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Fluid-structure interaction computations in geometries where different chambers are al-
most completely separated from each other by a movable rigid body but connected through
very small gaps, can encounter stability problems when a standard explicit coupling pro-
cedure is used for the coupling of the fluid flow and the movement of the rigid body. An
example of such kind of flows is the opening and closing of valves, when the valve motion
is driven by the flow. In this paper, a stability analysis is performed for the coupling
procedure of the movement of a cylinder in a cylindrical tube, filled with fluid. Between
the moving cylinder and the tube a small gap is present, so that two chambers are formed.
It is shown that a standard explicit coupling procedure or an implicit coupling procedure
with explicit coupling in the subiterations steps can lead to unstable motion depending
on the size of the gaps, the density of the rigid body and the density of the fluid. It is
proven that a reduction of the time step size cannot stabilize the coupling procedure. An
implicit coupling procedure with implicit coupling in the subiterations has to be used. An
illustration is given on how such a coupling procedure can be implemented in a commercial
CFD software package. The CFD package Fluent (Fluent Inc.) is used. As an application,
the opening and the closing of a prosthetic aortic valve is computed.

I. Introduction

Fluid-structure interaction (FSI) problems with moving valves are popular in biomedical applications
where the simulation of the flow in the heart during the cardiac cycle is one of the goals to be achieved.
Different coupling methods for this FSI problem have been used. Both in the immersed boundary method? 1!
and in the fictitious domain method'™ a fixed grid is used for the flow calculation. The influence of the
structure is introduced by momentum sources in the momentum equations of the flow. However, if details
of the flow around the valves are of interest (e.g. shear stresses), it would be more appropriate to use an
arbitrary Lagrangean-Eulerean (ALE) method because the accuracy of the latter method is better in the
vicinity of the moving boundaries for a given mesh density. Makhijani et al. presented a real 3D simulation of
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a pericardial bioprosthetic aortic valve during the complete cardiac cycle.!® They used an implicit 'influence
coefficient’ technique to couple the flow with the motion of the structure.

In this paper, different coupling procedures for the motion of a rigid body in a moving fluid are analyzed
analytically and numerically. Different time integration schemes for the motion of the valve are compared.
First, a stability analysis is performed for the coupling procedure of the movement of a cylinder in a cylindrical
tube, filled with fluid. Between the moving cylinder and the tube a small gap is present, so that two chambers
are formed. It is shown that the coupling procedure for this kind of problem is representative for the rigid
valve motion during opening and closing. The valve motion is coupled with the flow motion computed with
the commercial CFD software package Fluent (Fluent Inc.). The dynamic mesh model of Fluent 6.1 has
been used for the ALE computations.

II. Stability analysis for a generic 1D test case

A. Definition of the test case

As a generic 1D test case for the kind of FSI problem treated in this paper, a moving cylinder is considered in
a cylindrical tube (figure 1). Between the cylinder and the tube there exists a small gap which connects the
fluid at the front and the back of the cylinder. There exists an analogy between the moving valve problem
and the 1D test case because during certain phases of the valve motion also a small gap is present that
connects the fluid on both sides of the valve. Also, both problems are described with one degree of freedom.

v(t)
_ X 4, A

Ty 1

pﬂ pr

Figure 1. Motion of a rigid body in a tube, generic 1D test case. u(¢) is the velocity of the oncoming fluid,
v(t) is the velocity in the gaps, & is the velocity of the rigid body, A and A, are the cross sectional area of the
tube and the front area of the rigid body respectively.

For this generic test case, the conservation of mass is given by:
Au(t) = Ap(t) + (A — Ap)v(t) (1)

or

with a = Ay/A, Ay = A — Ay,

The conservation of momentum in the gap is:

Jv 1 op

for inviscid flow. p; denotes the density of the fluid, p is the pressure. In the analysis the influence of the
viscous terms is neglected. The driving force for the rigid body motion is given by the pressure difference
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between the left and right wall of the cylinder. This pressure difference is:

v

— Pr — L s 4
p=pr = 5o Loy (4)

with L the length of the gap. The force on the solid body is then given by
F=MAp—pr)=(1-a)Alp —pr). (5)

The equation of motion for the solid body becomes:

me = F (6)
or
:8_“p_fl_ggl_ap_f’ (7)
ot Ps a a  pPs

with ps the density of the solid.

