass filter P and the high
pass filters Q�, respectively. Due to the limited space in this article, we refer the reader to
the webpage http://www.math.uga.edu/∼mjlai/boxspline8.html for specific expressions of the
low and high pass filters. By taking inner products on both sides of the above two equations
with image function f , we obtain the following tight wavelet frame decomposition algorithm:

aj,m =
∑
k∈Z2

pk−2maj+1,k and b�j,m =
∑
k∈Z2

q�k−2maj+1,k(3.12)

for all j ∈ Z,m ∈ Z
2, and � = 1, . . . , 14. Let Xj be the matrix associated with the (j)th

level image containing aj,k for all k ∈ Z
2
+ with |k| ≤ M (e.g., M = 512 for a 512 by 512

image), for all j ∈ Z. Suppose that j is an integer large enough such that the given image
f is approximately Xj+1, i.e., the pixel value fk ≈ aj+1,k. Then the image decomposition
procedure is to compute two-dimensional (2D) convolution of P and each Q�, � = 1, . . . , 14,
with the matrix Xj+1; i.e., we find

P ∗Xj+1, Q� ∗Xj+1, � = 1, . . . , 14,

http://www.math.uga.edu/$\sim $mjlai/boxspline8.html
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where ∗ stands for 2D convolution. We then downsample them by deleting all the odd number
rows and columns to obtain matrices Xj and Yj,� for � = 1, . . . , 14.

Next, let us describe the reconstruction procedure. Due to the exact reconstruction, we
have

(3.13) φj+1,m(·) =
∑
k∈Z2

{
pm−2kφj,k(·) +

8∑
�=1

q�m−2kψ
�
j,k(·)

}

by using the perfect condition (3.4). By taking inner products on both sides of the above
equation, we have the tight wavelet frame reconstruction algorithm:

(3.14) aj+1,m =
∑
k∈Z2

{
pm−2kaj,k +

N∑
�=1

q�m−2ka
�
j,k

}
.

Computationally, this can be done by upsampling the image Xj , Yj,� by 2, i.e., adding zero
columns in between columns of Xj and Yj,�, � = 1, . . . , 14, then adding zero rows in between
rows of the resulting matrices, and then convolving with P and Q�, � = 1, . . . , 14.

Usually, Xj , Yj,i, i = 1, . . . , �, are called the low pass and high pass parts of the image
Xj+1, respectively, as they contain the low frequency and high frequency information of Xj+1,
respectively. If necessary, we can repeat the decomposition process several times by convolving
the low pass image Xj with the low pass filter P and the high pass filters Q�’s to get Xj−1

and Yj−1,�, � = 1, . . . , 14, respectively. For simplicity, we do one-level decomposition and
reconstruction to demonstrate our algorithm.

3.4. Noise removal before edge detection. Images are usually contaminated by noise.
It is sometimes necessary to remove noise from images before computing the edges. A classic
method for image denoising is the wavelet shrinkage method, which consists of using a hard
or soft thresholding algorithm to trim the wavelet coefficients. In the following, we propose
another approach based on the so-called weak orthogonal greedy algorithm (cf. [43]) to further
reduce noise.

The main idea is to look for a sparse representation of a noisy image in a redundant
wavelet frame system. Let Φ = [φ1, . . . , φn] (n = 15) be a wavelet frame matrix consisting of
the values of the framelet functions over discrete grids; i.e., φ1, . . . , φn consist of the values of
the refinable functions φ(·+(j, k)), ψ�(j, k), � = 1, . . . , 14, (j, k) ∈ [1,M ]× [1,M ], for an integer
M . Let f be the image, Gk(f) be the kth approximation of f , and Rk(f) be the residual of
the kth iteration.

Algorithm 1 (percentage thresholding algorithm). We begin with Λ0 = ∅, R0(f) = f , G0

(f) = 0. Choose a thresholding sequence {t1, t2, . . .} with all tk ∈ (0, 1].
• Step 1. For k ≥ 1, find Mk = maxi/∈Λk−1

|〈Rk−1(f), φi〉|.
• Step 2. Let Λk = Λk−1 ∪ {i, |〈Rk−1(f), φi〉| ≥ tkMk}.
• Step 3. Let LΛk

(f) be the best approximation (least squares approximation) of Rk−1(f)
in subspace SΛk

= span{φi, i ∈ Λk}.
• Step 4. Update Gk = Gk−1(f) + LΛk

(f) and Rk(f) = Rk−1(f)− LΛk
(f).

