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Abstract— Energy efficiency is a very important is-
sue for a sustainable manufacturing. Machining of
parts is a very time consuming process and it is di-
rectly linked with the energy consumption and its ef-
ficiency. The energy consumption depends on some
process parameters such as spindle speed and feed
rate. In cloud manufacturing environments, the de-
ployed services can use cloud computing resources and
parallelization power in order to optimize the cutting
coefficients for the different machining operations in-
side a machining task that better fit the user requests.
First trials for the energy consumption reduction for
part machining while saving Time and improving Ma-
terial Removed Rate(MRR) is the aim of this work.
For that, Spindle speed and Feed rate input param-
eters have been analyzed from different simulations
and multiobjective optimization approach has been
considered. In the presented work, a simple use case
has been performed and its results confirmed the cor-
rectness of the approach taken into account.
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I. INTRODUCTION

Sustainability in the industrial sector is cha-
llenging because the improvement in the energy effi-
ciency on this area has a great impact on the envi-
ronment. Many different approaches have been con-
sidered: on-line systems (working at run time, when
the process is going on) or off-line systems.

MC-SUITE european project wants to boost the
productivity of manufacturing industry bridging the
gap between simulated and real processes.

The main limitation addressed in the previous
paragraphs are going to overcome using the latest
available ICT technologies in a holistic way, including
High Performance Computing (HPC), Advanced Vi-
sualization, Cloud Computing, Smart Analytics, De-
cision Support Systems (DSS) and Big Data with
Artificial Intelligence (AI) algorithms.

An optimization process in this context, wants to
develop an intelligent machining tool, with elevated
level of automation, because it implements function-
alities that are hold by human operators.

Human operators are in charge of supervising the
cutting process, for example in milling, by acting on
spindle speed and feed override controls. Modifica-
tions of the values of these controls compensate un-
desired process conditions that arise due to the tool
wear, unexpected work material properties, etc.
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It has to be noticed that this analysis of the pro-
cess parameter values and their impact on the final
product can be done in advance, prior to begin the
process or, stablishing a controller that implements
a supervision and optimization loop (on-line).

To do that, a virtual equivalent of the machining
process is needed. A commercial tool as MACHPro
was used for this. It includes outputs such as time,
energy consumption, MRR and cutting force evalua-
tion. These outputs are used to adjust the solutions
to the user needs.

HPC is required to perform this simulations ma-
nipulating detailed and heavy models. The output
of the multi-objective optimization based on the vir-
tual model is the optimal process program ready to
run in the machine.

The remainder of this paper is organized as fol-
lows: section 2 presents the literature review, section
3 presents the heuristic models and the paralleliza-
tion process. In the next section the case study is
presented. Section 4 shows the result and finally,
section 5 presents concluding remarks.

II. STATE OF THE ART

This work focuses on the description of the founda-
tions of a system that reduces the energy used for the
machining process adapting the parameters to get
an energy-aware CNC milling [10][11]. This section
will focus on the research of optimisation in machin-
ing, energy consumption modelling and cloud based
parallelization tasks. All these needs will be put to-
gether to provide services through a Cloud manufac-
turing based environment [12].

Different architectures have been considered. On-
board architectures are one of the them. In this case,
the optimal machining conditions are calculated and
adapted at runtime, during the machining process.
Beckhoffs Twin CAT V3.1 is an example of com-
mercial industrial CNC controller solution with this
architecture. Its objective is to stabilize the cutting
forces and chatter. So, this is a very specific solution
and it does not take into account other parameters
to optimize.

Another option is to use combined systems for off-
line optimization and adaptive adjustments [9]. Our
research work focuses on speeding the off-line opti-
mization task and, later on, will work on the adaptive
adjustments.