B. Discretization

Since a commercial package is used for the fluid calculation, the interface characteristics of this software
have to be taken into account. The fluid solver uses an ALE algorithm. Thus starting from a known state
at time level n, the new position of the boundary at time level n + 1 has to be provided. With the other
boundary conditions given as a function of the time (e.g. at inlet and outlet), the software computes a new
state on timelevel n + 1. The time discretization scheme that can be selected for the ALE calculations in
Fluent is only the backward Euler scheme. Therefore the fluid discretization part of the generic 1D test case
problem is also done with a backward Euler approach. It is important to notice that only the position x
is the variable that is passed through the interface between the solid and the fluid problem and is common
for both problems. It means that both problems have their own variables for the other state variables (e.g.
velocity). With a backward Euler discretization, the force F"*! is given by

1 n

pr ot —w

Ps At

_ Pt (lu”"’l—u” B 1—ai‘§§;§1—i‘§(,5)
ps

F”+1/m =

8
a At a At (8)
Remark that the velocity used in the Navier-Stokes solver is denoted as #ys. This velocity can be related
to the position vector z as
+1
andl = u’ (9)
At

again using the backward Euler discretization of the Navier-Stokes solver. The force is then passed to the
solid problem and used in the equation of motion:

man Tt = prtt (10)

Here # denotes the acceleration variable in the solid problem. The equation of motion can be integrated
to obtain the velocity ”%' of the solid problem and the position z"t!. We consider a class of integration
schemes given by

l-,n+1

"+ (1= B)@" At + it At
2T = 2" 4 AL+ v AL + " TAL. (11)
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For v=1/2-« this corresponds to the class of Newmark schemes. For y=0 and o« = # = 1 this corresponds
to the backward Euler scheme. Indeed, with the latter choice, the scheme can be rewritten as

gl = pn g EntIAY

2T = e AL (12)

From egs. (8), (9), (10) and (11), F**! and the variable 2 and z"*! can be eliminated easily. The
resulting equations can be written in matrix form:

. n+1 . n 0
—o zAL 1 0 vy zAl
1 0 -3 g Al =1 0 1-p insAL |+ ) 0 (13)
e . 2 -~ . 2 K n41 n
0 K 1 EAL 0 K 0 EAL m(u —u") At
where K is given by
1 _
K=" (14)
pPs a
Eq. (13) can be rewritten is condense form as
A¢" Tl = B¢" + D. (15)

C. Stability of the time integration scheme

The time integration scheme (15) is stable if the amplitude of all eigenvalues of the matrix C' = A= B is not
larger than one. The characteristic equation for the eigenvalues A; of C'is given by

B o _(a=f-K,  (=-8-79K\_
A-=1) (A 1+ aK At 1+ aK =0 (16)
The eigenvalues A; are
A= 1,
(=B Kx\/(a+B+7)?K?—4K(l+aK — 3 —7)
Aoz = ~ . (17)
’ 2(1 + oK)

The eigenvector corresponding to the eigenvalue 1 is [1 1 0] Tt is seen, if u is constant in time (D = [0 0 0]7),
that the solution of the generic test case corresponds with a motion at constant speed. This solution
corresponds to the eigenmode with eigenvalue 1, i.e.

. n+1 . n
it it
ENS = | zns (18)

if 2" = &% ¢ and " = 0. The other modes are spurious and should be damped. They are formed by a linear
combination of e.g. a mode corresponding with a different speed in the solid and the fluid problem and no
acceleration ([1 — 1 0]7) and a mode with velocity zero and an acceleration different from zero ([0 0 1]%).
It should be noted that the two latter modes are not neccessarily eigenmodes, but form a span for these
eigenmodes. So, in order to damp the spurious modes, the amplitude of the eigenvalues A; and Az must be
strictly smaller than one and for good damping close to zero.
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With the transformation

. 1+ 2
o l—ZZ"

i (19)

the inner part of the unit circle in the A-plane is transformed into the left half plane of the z-plane. After
elimination of the factor (A — 1) in eq. (16), the transformation gives

(1+K(1+2a—-28-29)2"+2(1+ K(a+8+y—-1)z+1+ K =0. (20)
or
asz+ajz+ag =0 (21)

The conditions for stability are now that $(z;) < 0 (Routh-Hurwitz conditions). For a quadratic poly-
nomial, these are fulfilled if ag, a; and as have the same sign. The stability conditions are given by

1+ K(1+2a—26-2y) > 0
1+ K(a+84+vy-1) > 0 (22)
For large, but finite values of K, the conditions are
B+y < a+1/2
a+f+y > L (23)

Note that solutions can be found only if & > 1/4.

D. Choice of the time integration scheme

An explicit scheme for the motion of the solid i1s obtained for & = § = 0. Conditions for 4 can then only be
fulfilled if K < 3. This means that for large K an explicit scheme is unstable and cannot be used.

