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Abstract. We propose a simple stochastic exchange game mimicking taxation and redistribution. There
are g agents and n coins; taxation is modeled by randomly extracting some coins; then, these coins are
redistributed to agents following Polya’s scheme. The individual wealth equilibrium distribution for the
resulting Markov chain is the multivariate symmetric Polya distribution. In the continuum limit, the wealth
distribution converges to a Gamma distribution, whose form factor is just the initial redistribution weight.
The relationship between this taxation-and-redistribution scheme and other simple conservative stochastic
exchange games (such as the BDY game) is discussed.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 89.65.Gh Eco-
nomics; econophysics, financial markets, business and management – 02.50.Cw Probability theory –
05.60.-k Transport processes

1 Introduction

The allocation of a finite number of objects into a fi-
nite number of categories is a classical problem in com-
binatorics and was used by Boltzmann at the beginning
of the development of Kinetic Theory. In a seminal pa-
per [1], Boltzmann studied the distribution of a fixed
number p of “energy elements” ε0 into a fixed number
n of molecules. In the limit p → ∞, and ε0 → 0, with
pε0 = E0 = const, he hoped to recover Maxwell’s dis-
tribution for the marginal energy of one molecule, that
is P (x) = Gamma(3

2 , x0) ∼ x1/2 exp[−x/x0] [2], where
x0 = E0

n is the average energy per particle. However, un-
der the hypothesis of equiprobability for all the possible
states of the molecules, he missed the point, and he in-
stead obtained P (x) = Gamma(1, x0) ∼ exp[−x/x0]. Let
us refer to this procedure as “Boltzmann I” method. In
a subsequent paper [3,4], he radically changed the model.
Instead of dividing energy elements within particles, he al-
located particles on energy levels. Whereas in the former
approach the energy constraint was automatically satis-
fied, in the latter (and more fortunate) method, the con-
dition of energy conservation must be explicitly taken into
account. The celebrated formula P (xi) ∼ gi exp[−xi/x0] ,
where gi is the degeneracy of the i-th level, is derived
from the most probable frequency distribution. From the
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nature of µ-space (configuration space), Boltzmann ob-
tained that gi ∼ √

xi and the correct Maxwell’s distribu-
tion followed in the appropriate continuum limit. We call
this “Boltmann II” method.

This short historical excursus is useful to introduce
the different description levels and the different proba-
bility methods already available at the very beginning of
Kinetic Theory. “Boltzmann I” method (almost ignored in
the literature as well as in textbooks) is based on an exact
marginalization of the joint probability distribution for all
molecules, whereas “Boltzmann II” method (universally
known) rests on the multiplicity factor for the frequency
vector. While the former approach is exact and general,
the latter one is approximate and particular, being valid
if and only if all joint descriptions of molecules are sup-
posed equiprobable. Thus, some care is needed when a
naive interpretation of the seminal papers of Kinetic The-
ory is used in Econophysics [5]. If energy is replaced by
wealth, energy elements by “elements of wealth” (money,
shares, estates, coins), molecules by economic agents, it is
tempting to consider a closed economy as a “perfect gas”
of agents who can exchange wealth elements while con-
serving the total amount of wealth. We may agree with
objections such as the following one: “The models... are
based upon models of statistical physics in which energy
is conserved in exchange processes. There are examples
in economics where the principle of conservation may be
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a reasonable approximation to reality, such as primitive
hunter–gatherer societies. But in the industrialised capi-
talist economies, income is most definitely not conserved.
The process of production and not exchange is responsible
for this. Models which focus purely on exchange and not on
production cannot by definition offer a realistic description
of the generation of income in the capitalist, industrialised
economies” [6]. Nonetheless, it is useful to study conser-
vative models, to explore their scope and limits, both for
their simplicity and for the possibility of exactly solving
them. Simplicity does not mean that solutions are trivial
and useless, as we have shown in a previous paper [8] and
has been thoroughly discussed by Aoki and Yoshikawa [9].