Optimisation of machining processes is a topic that
appears often in the literature. Most of them have
the details to understand how the process was car-



ried out. In [2], for example, a multi objective ap-
proach was followed. In this case the objective was
to mitigate vibration level and to keep surface qual-
ity while preserving production times and decreasing
tool wear rate. The material used was AA 6082-T6,
the diameter of the mill was 63mm and the num-
ber of flutes 5. Spindle speed was set to 1500 rpm,
depth of cut 2mm and width of cut 63mm. Cutting
force constants are Krc, Ktc, Kac, radial, tangential
and axial directions. Kre, Kte, Kae are due to the
frictions between the edge of the tool and the work-
piece. As it is shown, it is very specific problem for
a specific material.

Liet al. in [3] present an analysis of the cutting pa-
rameters and their effect on energy efficiency in CNC
milling process. They analyse the energy consump-
tion versus time and use statistical fitting methods
to formulate the relationship of energy consumption
and cutting parameters. The elements considered are
auxiliary power, unload power, material removal and
additional load loss. The material removal power is
represented as the product of the cutting force F,
and the cutting speed V. where Kc is the cutting
coefficient:

Premoval=Fc*Vc=Kc*MRR (1)

It has to be noticed that the entire machining pro-
cess is divided into seven periods in terms of energy
consumption:

1. start-up

standby

spindle acceleration/deceleration
spindle idle

rapid feed

cutting

air cutting periods

ootk W

On the way of increasing automation level of CNC
machines, [6] calculates the optimal sequence of con-
trols for a given toolpath, tool geometry and work-
piece material. It simulates the process, finds the
optimal solution and then it makes state reconstruc-
tion taking into account surface roughness.

Orthogonal turn-milling is considered in [7]. In
this case, spindle and work rotational speeds, tool-
work eccentricity, depth of cut and feed per revolu-
tion are selected as process parameters. The effect of
each parameter on tool wear, surface roughness, cir-
cularity, MRR and cutting forces were investigated.
The results were used to select process parameters
through multi-objective optimization. The limita-
tion of the work is that it is very focused in a very
specific machining process.

In the presented work, a multi-objective genetic al-
gorithm was used to solve multi-objective optimiza-
tion problem by identifying the Pareto front (Pareto
surface) that is the set of evenly distributed or non-
dominated optimal solutions. For this first approach,
it was implemented in Matlab. In this work, details
about the genetic algorithm and the range of values
for the input parameters and the objective values are

available.

III. OPTIMIZATION AND PARALLELIZATION

For the definition of a multi-objective optimiza-
tion problem, it is necessary to solve the problem
of finding a vector of decision variables that satisfies
constraints and optimizes a vector function that rep-
resent the objective function. Those objective func-
tions form a mathematical description of the desired
performance criteria. Usually, these performance cri-
teria are in conflict with each other.

When the term optimize is used, it means that we
are going to find a solution for the decision variables
that returns values for the objective function that
are acceptable to the decision maker.

A multi-objective optimization (MOO) is the opti-
mization of conflicting objectives. A MOO problem
with constraints will have many solutions in the fea-
sible region. If we compare two solutions, A & B, we
cannot say that either is superior without knowing
the relative importance of the objectives functions
for each solution. As an output of the optimization
process, we are going to find a bunch of solutions,
the ones that give good compromises (or trade-off)
instead a good solution (the global optimal value).

Genetic algorithm are well suited for multiobjec-
tive optimization because their basic feature is that
the search is global and multidirectional, maintain-
ing a population of potential solutions from genera-
tion to generation (very useful when exploring Pareto
solutions). They can handle many types of objec-
tive functions and constraints and can work without
knowing specific knowledge of the problem, but, at
the same time, they provide flexibility to incorporate
conventional methods into the main framework.

To define devices that regulate process parame-
ters and to achieve certain performance, we need, at
least, the next ingredients (as it was stated in [2]):
parameters and definition of performance (produc-
tivity expression, constraints and weights).