• Step 5. If ‖LΛk
(f)‖ is small enough, stop the algorithm. Otherwise we advance k to

k + 1 and go to Step 1.
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Figure 1. Eight testing images.

This algorithm differs from the weak orthogonal greedy algorithm in that in chooses more
than one component per iteration. In this paper, we report some numerical results using the
wavelet frame based on the tensor product of symmetric quartic B-splines constructed in [8].

In our experiments, we first use the classic hard thresholding method to remove some noise
based on wavelet frame decomposition and reconstruction. More specifically, we decompose an
image into one low pass part, as well as several high pass parts, and apply the hard thresholding
technique to reduce noise from the high pass parts. A smoother image is reconstructed from
the low pass part and the resulting high pass parts. Next we use the smoother image as f
and the associated tight wavelet frame to form a wavelet frame matrix Φ and then apply
Algorithm 1 for further noise reduction. In this experiment, we use a thresholding sequence
t = {t0, t1, t2, t3, . . .} with ti = rti−1 with, e.g., r = 0.78 and t0 = 0.9 for i = 1, 2, . . . , 5.
Although the weak orthogonal greedy algorithm requires

∑
i≥1 ti/i = ∞ to converge, we do

only five iterations to reduce noise. Since φi, i = 1, . . . , n, are just various wavelet framelets
and their integer translations, the inner products 〈Rk, φi〉 are just convolutions of φi with
the image or the (k − 1)th residual. In each iteration of Algorithm 1, we use tk to form a
thresholding ε� = tkM� with M� being the largest inner product in absolute value in the �th
high pass part of the image for � = 1, . . . , 14.

The performance of Algorithm 1 is demonstrated using the eight images shown in Figure
1. All images have intensity range [0, 255]. We add white Gaussian noise with σ = 20 to all
the images to simulate noisy images. We first apply the hard thresholding method based on
the wavelet frame mentioned above to reduce noise and find the best denoised image in terms
of the standard peak signal-to-noise ratio (PSNR). Then we use Algorithm 1 to further reduce
noise. In the following table, we report the PSNR before and after using Algorithm 1.

Certainly, when using multilevel decomposition and reconstruction of wavelet frames, one
may get slightly better PSNR values than those in Table 1. We leave them to interested
readers. An advantage of using this approach for image denoising is that one needs only
about 25% or fewer nonzero coefficients of a tight wavelet frame to represent a denoised
image. In Table 1, we list the percentage of nonzero coefficients (NZC) in a wavelet frame
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Table 1
PSNR before and after applying Algorithm 1.

Peppers Lena512 F16 Bank

Before 30.25 30.66 30.38 29.47
After 30.37 31.14 30.53 29.53
NZC 15.21% 5.43% 21.67% 27.88%

Brain Knee MRI Saturn

Before 32.08 30.12 32.48 35.28
After 32.50 30.23 32.80 35.65
NZC 7.62% 23.73% 4.99% 0.523%

representation for each image. Here the NZC is the ratio of the number of nonzero coefficients
over the size of images after denoising.

3.5. Image edge detection. We reconstruct the edges of an image based on the zero low
pass part and the high pass parts after a percentage thresholding technique which keeps only
the lowest 50% largest coefficients. The following is the outline of the image edge detection
procedure.

Algorithm 2 (box spline edge detector). We apply the following steps for an input image f :

1. Reduce noise to get a cleaner image f̃ by using Algorithm 1.
2. Apply the tight wavelet frame to decompose the image f̃ into one low pass and various

high pass subimages.
3. Set the low pass part to zero and keep the lowest 50% of the coefficients in absolute

value of each of the high pass parts.
4. Reconstruct image f̂ from the zero low pass and the thresholded high pass components.
5. Use k-means classification with two classes to automatically classify f̂ into two cate-

gories: either 0 or 1.
6. Clean up by removing all short isolated edges.

Comments.

• The only parameter in the proposed Algorithm 2 is the percentage of high pass com-
ponent coefficients to keep. We understand that fine tuning of this threshold might
lead to better results, but to make it simple, we just use 50%. It turns out that
the numerical results are consistently satisfactory already. Moreover, the last step in
Algorithm 2 is also applied to other edge detectors.