A Newmark scheme is obtained if ¥y = 1/2 — «. For large K, the stability conditions are 2« > 3 > 1/2.
A Newmark scheme is second order accurate in time!? if 3 = 1/2. The product of the eigenvalues A» and A3
are given by the constant in eq. (16) after elimination of the factor (A — 1). For the second order Newmark
scheme this constant is equal to oK /(1 + «K), which is very close to one for large values of K. So, the
second order Newmark scheme has almost no damping for the spurious modes arising in the generic test case
problem. A typical choice for « for a second order Newmark scheme is @ = 1/4. The eigenvalues are then
given by

—K +92%VK
/\23 - 5,

= 24
’ K+4 7 (24)

which are close to -1 for large K. So, for this choice of parameters (a=1/4, 8=1/2, y=1/4), the scheme is
second order accurate in time, but weakly damped m-oscillations of the spurious modes are present.

A typical choice for a first order Newmark method is the scheme with parameters (a=1/2, g=1, y=0).
This scheme is the fully implicit Newmark scheme. The eigenvalues are then As = 0 and Az = =K /(K + 2).
Again, one of the spurious modes has weakly damped m-oscillations.

Let us consider now the schemes for which 8+ = 1. The eigenvalues for these schemes are Ay = 0 and
Az = (a = 1)K /(1 4+ aK) which reduces to A3 = (a — 1)/« for large values of K. One of the spurious modes
is damped immediately. For o < 1/2 the scheme is unstable. For 1/2 < o < 1, the other spurious mode is
oscillatory damped. For a = 1, all spurious modes are immediately damped. For « > 1, the other spurious
mode is supercritically damped (without oscillations).

5 of 20

American Institute of Aeronautics and Astronautics



Several schemes are tested out in the results section to show the validity of this analysis. The scheme
with « = 8 = 1 and v = 0 will finally be used for the computations. This scheme corresponds to the first
order backward Euler scheme and corresponds to the time integration scheme for the fluid problem. It should
be pointed out that for another choice of the time integration scheme for the fluid problem, the analysis
should be repeated and will have an impact on the choice of the integration scheme for the solid problem.
A second remark is that for small K, close to zero, the spurious modes are damped very well, independent
of the choice of a, 8 and ~. So, if only a weak coupling exists between the fluid and the solid problems, the
matching of the time integration scheme for both problems is of less importance.

E. Stability of the subiteration process

In more general applications, the system given by eq. (13) is solved in an iterative way because no closed
expression for the force in function of the solid variables is available. The force is obtained from a CFD
computation, as is done for the valve motion, shown later in this paper. A subiteration process can be set
up as follows. Starting from an approximation for the new acceleration #”t1* a new value for the velocity
£"*THk and the position 2”TH* are computed with the time integration scheme for the solid. Here k denotes
the subiteration index, starting at 0. The new position is then passed to the fluid problem, where the force
FntLE s computed. From the equation of motion (6) a newer value for the acceleration #"t1*+1 is then
computed and the cycle is repeated until convergence is achieved.

Let us first consider only schemes for which, when entering the fluid problem, the velocity computed in
the fluid problem &y g is equal to the velocity in the solid problem &. From egs. (11) and (9) can be deduced
that the conditions for the parameters are § 4+ = 1 and a = 3. The backward Euler scheme belongs to
this family of schemes, but none of the schemes of the Newmark family does. For these particular schemes
we can write the equation of motion for the generic test case (10) as

. 1wttt . .
it = K (1 — (™t 4 ’m‘n)) : (25)

so that the discrete solution of the acceleration on the new time level is given by

'l;n-l—l

K 1wt —yn ~K L,
= — — -z, (26)
1+aK1—a At 1+ aK

1

However, eq. (25) can not be solved directly for "1 in a more general application as explained above, but

has to be solved iteratively.
1. FExplicit coupling in the subiterations
If explicit coupling in the subiteration process is used, #?+t1*+1 is computed as

un+1 —un

1—a At

FrHLEEL = (] - )t K ( — (@™ hk w’é”)) : (27)

With 70k = gntl 4 entlk where e”t15 represents the error in the subiteration process with respect
to the discrete solution #"%! eq. (27) can be written as

LI = (1 —w —waK)EM R, (28)

The amplification of the error is determined by

6n+1,k+1

T =1 —w—wakK]|. (29)
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The amplification factor is less than one if

2
. 30
“STrak (30)
For small gaps, an unusual small w is required, close to zero. The amplification factor is zero for w given by
1
=—. 1
YT T ek (81)

The error 1s then equal to zero after one subiteration. However, this approach is not suitable for flows
where the dimension of the gap changes with time as for opening and closing valves. Then it would be more
appropriate to use an implicit coupling method in the subiterations.