The considered parameters could be the next ones:

¢ s the curvilinear abscissa,

o x(s) the state of the machine,

e u(s) the vector with command controls,
« f(s) axes acceleration,

o w(s) angular acceleration of the spindle

Regarding productivity, quality or efficiency, it could
be measured according to the next terms:

o Frrrr(u(s),z(s)) : instantaneous Material
Removal Rate

e F() : tool wear

F., (u(s),z(s)) : energy spent during the cut
F.o((u(s),z(s))) : roughness

o Frorceda(u(s)) : forced vibrations

o Fepatter(u(s)) : chatter

o Frime(u(s)) : time

For this work, only three of them have been
used , MRR(liter /minute), Time(seconds) and En-
ergy (KWh).



We can formulate the optimisation process as find-
ing the u(s) that minimizes the weighted aggregation
next. The i index refers to the current location and
7Z represents the point at the end of the path. The
formula is shown in the equation 2.

(Miny, / (u(s), 2(s)) =

z
wz(f(?_fl))2 + / Wy rrFrurr(u(s), z(s))+
min S
+ WraFra(u(s), z(s)) + Wy Fy (u(s), z(s))+
+ WenFen(u(s), 2(5)) + WorceaF forcea(u(s), z(s))+
+ Wchattechhatter(u(s)a Q]‘(S)) (2)

We also need constraints to ensure the feasibility
of the solutions. As an example, the angular accel-
eration of the spindle and/or axes acceleration must
be within some upper and lower values.:

(m(8)7u(s>) € {} = Wnin <= w(s) <= Wmax

fmin <= f(S) <= fmaz; (3)

The term € {} means that we are finding optimum
input parameters based on some output parameters
that have some constrains.

Weight associated to each productivity, quality
and efficiency item:

o w; : weight for the geometric error

e WMRR - Welght for MRR

o Wga : weight for the roughtness

o Wen : weight for the energy spent during the cut
o Wyorce - Weight for the forced vibrations

o Wepatter - Weight for the chatter

o Wiime - weight for the time

There are some elements to consider in this pro-
cess: encoding methods, recombination operators,
fitness assignment, selection and constraint handling.

One of the problems is how to determine fitness
value of the individuals according to the multiple ob-
jectives. This could be some of the options: vector
value optimization, weighted-sum approach, pareto-
based approach (without preferences), compromise
approach or goal programming approach. It would
be possible also to refine the fitness function progres-
sively.

From them, the most extensively used method is
probably the method evaluation approach. In this
method, having q objectives, the selection step in
each generation will become a loop that is repeated
q times where only one objective is used in each turn.
At each repetition, a portion of the next generation
is selected based on one of the objectives.

Pareto ranking is other alternative. In this case,
we have to consider two major steps:

e sort the population based on Pareto ranking
« assign selection probabilities to the individuals
according to the ranking

The ranking procedure assigns rank 1 to non-
dominated individuals and removes them from the
contention. Then it finds the individuals among the
remaining ones, and gives them ranking 2.

Each element with the same value in the rank-
ing will have the same probability of distribution at
the time of being selected. Using the Pareto tourna-
ment method, a Pareto solution with the least num-
ber of individuals in its neighbour wins the competi-
tion. A compromise based fitness assignment method
has been suggested where the solutions closest to the
ideal solution are determined by some measure dis-
tance.

Goal programming is a rank based fitness assign-
ment method used to assess the merit of each indi-
vidual. Individuals are sorted on the value of objec-
tives and then some positions are selected randomly.
Individual fitness values are assigned randomly by
interpolating from best to worst according to an ex-
ponential function(preemptive) or non-preemptive (
all goals of comparable importance).

To handle infeasible solutions, which is important
in real situations because it can affect to a large
portion of the population, repairing (with Pareto
ranking) and penalizing techniques (compromise or
weighted-sum) can be used. To maintain the pop-
ulation diversity, fitness sharing can be used. This
last technique determines the degradation of an in-
dividual’s fitness due to crowding by its neighbour.