• Note that noise exists in both high frequency and low frequency parts. Although
cutting off a portion of the high frequency part as we do in the third step of the above
edge detection algorithm does remove some high frequency noise, there is still some
left. To avoid false edges and other artifacts due to noise, we apply Algorithm 1 to
reduce noise before detecting edges. This denoising procedure, however, makes the
overall edge detection approach scale variant.

• The k-means classification in the fifth step of the algorithm is to automatically obtain
a binary edge map from the result of the fourth step of Algorithm 2. It does not help
with detecting edges or fine features more accurately.



BOX SPLINE WAVELET FRAMES FOR IMAGE EDGE ANALYSIS 1565

4. Numerical experiments. This section consists of three sets of experimental results. In
subsection 4.1, we compare the proposed box spline edge detector with some selected edge de-
tectors: Prewitt, Canny, Chan–Vese, wavelet [31], and shearlet [46]. In subsection 4.2, we test
the performance of the proposed method on detecting edges of noisy images. Subsections 4.3
and 4.4 focus on detecting Dirac and hidden edges, respectively. The last subsection discusses
the application of the box spline based edge detector on object identification.

4.1. Comparison of several edge detection methods. We demonstrate the advantage
of the proposed box spline edge detection method through comparing it with some methods
mentioned in section 2. While there have been attempts to propose quantitative measures
for the performance of an edge detector, there seems to be no consensus on which one is the
best. We select two popular measures: Pratt’s figure of merit (FOM) [37] and probability
of detection (PD) [1], the probability of an edge detector finding true edges. Computation of
both of these measures requires ground truth edges. Thus, we create one image with ground
truth edges outlined by hand (Figure 2).

Pratt’s figure of merit is a measure describing the distance from the detected edges to the
ground truth edges. It is defined as

FOM =
1

max(nd, ng)

ng∑
k=1

1

1 + αd(k)
,

where nd, ng are the number of points on the detected and ground truth edges, respectively,
d(k) is the distance from the kth detected edge point to the actual ground truth edges, and
α is a scaling constant that we set as 1/9. The larger figure of merit the better.

Edge detection can also be cast as a hypothesis testing problem that determines if an
image pixel is on edge or not. The efficiency of edge detection can thus be evaluated using a
metric from statistics: the probability of correct edge detection PD. It measures the ability
of an edge detection method in correctly locating actual edges. Let Md,Mg be the detected
and the ground truth binary edge maps with 1,0 intensity representing edge and nonedge,
respectively. Then PD is defined as

PD = Prob(Md = 1|Mg = 1) =
Prob(Md = 1,Mg = 1)

Prob(Mg = 1)
.

To avoid the intervention of the denoising process on the performance evaluation of edge
detection methods, we start with a simulated clean image (shown in Figure 2(a)) with ground
truth edges (Figure 2(b)). It contains objects of various shapes and rectangular boxes with
gradually changing intensities. We apply Prewitt, Chan–Vese, wavelet, and box spline edge
detection methods (a) under each method’s best parameter setting and to obtain results as
shown in (c)–(f). It can be seen that the box spline result has the highest figure of merit and
is also visually the closest to the ground truth edges.

Results in Figure 2 are computed using each method’s best possible parameter selection.
Note that more horizontal lines on the left can be detected by lowering the threshold value,
but due to the fact that those areas have low intensities and low contrast, one has to set the
threshold extremely low to detect those horizontal lines. As a result, we pay the price of having
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(a) input image (b) ground truth edges (c) Prewitt edges, FOM = 0.73

(d) CV edges, FOM = 0.50 (e) wavelet edges, FOM = 0.63 (f) box spline edges, FOM = 0.76

Figure 2. Comparison of four edge detectors on a synthetic image.
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Figure 3. Compare probability of detection of the four edge detectors on various parameters. The test
image is the one shown in Figure 2(a).
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(a) input image (b) shearlet edges (c) Canny edges

(d) Chan–Vese edges (e) wavelet edges (f) box spline edges

Figure 4. Comparison of five edge detectors on Lena image.

broken and/or nonsmooth edges almost everywhere at the geometries on the right-hand side.
We thus present the results that have the best overall appearance. In practice and in general,
one most likely just chooses an ad hoc parameter. In Figure 3, we compare PD of the four
edge detection methods under seven different ad hoc parameters. One can see that the box
spline edge detection method has significantly higher PD than the other four methods except
for two out of seven of the wavelet edge detection results.