2. Implicit coupling in the subiterations

A way to have implicit coupling in the subiterations, is to compute z?+t1F+1 from

m'l;n-l—l,k‘-l—l — Fn-l—l,k‘-l—l (32)

P Fn+1,k 4 6_F ('l;n+1,k+1 _ 'l;n+1,k)
0% '

. ... oF . . oF .. .
For the generic test case, the derivative R is given by FEi —miK. The error &?TH*+1 is defined by
z z
én+1,k+1 — _[(én+1,k - K (én+1,k+1 _ én+1,k) (33)

which result in é*t1A+1 = 0. So, the amplification factor is equal to zero, independent of the gap size and

the fluid and solid densities.
The derivative has to be evaluated numerically in more general applications. This can be done as follows:

OF . FNS(.lm-I_l’O + Al‘) — FNS(.lm-I_l’O)
9z Azx ’

Two extra Navier-Stokes (NS) evaluations per time step are needed with this approach to evaluate the
derivative. It should be noted that the acceleration variables in this equation are those of the solid problem,

(34)

because the acceleration variables are first used to compute new positions « with the time integration scheme
and the forces Fiyg are evaluated with these positions. So, the latter approach can be used to converge the
subiterations for any value of the parameters «, § and 7. This approach is used with success for the moving
valve problem, as is shown later.

III. FSI of an aortic valve

A. Problem definition

In order to verify the numerical behaviour of the coupling procedure a two-dimensional representation of the
aortic valve configuration is considered (figure 2). The model contains an inflow tract (inlet = left ventricle),
a sinus of Valsalva (aortic valve), an outflow tract (outlet = aorta) and a rigid leaflet. The dimensions of the
model are Iy =4 cm,ls =4 cm,r; =2cm, rs = 0.7 cm, h = 2 cm, ipitiag = 0.384 rad = 22 degrees. The
flow during the ejection phase (systole) is computed. As boundary conditions (figure 3) a pulsatile aortic
flow in x-direction is given as a function of time at the inlet:

27r((t—to)/Tp+0.26)) o

Uinlet = Umean T 0~5uamp5in ( 0<t< t, and t, + 0.37 Tp <t < Tp,

1.26
2w(t —t,) /1,
Uinlet = Umean T uampSin (%) for t, <t<t,+ 0.37 Tp. (35)
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The parameters in this formula are 7, = 2.45 s, t, = 0.4 s, Umean = 0.04 m/s, tamp = 0.11 m/s. The
tangential velocity at the inlet is set equal to 0 m/s. At the outlet a constant gauge pressure of 0 Pa is
assumed. On all the other walls no slip c9nditions are defined.

L X aortic sinus

I
I
inlet fluid domain %Valve leaflet th outlet
¥

Figure 2. Geometry of 2D aortic valve model

vin m/s
0.15
0.10
0.05 |
] ]
0 1 1 1 1 1 1 ol t(S)
0.5 1.0 15 ZO0— 25
t 0.37 T,+t, T,

Figure 3. Velocity boundary condition at the inlet as a function of time t

The unknown variables of the problem are the velocity components in - and y-direction and the pressure p,
together with the coordinates (z,y) of the valve nodes determined by the angle 6.

The 2D Navier-Stokes equations for unsteady flow written in a conservative ALE formulation for incompressible
laminar fluid flow are solved together with the continuity equation for each moving grid cell in the flow domain.
Water (py=1000 kg/m®, dynamic viscosity =1 mPa s) and blood (p;=1000 kg/m®, dynamic viscosity p=4 mPa s)
are used in the calculations. Both are treated as a Newtonian fluid. The computation is performed with the dynamic
mesh model in the CFD software package Fluent (Fluent Inc.). As input the new position of the boundary nodes of
the moving valve have to be prescribed at the beginning of a time step. The dynamic mesh model assumes that grid
nodes are connected with springs and an equilibrium equation for the spring forces determines the position of the
nodes at the new time level. Between time steps a local remeshing technique is used in order to keep a sufficient grid
density during the movement of the valve. The positions of the boundary nodes at the new time level are prescribed
through a user defined function (UDF) that can be coupled with the code. Since these positions depend on the FSI
solution, a straightforward calculation is not possible. Therefore a journal file with commands to be executed, is used
to drive the computation.

It is necessary to include read and write commands for the geometry and data files in this journal file, since it
should be possible to start over each time step several times during the coupling procedure. The backward Euler
scheme is used in Fluent for the time integration of the flow problem.