2 The redistribution game

In this series of papers, we use the word game in a wide
sense, including bets and lotteries. This definition includes
any stochastic direct or indirect interaction rule among
agents; it could also include situations where agents se-
lected at random interact through a payoff matrix [7], but
this is not considered here. As mentioned in the Introduc-
tion, the simplest case of exchange game has been dis-
cussed in a previous papers of ours [8]. In that game,
two agents (out of g) are selected by chance. One of
them (the winner) receives one coin from the other agent
(the loser). This procedure is then iterated. We have de-
noted this game as the Bennati-Dragulescu-Yakovenko
(BDY) model [10–12]. As at the end of each move a
coin changes agent, one could think that the second
Boltzmann’s method is better than the first one. How-
ever, given that the game mechanism is to extract the
couple and not the coin at random, this means that the
joint agent descriptions Y = n := (n1, . . . , ng),

∑g
1 ni = n

are not equiprobable. Hence, we cannot simply maximize
the multiplicity factor g!

z0!...zn! to obtain the most prob-
able wealth distribution Z = (z0 . . . , zn),

∑n
0 zi = g,∑n

0 izi = n, where zi is the number of agents with i
coins, and prove that the most probable Z is exponential
(see [8]). The correct solution is inspired to “Boltzmann
I” rather than “Boltzmann II”.

2.1 Description of the game

Here, we would like to propose another exchange game
mimicking taxation and redistribution in a simplified way.
We still have g agents and n coins. By taxation, we mean
a step where coins are taken from the agents and tem-
porarily removed from the population; by redistribution,
we mean a step where coins are given back to agents. A
coin is taken at random (taxation). The probability that
the coin is extracted from agent i is ni/n, where ni is the
number of coins of agent i as discussed above. Then, this
coin is redistributed to the agents following the rule that
the jth agent will receive the coin proportional to wj +nj,
where wj is a suitable weight that will be discussed below.

If the system is in state Yt = (n1, . . . , ng) := n, in
the subsequent step, the possible values of Yt+1 will be:

Yt+1 = (n1, ..., ni −1, ..., nj +1, ..., ng) := nj
i , correspond-

ing to a loss of the ith agent due to taxation and a gain
of the jth agent due to redistribution. We propose the
following transition probability between these states:

P (nj
i |n) =

ni

n

wj + nj − δj,i

w + n − 1
, (1)

where w =
∑

j wj , and the Kronecker symbol δj,i takes
into account the case j = i. Such a simple transition prob-
ability already yields a rich and complex behaviour. Note
that, with non-vanishing weights {wj}, also an agent with-
out coins can benefit from the redistribution process. In
the following, we assume that wj = α uniformly, and that
w = gα = θ. This implies that all agents are equal with
respect to the dynamics. Equation (1) defines the transi-
tion matrix of an irreducible Markov chain (all possible
states n sooner or later communicate) which is also ape-
riodic. Hence, there exists an invariant probability distri-
bution π(n) that coincides with the equilibrium one. This
means that limt−>∞ P (Yt = n|Y0 = n′) = π(n), irre-
spective of the initial state Y0. Moreover, if α > 0 then

π(n) > 0 holds for all the
(

n + g − 1
n

)

possible occupa-

tion numbers. The invariant distribution π(n) is found to
solve the detailed balance conditions, and turns out to be
the g-variate Polya distribution [13]

π(n; α, g) =
n!
θ[n]

g∏

i=1

α[ni]

ni!
(2)

where x[n] = x(x + 1)...(x + n − 1) is the Pochhammer
symbol. Well-known subcases of (2) are:

– π(n) =
(

n + g − 1
n

)−1

uniform on all n, for α = 1;

– the multinomial distribution π(n) = n!∏g
i=1 ni!

g−n, for
α → ∞;

– and finally π(n) =
(

g

n

)−1

uniform on the restricted

support of all n with ni = 0, 1, and obtained for
α = −1.

In other words, α = 1 gives the Bose-Einstein distribu-
tion; α → ∞ the Maxwell-Boltzmann distribution, and
α = −1 the Fermi-Dirac distribution [13]. The redistribu-
tion policy is then determined by the value of α. Positive
values make rich agents richer, and this effect is larger the
smaller is α; α → ∞ determines a redistribution where all
agents are equivalent, irrespective of their wealth; finally,
negative values of α tend to favour poor agents. In the
latter case, it is possible to show that |α| is the maximum
allowed value of wealth for each agent.

2.2 Block taxation

Let us now suppose that taxation is made in a block, in-
stead of extracting a single coin from one agent for each
step. With this mechanism, a fraction of the wealth is
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taken, and then redistributed and equation (1) has to be
generalized to m ≤ n coins.