On the other hand, the general idea of the
distance-based method is the concept of potential
value. It is a scalar value assigned to each Pareto
solution, which is different from the fitness value of
a given Pareto solution. After each updating of a
Pareto set, an identical value is assigned to all Pareto
solutions so that each new solution can be assigned
with a reasonable fitness value.

Existing Pareto solutions may have different po-
tential values. For a newly generated solution, the
distances to all existing Pareto solutions are calcu-
lated and among them, the minimum distance is used
to calculate the fitness function for the new solution.

A newly generated solution may fall into any of
the following three types:

o A Pareto solution dominates some other Pareto
solutions (the fitness value is calculated as the
sum of the potential value and the minimum dis-
tance and Pareto solutions updated removing
dominated solutions and adding the new solu-
tion to the set. The potential value of the new
solution equals its fitness value )

o A Pareto does not dominate any existing Pareto
solution (the fitness value of the new solution
is calculated as the sum of the potential value
of its nearest Pareto solution and the minimum
distance. The solution is added to the existing
set of Pareto solutions with the potential value
equal to its fitness value).

e A solution dominated by at least on existing
Pareto solution (the fitness value of the new so-
lutions calculated by subtracting the minimum



Fig. 1. (left) An iterative approach for the optimization pro-
cess. (right) A parallel approach for the optimization pro-
cess.

distance from the potential value of its nearest
Pareto solution).

Regarding HPC methods, ProActive Workflows
and Scheduling is a workflow system that allows writ-
ing complex sequence of tasks (R, java, multi nodes
MPT task, ...). The scheduler is used to distribute
the workloads over computing nodes to boost the
execution performance. This latter communicates
with ProActive nodes, offering a dynamic workload
scheduling among hybrid and distributed infrastruc-
tures, whatever the cluster/cloud.

The workflow engine will be enriched with func-
tionalities to cover the full optimization process,
and some of them will be reinforced. Workflow
parametrization is the basic concept that mostly con-
tributes to the workflows dynamicity. It is now pos-
sible to define task variables and to inherit from job
variables. Furthermore, the solution takes care of the
file transfer between the scheduler and the nodes.
This is needed when tasks requires input files, or
when generated output files must be gathered into a
dedicated tasks shared folder. In a big data point of
view, node selection can be dynamically controlled at
the task level, for data locality optimization. Figure
1 shows workflow differences between iterative and
parallel approaches and figure 2 shows the workflow
for multiparameter optimization approaches.

IV. USE CASES DETAILS

The research group defined a initial scenario to
validate that using the techniques and tools pre-
sented in the previous section in the manufacturing
scenario improves the energy consumption and effi-
ciency. These are the characteristics of the selected
scenario:
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Fig. 2. A parallel approach for the multi-parameter optimiza-
tion process.

A very simple milling task was selected.

e A minimum and maximum range of values was
defined for one parameter, setting the other ones
constant. An increment on the value of this pa-
rameter was set, so we knew the number of val-
ues to explore.

o Select some of the terms of the objective func-
tion.

o Check all the possible values of the objective
function and check that the search was correct.

e Increment the number of values to explore.

« MACHpro simulation tool performed the simu-
lations and gave us information about the per-
formance of the milling process.

e The time used to get the solution from the op-

timizer was compared.

As a starting point, we changed only 2 parameter:
the value of the Feed Rate (mm/min) +/- 50% of the
nominal value (300mm/min) and the Spindle Speed
+/- 50% of the nominal value (900 rpm).

In the output, we looked only at three values: the
Energy consumed (KWh) ; the duration of the pro-
cess(Time in seconds) and the MRR(It/min).