The equation of motion for the stiff valve leaflet is written as

M =16 (36)

with M the moment resulting from the forces acting on the surface of the leaflet, I the moment of inertia and 8 the
angle that determines the position of the leaflet as indicated in figure 2. For the valve leaflet, the moment of inertia
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I with the rotational axis at the end of the leaflet is given by:
I=(1/3)ml’ (37)

with m = plt the mass of the leaflet per unit length, p the density of the leaflet (1100 kg/mg’)7 t the thickness of the
leaflet (1 mm and 0.5 mm) and [ the length of the leaflet (22 mm). A reference length of 1 m is used in the third
dimension, corresponding to the reference length used in the CFD package to calculate the moments. Both values
for the moment of inertia I = 3.909 kg mm? and I = 1.9545 kg mm? are used.

B. Implementation of the FSI

Figure 4 presents a flow diagram of the coupling of the flow computations and the movement of the leaflet. The
flow diagram corresponds to the method with implicit coupling in the subiterations. In the following paragraphs the
different steps of the implementation are explained. First all UDF variables ¢, At, n, k, I, 8, é, 6 are initialized. The
subsequent position of the valve leaflet on the new time level is calculated by coupling the time integration scheme
for the solid with the CFD code. The time integration scheme for the solid is given by

0" + (1 — BYAO” + BAL™,
9" = 0" 4 A" + yALE" + aAPE"T (38)

én+1

The indices n 4+ 1 and n correspond with time levels ¢ + At and ¢ respectively.

C. Iterative solution of the backward Euler Method

In order to obtain the position 871! at t+ At an iterative approach is used. For each timestep there are k subiterations

performed in order to reach sufficient convergence of eq. (36).

At the beginning of each time step, the derivative dM/dé has to be estimated. A first estimation (k = 0) of the
new position 8"T1*=C is computed with the old value of the angular acceleration ™. This value of the acceleration
is used to calculate the position using the equation eq. (38). With this initial guess of the new position at ¢t 4+ At,
Fluent is called to adapt the mesh with the dynamic mesh model and to solve the Navier-Stokes equations. After
convergence of the Navier-Stokes equations, M™t1*=% ig calculated. A second estimation (k = 1) of the new position
g FT1F=1 is computed with the old value of the angular acceleration increased with a constant §=0.1 rad/s>. This
value is about 1/100 of the maximum angular acceleration, which can be estimated from the inlet profile. It is shown
that the choice of this value is not very sensitive. After convergence of the fluid problem, M™*1*=1 and the derivative

dM/dé is calculated as follows:

grtiE=o  _  gn

Rl = 9 s (39)
dM MrALESL _ ppndlk=0 prndlk=1_ grndl k=0
d6 gntlk=1 _ gntlk=0 5

The derivative dM/dé can now be used to calculate a better approximation of the position of the valve leaflet:

MOTLEHL  ppntlkt
0
ALk 4 % (én+1,k+1 _én+1,k) — JrtLEtL (40)

s
<A4n+lk __éﬁ{én+hk>
grtiktl _ df

ey

With this better approximation of the angular acceleration the new position is calculated, the mesh is adapted and
the Navier-Stokes equations are solved. After convergence of the Navier-Stokes equations, M™t1* is calculated and
convergence of the inner loop is checked:

A4n+Lk ~ ]én+Lk
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| Initialize variables at ¢ = Os |

|n:o,k:o,9":9°,é":o,é":0|

| t = (n + 1)At and én+1’k = 9n |

| gLkl _ gtk g |

GrELEE — g (40) I(_

= €q.

read geometry and data file of timestep n

mesh movement

| Navier-Stokes equations |

| calculate M ™t in Fluent |

daM

—= eq. (40)

MLk o pgntlke

Step 2 [ No

Yes

v

write geometry and data file of timestep n + 1 |—’

n = time step, k = subiteration step, §= 0.1 rad/s?

| FLUENT Inc. software executed using generated journal file |

| UDF’s executed using generated journal file |

Figure 4. Flow diagram of the coupling of fluid and structure in FLUENT
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The inner loop is repeated until convergence is achieved. A convergence criterium of a residual drop of 3 orders of
magnitude is used. Then the next time step is computed. If only one cycle is computed, the simulation ends at t="T'.

IV. Results and discussion

A. Solution of the problem

Figure 5 shows the meshed geometry. It is shown in this figure that the ALE remeshing requires at least one cell in
the gap between the valve leaflet and the wall. Thus, the valve will never close completely. However, the gap can be
made as small as required by local refinement of the mesh. The backward Euler time integration scheme for the solid
has been used, unless stated otherwise.
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Figure 5. ALE Grid of the 2D aortic valve model

First a grid convergence study is performed. This study is done with water as fluid, with a time step of 1 ms
and with a moment of inertia 1=3.909 kg mm?. Three grids are considered. The angle of the valve is plotted as a
function of time for the first cycle in figure 6. The finest grid is further used for all computations.