Let m = (m1, . . . , mg), with
∑g

1 mi = m, be the
taxation vector, whereas let m′ = (m′

1, . . . , m
′
g), with

∑g
1 m′

i = m, be the redistribution vector.
Now the new state becomes n′ = n − m+m′, but

the resulting chain still has (2) as equilibrium distribu-
tion. The only difference between the one-coin taxation-
redistribution mechanism and the m−coin one is the rate
of approach to equilibrium: an increasing function of m,
i.e. r = mθ

n(θ+n−m) . The inverse of r is roughly the number
of transitions needed to reach equilibrium. Notice that if
m = n, that is all the wealth is taxed and redistributed,
the new state has no memory of the previous one, and the
probability distribution is given by equation (2) only after
one step (r = 1).

2.3 Marginal description

We have defined a model of taxation-and-redistribution.
The model can be exactly solved with respect to the
individual agent descriptions. Deriving the wealth dis-
tribution is formally easy, as all the agent descriptions
can be divided into equivalence classes considering only
the numbers (and not the names) of the agents with i
coins, i = 0, 1, ..., n. Since two agent descriptions {..., Yi =
a, ..., Yj = b, ..} and {..., Yi = b, ..., Yj = a, ..} have the
same probability at equilibrium, then Π(z) = g!∏n

0 zi!
π(n),

where zi is the number of agents with i coins. However,
π(n) is not uniform except in the case α = 1. Hence,
the usual constrained maximization that would give the
most probable vector z∗ cannot be performed. This dif-
ficulty leads us to use the marginal method discussed in
the first Boltzmann’s paper discussed in the introduction.
That method is exact and it was later abandoned after
the success of the approximate maximization method. Let
us consider an agent, say i = 1 and let us consider the
transition probability (1) projected onto two categories:
the first category includes agent number 1 and the second
category all the remaining agents. As all the agents are
equivalent, the index 1 can be omitted. Let us start with
Yt = k. Then defining λk := P (Yt+1 = k + 1|Yt = k), and
µk := P (Yt+1 = k−1|Yt = k), we get a simple birth-death

chain, with λk =
n − k

n

α + k

θ + n − 1
; µk =

k

n

θ − α + n − k

θ + n − 1
,

that is a random walk in {0, 1, ..., n} with semi-reflecting
barriers. For this chain, the equilibrium distribution ex-
ists, and it is

π(k) =
n!

k!(n − k)!
α[k](θ − α)[n−k]

θ[n]
; (3)

this equation defines the bivariate Polya distribution with
weights α and θ−α. Then the average value of the random
variable k is E(k) = nα

θ = n
g and its variance is Var(k) =

nα
θ

θ−α
θ

θ+n
θ+1 = n 1

g
g−1

g
θ+n
θ+1 .

If α → ∞, α
θ = 1

g , and π(k) tends to the

Binomial
(
n, 1

g

)
.

If α < 0, the ascending factorial (Pochhammer sym-
bol) becomes (−x)[n] = (−x)(−x + 1)...(−x + n − 1) =
(−1)n|x|(|x| − 1)...(|x| − n + 1) := (−1)n|x|[n], hence

α[k](θ − α)[n−k]

θ[n]
=

|α|[k](|θ − α|)[n−k]

(|θ|)[n]
,

and for |α| integer (3) becomes

(|α|
k

)(|θ − α|
n − k

)

(|θ|
n

) , that

is the Hypergeometric(n, |α|, (g − 1)|α|). In this case the
range of the random walk is {0, 1, ..., min(|α|, n)}.

It is interesting to remark that the three forms of the
equilibrium distribution have the same average E(k) = n

g ,

but very different variance, according to the sign and the
size of θ. Var(k) ≈ n2 for θ positive and not too large,
Var(k) = n 1

g
g−1

g ≈ n for the independent redistribution

α → ∞, and, finally, for α < 0, Var(k) = n 1
g

g−1
g

|θ|−n
|θ|−1

which is even smaller.