Next, we compare those edge detectors on natural images with more details (Figures 4–9).
No ground truth edges are available for quantitative comparison, but visual comparison shows
that the box spline method performs better in catching fine edges. See, for instance, the edges
of Lena’s hair and eyes in Figure 5 and those of the table cloth, pants, and face in Figure 7,
as well as the edges of the textures and plants in Figure 9.

From a computation time perspective, the proposed algorithm is indeed slower than
Canny and Prewitt algorithms. Canny and Prewitt use two convolutions (x-direction and
y-direction), while our algorithm uses 15 convolutions with one low pass and 14 high pass box
spline filters. The sizes of our filters are also bigger. The current nonoptimized implementa-
tion of the proposed algorithm is about eight times as expensive as that of the Canny and
Prewitt algorithms on average. It is about eight times and five times as expensive as that of
the wavelet and shearlet based methods, respectively. However, it is comparable to that of
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(a) input image (b) shearlet edges (c) Canny edges

(d) Chan–Vese edges (e) wavelet edges (f) box spline edges

Figure 5. Zoom-in comparison of five edge detectors on the Lena image shown in Figure 4.

the Chan–Vese method.

Note that the wavelet [31] and shearlet [46] methods detect edges by analyzing the change
of the transform coefficients across different scales. They are very different from the proposed
edge detector based on low and high pass filters designed using box spline frames. One can also
use the low and high pass filters in discrete wavelets such as Haar, D4, D6, and biorthogonal
9/7 in the proposed edge detector scheme to compute edges. We did the experiments, but
the performance is not comparable. We have also inserted discrete shearlet kernels from the
fast finite shearlet transform (FFST) toolbox [18] into the proposed edge detection, but the
results are not as good as those in [46]. We thus do not include them here.

4.2. Edge detection for noisy images. We also test the performance of the proposed
edge detection method on various noisy images. Next, in Figure 10, we show the robustness
of the proposed edge detector to noise by exhibiting edges detected from noisy images with
SNR as low as 9. White Gaussian noise with standard deviation σ = 40 is added to each of
the three clean images with intensity in [0, 255]. For each of the noisy images, we apply a
standard wavelet frame denoising method (hard thresholding) to obtain a cleaner image which
is fed into Algorithm 1 for further denoising if necessary. We then apply Algorithm 2 on the
denoised image to detect edges.

One can see that most of the edges/features are still detected correctly. However, we do
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(a) input image (b) shearlet edges (c) Canny edges

(d) Chan–Vese edges (e) wavelet edges (f) box spline edges

Figure 6. Comparison of five edge detectors on Barbara image.

see some artifacts and lost edges due to the deterioration of the input images.

4.3. Dirac edges. It is well known that the gradient based edge detectors such as Canny
and Prewitt fail to detect Dirac edges (locations with momentary intensity changes) accurately.
They mistakenly treat locations to the left and right sides of Dirac edges as a discontinuity
in intensity and thus detect double step edges instead of Dirac edges. Our box spline wavelet
frame detector can find such Dirac edges exactly. We show one example here. The left panel
of Figure 11 is a testing image. Our box spline edge detector finds that the exact edges appear
exactly the same as the left panel of Figure 11.

4.4. Application to hidden edge detection. We now apply the box spline wavelet frame
edge detector to find hidden edges, i.e., locations with some kind of discontinuous derivatives
of image intensity. Detecting such edges has important applications—for instance, aircraft
surface manufacturing. To reduce the turbulence, the surface of the body of an aircraft
needs to be C2 smooth to avoid generating singularities of airflows. One way to find defects
in the surface of an aircraft body is to find locations with discontinuous first- or second-
order derivatives, i.e., hidden edges. In this subsection, we artificially create a surface with
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(a) input image (b) shearlet edges (c) Canny edges

(d) Chan–Vese edges (e) wavelet edges (f) box spline edges

Figure 7. Zoom-in comparison of five edge detectors on the Barbara image shown in Figure 6.

discontinuous first-order derivatives. For example,

z1(x, y) =

{
(x− 1)2 + (y − 1)2 − 0.5 if (x− 1)2 + (y − 1)2 > 0.5,

0 otherwise

over (x, y) ∈ [0, 2.55]2. The three-dimensional (3D) graph and the 2D intensity image of the
function z1(x, y) are shown in the left and the right panels of Figure 12, respectively.