The influence of the magnitude of the time step is shown in figure 7. Both computations are done for blood as
fluid and for a moment of inertia I = 1.9545 kg mm?. A time step equal to 1/1000 of the interval of the cycle (At
= 2.45 ms) is compared with a time step of 1 ms. Both computations give the same result for the movement of the
valve. A time step of At = 2.45 ms is further used for all computations, unless specified otherwise.

A convergence study for the cycle is shown in figure 8. The positions of the valve at the beginning and the
end of the third cycle correspond to each other, and the positions of the valve during the second half of the second
cycle correspond with those of the third cycle. The pressure differences between inlet and outlet are also shown as
a function of time in this figure. No differences can be seen between the different cycles. This pressure difference is
however less sensitive, because it is mainly determined by the velocity profile applied at the inlet and this is the same
for all cycles. The pressure difference plot shows two discontinuities at ¢ = ¢, and at ¢ = t, 4+ 0.377},. This is due to
the fact that the inlet velocity has also this discontinuity in its derivative (figure 3). We conclude that from the third
cycle on, the differences between the cycles can be assumed to be negligible. This discontinuity wouldn’t have been
present for a smoother inlet profile. However, if a strong acceleration would be present in the inlet profile during a
short time interval and if a time step is used that does not resolve this time interval the same problem would arise.
At this point spurious modes can enter the solution. These should be damped immediately. The inlet profile that
is used introduces a spurious mode independent of the size of the time step. So, with this inlet profile the damping
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Figure 6. Comparison of the evolution of the angle of the valve for different grids densities. The fluid is water,
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the moment of inertia of the valve I=3.909 kg mm? and the time step is 1 ms.
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Figure 7. Comparison of the evolution of the angle of the valve for two different time steps. The fluid is blood,
the moment of inertia of the valve /=1.9545 kg mm-.
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behaviour for spurious modes of the different numerical schemes can be tested.
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Figure 8. Evolution of the angle of the valve and the pressure difference between the inlet and outlet for the

first three cycles. The fluid is blood, the moment of inertia of the valve 1=1.9545 kg mm?.

Figure 9 demonstrates the velocity vectors at five different moments in time during the flow cycle. The arrows
show how the vortices are changing during the cardiac cycle. These figures show that the opening and closing of
the valve can be computed with the presented method. It is clear that the backflow plays an important role in the
closing of the aortic valve: in the converged cycle the valve reaches the closed state because of the presence of a
period during which backflow is present at the inlet boundary. We will further focus on the numerical behaviour of
the F'SI problem, the application itself is not further discussed. Some applications are addressed in.*"¢

B. Stability of the time integration scheme

The conclusions of the stability analysis on the generic 1D test case are numerically verified with the moving valve
problem. The analogy between the two problems is already mentioned. The main difference of the 1D test case and
this 2D problem is the difference in the length of the gap. In the 1D test case is assumed that only the acceleration
of the fluid in the gap is responsible for the pressure difference across the solid. The influence of the 2D effects at
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Figure 9. Velocity vectors for t = 0.00s, t = 0.37s, t = 0.88s, t = 1.32s, t = 2.11s
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both ends of the gap is neglected. In the 2D problem of the valve, the length of the gap is negligible. The pressure
difference between both sides of the valve is now not only due to the acceleration of a small amount of fluid in the
gap, but also the acceleration of fluid in front of and behind the gap, must be taken into account. This influence
can not be quantified easily, but it is not necessary. It is clear that the mass of the fluid that must be accelerated is
much more than only the mass of the fluid in the gap. This means that the factor K is not equal anymore to the
expression given in eq. (14), but much larger. It must also be remarked that when the valve reaches the open state,
a gap exists between the main flow and the fluid in the sinus of Valsalva. Therefore, the 1D test case problem is
representative for most of the cycle during opening and closing of the valve, and especially in the completely closed
and open positions.

Tables 1 and 2 show the evolution of the angle, the angular velocity and the angular acceleration during the first
four time steps of the first cycle for an explicit time integration scheme (v = 8 = v = 0) for the motion of the solid.
Two time steps are compared: At=1 ms and At=0.01 ms. Blood is used as fluid and the moment of inertia /=3.909

kg mm?.