2.4 Marginal description and block taxation

In the block case, the marginal chain is much more com-
plicated than a simple birth-death chain, because at each
step |∆k| can vary from 0 to m. Then Yt+1 = Yt −Dt+1 +
Ct+1 = Yt + It+1, where Dt+1 is the random taxation for
the fixed agent and Ct+1 is its random redistribution. If
we study only the first moment, E(Dt+1|Yt = k) = m k

n ,

and E(Ct+1|Yt = k, Dt+1 = d) = m
α+k−m k

n

θ+n−m , therefore

E (∆kt+1|kt) = − mθ

n(θ + n − m)

(
kt − n

α

θ

)
. (4)

The following remarks can be made:

– if kt = nα
θ , the chain is first-order stationary;

– the equation is analogous to a restoring force around
the expected value E(k) = nα

θ = n
g ;

– the intensity of the restoring force is r = mθ
n(θ+n−m) . As

a function of the total weight θ, it is O(θ) for small θ,
in which case the rate is very slow, and an agent can
stay for a long time very far from the expected wealth
n
g . If θ → ∞, the equilibrium approach rate is m

n , and
the rate increases if θ < 0.

In the case θ < 0, there is a maximum allowed wealth. A
consistency condition for the model, excluding transient
states, is necessary. For instance, if the maximum allowed
wealth is ten times the average, |α| = 10n

g , thus |θ| = 10n,

r =
10mn

n(10n− n + m)
=

10m

10n− n + m
� 10

9
m
n if m �

n, not so far from the independent redistribution case.

If |α| = 3n
g , then one has r =

3m

3n − n + m
� 3

2
m
n . The

extreme case is |α| = n
g , leading to r =

m

n − n + m
= 1.

In this case, the state vector is Y(t) = (n/g, . . . , n/g)
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for sure, and the redistribution deterministically produces
the same vector. In other words, one trivially has r = 1.
If we allow an initial state containing individuals richer
than |α| , that is if we consider (4) for kt > |α| , then
E(Dt+1|Yt = k) is still m k

n , but E(Ct+1|Yt = k, Dt+1 =
d) = 0 unless k − d < |α|. More precisely, one has

E(Ct+1|k, d) =

⎧
⎨

⎩
m
|α| − k + m k

n

|θ| − n + m
if k − m k

n ≤ |α|
0 if k − m k

n > |α|
.

Letting the average percent taxation be f = m
n , then one

gets

E (∆kt+1|kt) =

{
− fθ

θ−n(1−f)

(
kt − n

g

)
if k(1 − f) ≤ |α|

−k(1 − f) if k(1 − f) > |α| .

As k(1− f) is the average value after taxation, even if the
agent is initially richer than |α| he/she can participate to
redistribution, if the mean percentage of taxation is high
enough.

2.5 The mean wealth distribution

The actual wealth distribution Z = (z0 . . . , zn),
∑n

0 zi =
g,

∑n
0 izi = n, where, as written before, zi is the number of

agents with i coins, is a random variable moving in time
according to the dynamics (1) or, more realistically, to
an m− block taxation-and-redistribution mechanism. The
random variable Z is a (n + 1)-dimensional vector, where
n can be very large, and the domain of Z, fixed by the two

constraints, is at least as large as nearly 1
4
√

3n
exp

[
π
√

2n
3

]
.

Given Z, the probability that a randomly extracted agent
is i-rich is zi

g . As said before, we can study the link be-
tween “Boltzmann I” and “Boltzmann II”, that is between
the marginal distribution of agent wealth and the wealth
distribution of the whole population. Indeed, we have g
variables Y1, . . . , Yg, with the same probability distribu-
tion; therefore, the expected value of the number of agents
with i coins is E(zi) = P (Y1 = i) + ... + P (Yg = i) = gPi,
where Pi is given by equation (3) (see Appendix). If
“Boltzmann II” works, one finds Z∗ — the most prob-
able frequency vector — supposed to coincide with the
expected value E(Z), wherefrom one derives Pi = E(zi)

g .
In this paper, we have applied “Boltzmann I”, so that we
obtain E(Z) in terms of the marginal distribution Pi. The
exact probabilistic meaning of the loose expression “equi-
librium wealth distribution” is twofold: Pi is the expected
fraction of agents whose wealth is i, or the probability that
any fixed agent is i-rich, when equilibrium is reached.