From the 2D intensity image, we hardly see any edges. However, from the 3D surface,
we can easily see the places where the first-order derivatives are discontinuous. As another
example, let

z2(x, y) =

{
(x+ y − 1.5)2 − 0.5 if (x+ y − 1.5)2 > 0.5,

0 otherwise

over (x, y) ∈ [0, 2.55]2. The graph and the image of the function z2(x, y) are shown in Fig-
ure 13. Hidden edges are displayed in Figure 14.

We next present an example to detect hidden edges with discontinuous second-order deriva-
tives. The synthetic example is as follows:

z3(x, y) =

⎧⎪⎨⎪⎩
((x− 1)2 + (y − 1)2 − 0.35)2 if (x− 1)2 + (y − 1)2 ≥ 0.35,

0.125 − ((x− 1.05)2 + (y − 1)2)2 if ((x− 1.05)2 + (y − 1)2)2 ≤ 0.125,

0 otherwise
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(a) input image (b) shearlet edges (c) Canny edges

(d) Chan–Vese edges (e) wavelet edges (f) box spline edges

Figure 8. Comparison of five edge detectors on a bike image.

over (x, y) ∈ [0, 2.55]2. The graph and the image of the function z3(x, y) are shown in Fig-
ure 15, from which we can hardly see by the naked eye any irregularities or defects of the
surface. However, our edge detector reveals hidden edges where possible defects may be lo-
cated (Figure 16).

4.5. Application to object identification. The results of the box spline edge detector
can be used for feature extraction, object identification, region segmentation, etc. In this
subsection, we provide one example of a practical application: to segment objects of interest
from medical images.

As shown in Figure 17, starting with an 8-bit grayscale (valued in between 0 and 255)
cardiac image (top left), we first use the proposed box spline edge detector to create a 1-bit
(valued 0 or 1) edge mask (top right), followed by a clean-up process to remove isolated edges
(bottom left). To get the two objects of interest in the center of the image, we drop a small
box inside each of the two objects and grow the regions [45] until they touch the borders
of the objects. The results are shown in the bottom right panel. Applying region growing
segmentation to the 1-bit 0-1 edge mask is better than applying it to the 8-bit gray scale
image as borders of the objects of interest are more reliable and ready to be used in the 1-bit
edge map. One may calculate the areas of the regions of interest for medical image analysis
purposes afterward.
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(a) input image (b) shearlet edges (c) Canny edges

(d) Chan–Vese edges (e) wavelet edges (f) box spline edges

Figure 9. Zoom-in comparison of five edge detectors on the bike image shown in Figure 8.

Figure 10. Edges (second row) detected from noisy images (first row).
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Figure 11. The proposed box spline edge detector is able to detect Dirac edges.

Figure 12. The graph (left) and the image (right) of function z1 with discontinuous derivatives around a
circle.

Figure 13. The graph (left) and the image (right) of function z2 with discontinuous derivatives at two lines.
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Figure 14. Locations of hidden edges of the images in Figures 12 (left) and 13 (right).

Figure 15. The graph (left) and the image (right) of function z3 with discontinuous derivatives at two
circles.

Figure 16. Hidden edges found from the image in Figure 15 using the proposed box spline edge detector.
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Figure 17. A medical image (top left), the resulting image based on box spline tight wavelet frame detector
(top right), cleaner edges (bottom left), and the outline of two regions of interest (bottom right).

5. Conclusions. We present an edge detection algorithm based on a new eight direction
box spline tight frame constructed using the theory in [28]. The construction of tight wavelet
frames based on this eight direction box spline is nontrivial as there is no theory to guarantee
the existence of a solution to the polynomial equation (3.7). Also, how to find a solution for a
general polynomial equation (3.7) is still open. We use a brute force method to solve it. Once
the framelets are found, computing edges based on these framelets is very simple and does
not need complicated optimization criteria. It applies box spline based wavelet transforms to
decompose a given image into one low pass and several high pass components. When there
is no noise, edges are only the inverse wavelet transform of the high pass components. When
noise exists, one needs some thresholds to separate true edges from noises, both of which
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belong to high pass components. Quantitative and qualitative comparisons with several other
existing edge detectors demonstrate the effectiveness and efficiency of the proposed method in
detecting step edges. Our edge detector is also able to detect Dirac edges and hidden edges.
In addition, we show that the proposed method is robust to noise. Finally, we apply the edge
detector to object identification.
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