Time | 6 [rad] | 6 [rad/s] | 6 [rad/s?]
0.000 | 0.3840 0.00 0.00
0.001 | 0.3840 0.00 284.91
0.002 | 0.3841 0.28 -4971.54
0.003 | 0.3819 -4.69 96525.94
0.004 | 0.4255 91.84 | -5054412.89

Table 1. Explicit stepping o = § = v = 0, At = 0.001

Time 6 [rad] 9 [rad/s] 9 [rad/s?]
0.00000 | 0.383972000 | 0.000000 0.00
0.00001 | 0.383972000 | 0.000000 269.71
0.00002 | 0.383972013 | 0.002697 -4319.77
0.00003 | 0.383971824 | -0.040501 | 71972.37
0.00004 | 0.383975018 | 0.679223 | -1193827.07

Table 2. Explicit stepping o = 8 =~ = 0, At = 0.00001 s

The explicit scheme is unstable. The spurious modes are more or less amplified in the same way in both calculations
independent of the time step. This behaviour is predicted by the stability analysis.

For the calculations in the rest of this paragraph, blood is used as fluid, a time step At=2.45 ms and a moment
of inertia 1=1.9545 kg mm? are used.

In table 3, some Newmark schemes, the backward Euler scheme and some of the other (3=1, y=0) schemes are
tried out. The angular acceleration of the first three time steps of the first cycle are given. The backward Euler
scheme gives a critically damped behaviour and can be treated as a reference for the other schemes. In figures 10-12,
the angle, the angular velocity and the angular acceleration computed with the backward Euler scheme, the second
order Newmark scheme (o = 1/4, 8 = 1/2), the fully implicit Newmark scheme (o = 1/2, 8 = 1) and a damping
Newmark scheme (o = 0.4, 8 = 0.6) are shown as a function of time for the complete first cycle.

With this table and these figures, part of the conclusions of the stability analysis for the generic 1D test case is
verified. The second order Newmark and the fully implicit Newmark scheme show almost no damping. The damping
of the (8=1, v=0) schemes behaves also as was predicted. For a=0.4 the scheme is unstable, for =1/2, the scheme is
weakly damped, for «=0.6 and &=0.8 the scheme gives subcritical damping for the spurious modes with an oscillatory
behaviour. For a=1, the backward Euler scheme, is obtained which gives critical damping for the spurious modes.
They are damped immediately. For a=1.5, a supercritical damping behaviour is seen. Agreement with the stability
analysis is obtained for all these tests.
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Figure 10. Comparison of the evolution of the angle of the valve for the first cycle computed with the backward
Euler scheme, the second order Newmark scheme, the fully implicit Newmark scheme and a damping Newmark
scheme (a = 0.4,3 = 0.6). The fluid is blood, the time step At is 2.45 ms and the moment of inertia of the valve

1=1.9545 kg mm?.
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Figure 12. Comparison of the evolution of the angular acceleration of the valve for the first cycle computed
with the backward Euler scheme, the second order Newmark scheme, the fully implicit Newmark scheme and
a damping Newmark scheme (o = 0.4,3 = 0.6). The fluid is blood, the time step At is 2.45 ms and the moment

of inertia of the valve 1=1.9545 kg mm?.
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Class Scheme 0 [rad/s?] 0 [rad/s?] 9 [rad/s?]
t=0.00245 s | t=0.00490 s | t=0.00735 s
Newmark a=1/4, f=1/2 29.201 -26.191 51.106
y=1/2—a | a=1/2, g=1 14.963 0.413 14.577
a=0.4, 5=0.6 18.604 5.101 1.415
a=0.4 18.604 -8.418 30.842
a=0.5 14.963 0.413 14.577
f=1,y=0 | a=0.6 12.533 4.354 9.706
a=0.8 9.449 7.121 7.709
Backward Euler 7.576 7.587 7.592
a=1
a=1.5 5.077 6.751 7.312

Table 3. Damping of the spurious modes for different schemes. g is converged in the subiterations.

In table 4 the convergence of the subiteration process is analyzed for one time step of the backward FEuler scheme.
The analysis is done at time level ¢ = 2.695 s. This time level is chosen because at this point the convergence
behaviour of the subiteration process is the worst compared with the rest of the cycle. At this time level the angle
of the valve is 0.6612 rad or 37.89 degrees. The difference between the moment computed with the CFD software
and 76 is given for the first 4 subiterations. When the implicit approach is used in the subiterations, the first two

subiterations are used to calculate the derivative.