2.6 Thermodynamic limit

It is useful to consider the thermodynamic limit g 	
1, n 	 1, n/g = αχ. The name is suggested by the
fact that under these conditions, equation (3) describes

the interaction of a fixed agent with the very large ther-
mostat made up of all the other agents. Starting from

Pk = π(k) =
n!

k!(n − k)!
α[k](θ − α)[n−k]

θ[n]
, and denoting

the thermodynamic limit by TL, one gets

PTL
k =

α[k]

k!

(
1

1 + χ

)α (
χ

1 + χ

)k

, (5)

that is the Negative Binomial (α, χ) [2].
The moments of the Polya distribution and the corre-

sponding ones of the limiting NegativeBinomial (α, χ) are

E (k) = n
α

θ
→ ETL (k) = αχ;

Var (k) = n
1
g

g − 1
g

θ + n

θ + 1
→ VarTL (k) = αχ (1 + χ) .

Note that, here, the wealth domain is {0, 1, 2, ...,∞}. We
can now consider the continuum limit TLC, given that
for χ 	 1 the Negative Binomial tends to the Gamma
Distribution. Indeed, for χ 	 1 and α finite the expected
number of coins is large, and we can pass to a continuous
random variable without danger:

PTL
k =

α[k]

k!

(
1

1 + χ

)α (
χ

1 + χ

)k

≈ kα−1

Γ (α)

(
1
χ

)α (
1 − χ−1

)k ≈ kα−1

χαΓ (α)
exp[− k

χ
],

that is Gamma(α, χ).
More precisely, P (k) � ∫ k+1/2

k−1/2
Gamma(x; α, χ)dx.

The average value is conserved, i.e. ETLC (k) = αχ,
the variance becomes VarTLC (k) = αχ2, and the kurtosis
excess is 6

α .
Then our simple exact model leads to the Gamma

distribution, which is actually very popular as an in-
come distribution. In this model the form factor α is
essential, as most concentration indices are independent
from the scale factor χ. For instance Gini’s coefficient is

R(α) =
Γ (2α + 1)

(2αΓ (α + 1))2
=

(2α)!
4αα!2

for α integer, a decreas-

ing function of α. Note that for α = 1.5 we have R = 0.42
and for α = 2.5 we have R = 0.34. These are realistic
bounds for many industrialised economies [14].

3 Discussion and conclusions

As mentioned before, the Gamma model is very popular as
an income distribution law. Income should be not confused
with wealth. Income is a flux, whereas wealth is a stock. In
1898, March [15] proposed the Gamma probability density
function (pdf) to fit the distribution of wages in France,
Germany and the United States. In 1925, Amoroso [16]
derived and applied a generalized Gamma pdf to income
distribution in Prussia. In more recent years, Salem and
Mount [17] fitted the Gamma pdf to the income data
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in United Stated. The Gamma model is a member of
D’Addario’s system [18] which formally corresponds to
the Brillouin’s statistics. Angle derives the Gamma dis-
tribution as the limiting distribution of his inequality pro-
cess [19].

Coming back to our model, one has an interesting
interpretation for the form factor α of the Gamma dis-
tribution as the initial weight for the redistribution mech-
anism. Our taxation-and-redistribution (TAR) game can-
not be taken too seriously, because it is played considering
all other economic activities as completely frozen. In an
economic system, many other “games” occur at the same
time, even if the total amount of wealth is constant within
the period of investigation. One can think of a system
where both the BDY game and the TAR game take place.
Suppose that at times t1, t1 + 1, ..., t1 + m − 1, the BDY
game is played, and, at times t2 = t1+m, t2+1, ..., t2+n−
1, n moves of the TAR game are made. The BDY game
shifts the initial wealth distribution towards an exponen-
tial, and such a distribution becomes the initial one for
the TAR game. Then, the TAR game shifts the distribu-
tion towards a Gamma and this process can be iterated
many times. We would need the relaxation times for each
game, which actually are much greater than the intervals
m, n where each of them is supposed to be played with-
out interruption, for a complete description of the mixed
process. We can guess that the equilibrium distribution of
the joint process will be a mixture of the two “pure” ones,
with weights proportional to the intensity and efficiency
of the two processes.