The figure 3 shows the schema of the use case:

These are the expected outputs from the described
scenario: If the feedrate (mm/min) goes up:

« the machining time goes down
o the torque max of the head (Nm) goes up
o the MRR (liter/minute) goes up

What was expected for preliminary trials was that
if feed rate(FR) (mm/min) was higher, the machin-
ing time was faster (less time) but the energy con-
sumed in Kwh and the MRR (mm3/s) were bigger.
We checked this for a very simple milling task and
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Fig. 4. Energy consumed: Kwh goes up if the Feed rate goes
up

in the next section we will see the obtained results.

V. RESULTS

In the figures 4, 5 and 6, we can see how were the
parameters of the Energy consumption, Feed Rate
and MRR and their relations.

Once we analysed the results, we selected

another milling task(conditions in figure 7).
The results after simulating 28 different in-
put parameter combinations(SS= Spindle

Speed(1040,1200,400,560,720,880) rpm, FR=Feed
Rate(1100,1300,500,700,900)mm /min) we can ob-
serve the results plotted in a three dimensional
space in figure 8.

The figures 9 and 10 show the results for the energy
consumption related to MRR and energy consump-
tion related to Time for the checked pair values of
spindle speed and feed rate.
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X

x

0
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Fig. 5. Variability of MRR on the two variables: Feed rate and
Spindle speed. When Feed rate increases, MRR increases
significantly. When Spindle Speed increases, MRR has
not significant changes.
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Fig. 6. As the Feed rate goes up, the machining Time goes
down.
Machine limits: Cutting condition lmits:

Spindle Speed max- 6000 rpm
Axis velocity max: 30 m/min
Max spindle power: 50 KW

Max cutting speed: 400 m/min
Min cutting speed: 80m/min
Min feed per tooth: 0.05 mm/z
Max feed per tooth: 0.3 mmiz

Toolpath: Maximum depth cut: 6mm

Fig. 7. Use case milling conditions.

The worst case between the considered ones in
terms of energy consumption is SS400 FR 300 (time
in seconds=1171 ;MRR in Lt/min=1904 and en-
ergy in KWh =0.2250). The best of the analyzed
combinations was(SS 1200, FR=500 (Time=3017,
Mrr=732, Energy=0.1860).

VI. CONCLUSIONS AND FUTURE LINES

The preliminary results that the research group
obtained have been analized and the manufacturer
experts have confirmed that the results are the ex-
pected ones. We needed this first confirmation,
based on a simple use case in order to go through
the next steps and confirm that the tools and the
algorithms we are using are the correct ones.

In the next steps, new and more complicated sce-
narios will be selected and also an User Interface and
Proactive tool will be linked.

MC-SUITE project has other related modules
(MC-VIRTUAL, MC-BRIDGE, MC- ANALYTICS
and more) and this MC-OPTIM module will be
linked with the others in order to offer a solution
for the European manufacturing industry.

Raw data
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Fig. 8. Results of the use case milling tasks displayed in
a three dimensional space according to values of Time,
MRR and Energy consumption. When Feed rate increases
then energy consumption increases but the process goes
faster (time decreased).
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Fig. 9. Energy consumption related to MRR, every point
labeled with the pair of values for the input parame-
ters(SS=spindle speed; FR=feed rate)used to run the sim-
ulations. When MRR increases, energy consumption also

increases.
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Fig. 10. Energy consumption related to Time, every point

labeled with the pair of values for the input parame-
ters(SS=spindle speed; FR=feed rate)used to run the
simulations.

A. Future Lines

Once the first step of the development is finished
and based on the simulation results and using the
generated historical data, these are the planned next
steps:

« to develop real machining processes experiments
in same conditions as the simulated ones

o to verify and validate the Optimizer, using for
that some results coming from the real machin-
ing processes.

For the real processes, same geometries and some
of the input conditions previously used for the opti-
mization process will be used. To check if the real
process outputs and the optimization process out-
puts are correlated, some combinations of the input
parameters giving good, bad and medium estima-
tions for all or some of the objectives functions will
be selected.

Laboratory measurements will be necessary in or-
der to obtain some of the objective functions real
values.
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