Mcpp — 1§ | Mcpp —1q | Mcrp — 14 | Mcrp — 14

Method [Nm] [Nm] [Nm] [Nm] Remark
Subiter 1 subiter 2 subiter 3 subiter 4

Explicit 4.918E-04 1.177E-02 3.378E-01 Crash Diverging
w = 0.05 1.119E-05 1.583E-05 2.313E-05 3.360E-05 | Diverging
w = 0.025 1.121E-05 2.431E-06 5.2670E-07 1.148E-07
w = 0.005 1.123E-05 8.493E-06 6.428E-06 4.865E-06 | Very slow
§ = 1077 rad/s? Calculation of OF /80 1.2944E-05 | 6.2502E-04 | Diverging
§ = 0.001 rad/s? Calculation of OF /80 1.3294E-05 | 3.0894E-08
§ = 0.1 rad/s* Calculation of OF /86 1.122E-05 3.740E-07
§ = 1 rad/s? Calculation of OF /80 1.122E-05 7.142E-07
§ = 100 rad/s? Calculation of OF /80 1.3294E-05 | 3.0894E-08
§ = 100000 rad/s? Calculation of F /86 crashes Crash

Table 4. Behaviour of the error of the subiterations for the backward Euler scheme (o = 3 =1, v = 0) at time
level t=2.695 s. Different subiteration strategies are compared.

With explicit coupling in the subiterations, no convergence could be obtained.

For an underrelaxation factor w=0.025, a good damping is obtained, a value w=0.05 leads to divergence and
for a value w=0.005 almost no damping of the subiteration process is obtained. This shows the sensitivity to the
underrelaxation factor. As the factor K changes during the opening and the closing process, a good value for the
whole cycle could not be obtained.

The method that uses the derivative of the force with respect to the angular acceleration shows good damping for
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a broad range of values of 4, defined in eq. 40. This value determines the displacement of the valve in the second step
of the subiteration cycle. This displacement should be less than the size of the grid cells in the vicinity of the valve.
We used a value of 6=0.1 rad/s*, because it is almost 1/100 of the maximum acceleration present in the problem.
This maximum acceleration can be estimated from the inlet boundary condition in our application. Another way
to choose ¢ is to use a fraction of the current angular acceleration. The value must then be prohibited to become
too small if the angular acceleration becomes close to zero. For too small values of 4, the difference between the
two moments from which the derivative is computed becomes too small and is of the same size or even smaller than
the error on the computed moments. The magnitude of this error depends on the accuracy of the solution of the
Navier-Stokes problem. We used a residual drop of three orders of magnitude as a convergence criterium for the fluid
solver. In the table it is shown that a too small value of § leads to a crash of the calculation, because of this reason. If
4 is taken too large, the displacement that corresponds with it is also too large and the moving mesh solver diverges,
which explains the crash in this situation. The choice of § is application dependent but not very sensitive, which
makes the method robust.

The behaviour of the subiteration process also matches the behaviour predicted in the generic 1D test problem.

C. Validation

Several validation studies of the algorithm have been performed yet. In* the method is compared with the measure-
ments in an experimental setup in which the flow is nearly two-dimensional. Good agreement is found (max. error
about 10%). In®*® the method is applied to a real 3D valve and comparison is made with the experimental study of
Feng.”® The opening and closing behaviour is also here in good agreement. It could be shown that depending on
the geometry behind the valve, the opening and closing behaviour of the valve is influenced in agreement with the
Feng study.

Conclusions

This study shows a stability analysis for FSI problems where different fluid zones are almost separated by a
moving rigid body, but connected through gaps in the vicinity of the moving rigid body. A FSI calculation procedure
is constructed that couples the movement of a rigid body with the flow calculations performed in a commercial CFD
package. The procedure is succesfully applied to the opening and closing of a two dimensional model for the aortic
valve.

From the stability analysis and the numerical experiments, it can be concluded that the matching of the time
integration scheme for the fluid and the solid problem is very important for these kind of FSI problems. It has been
shown that for a backward Euler scheme used in the fluid problem, a backward Euler scheme for the solid problem
damps all the spurious modes of the coupling procedure immediately. The second order Newmark scheme and the
fully implicit Newmark scheme show a weakly damped behaviour. Other schemes with good damping behaviour
can be constructed. The stability analysis showed also that for loosely coupled FSI problems, the matching of the
numerical scheme for the fluid and the solid problem is much less important to damp the spurious modes.

A second conclusion is that also the convergence of the subiteration process deserves a lot of attention for these kind
of F'SI problems. A standard underrelaxation technique does not work well because the choice of the underrelaxation
factor is very sensitive to the amount of stiffness of the coupling. Since this stiffness is not necessarily constant during
a calculation, such a method is not robust. The use of an implicit coupling procedure in the subiterations, with the
use of a numerically computed derivative, which acts as a sensitivity parameter, leads to a robust method to tackle
these stiff F'SI problems.
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