In the case of both BDY and TAR, computer sim-
ulations are not necessary, because the equilibrium dis-
tributions can be analytically derived. In contrast, com-
puter simulations become necessary when these games are
played sequentially or at the same time. This will be a
topic for future research. But, before doing that, it will be
useful to introduce a third type of game: the Zipf-Simon-
Yule (ZSY) one, where the number of agents is not con-
served, but the total amount of coins does not change. This
mechanism produces Paretian power-law tails, if the redis-
tribution mechanism is no longer Polya, but à la Zipf [20].
This game can be analytically solved as well [21]. The in-
terplay among the BDY game, the TAR game and the ZSY
one may give a satisfactory representation of a conserva-
tive economic system where total wealth does not change
(but see [22] for a discussion on the non-conservation of
money).

It is interesting to compare the discrete models of this
paper and of reference [8] with the exchange models by
Angle [19] and by Chakraborti–Chakrabarti [23]. In our
case, following Boltzmann, we use a totally discrete ap-
proach and then derive continum limits, whereas in those
papers, the authors consider the wealth as a continous
random variable.

Finally, with respect to the problem of agent interac-
tions, it is possible to consider them on a complex graph
(or network) [24] instead of on a random graph.

Authors are indebted to D. Costantini and L. Di Gennaro for
helpful discussions.

Appendix

(1) Given Z = z, the probability that an agent extracted
at random at time t is i-rich is zi

g . Hence P (At = i|
zt,y0) = zi

g is universal, it is independent from the ini-
tial state y0 and it holds also far from equilibrium. Note
that we do not know in advance the name of the extracted
agent. Let us instead consider a fixed agent j, whose ini-
tial wealth was Yj(0) = k 	 i. In general P (Yj(t) = i|
z,Yj(0) = k) 
= zi

g , because if t is not so large the memory of
the past wealth is still important. Also, if we do not exactly
know Z, P (At = i) =

∑
z P (At = i| z(t))P (z) =E(zi(t))

g

only holds for a randomly extracted agent. Note that
E(zi(t)) is still a function of the initial conditions.

The random variable Zi counts the number of agents
whose wealth is i, then Zi =

∑g
j=1 1Yj=i, where 1Yj=i = 1

if Yj = i, or 1Yj=i = 0 if Yj 
= i. Then E[Zi] =
E[

∑g
j=1 1Yj=i] =

∑g
j=1 E[1Yj=i] =

∑g
j=1 P (Yj = i). This

is true at any time, t, Zi(t) =
∑g

j=1 1Yj(t)=i, hence

E[Zi(t)] =
g∑

j=1

P (Yj(t) = i).

For t → ∞, E[Zi(∞)] =
∑g

j=1 P (Yj(∞) = i) = gPi. Then

P (Yj(∞) = i) = Pi = E(zi(∞))
g holds for all agents, as

they are going to be described by the same probability
distribution as time goes by and the memory of initial
conditions is lost.

(2) Suppose that starting from a system with n coins
(whose value is 1) in the thermodynamic limit n, g 	 1,

where αχ = n
g . Then PTL

k =
α[k]

k!

(
1

1 + χ

)α (
χ

1 + χ

)k

is

the probability that an agent X is k−rich. Now we com-
pare this system with a new one, where we change any coin
(whose value is 1) with m coins whose value is 1

m . If the
dynamics is the same (that is α is the same), the equilib-
rium probability that an agent Y is k−rich is now PTL

k′ =
α[k′]

k′!

(
1

1 + χ′

)α (
χ′

1 + χ′

)k′

, where k′ = mk, χ′ = mχ.

The probability in the initial system P{X ∈ [k, k + 1)}
corresponds to the probability (in the new system) P{Y ∈
[mk, mk + m)} � mP{Y = mk) = mPTL

k′ .

NowPTL
k′ = PTL

mk =
α[mk]

(mk)!

(
1

1 + mχ

)α (
mχ

1 + mχ

)mk

,
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and if m is large:

PTL
k′ =

α[mk]

(mk)!

(
1

1 + mχ

)α (
mχ

1 + mχ

)mk

� (mk)α−1

Γ (α)

(
1

mχ

)α (

1 − 1
mχ

)mk

� 1
m

kα−1

Γ (α)

(
1
χ

)α

exp[− k

χ
], that is :

lim
m→∞[mP{Y = mk)] = Gamma[α, χ].

Hence: if the initial system was already in the condition
P{X ∈ [k, k + 1)} � Gamma[α, χ], this is not affected by
the change of numeraire, but now the distribution has do-
main of support [0,∞), so that one can exchange fractions
of the unit of wealth.
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