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Abstract

Nucleoid-associated proteins typically are abundant, low-molecular-mass
polypeptides that bind DNA and alter its shape and its ability to participate in
transactions such as transcription. Some can bind RNA and influence the gene
expression profile of the cell at a posttranscriptional level. They also have the
potential to model and remodel the structure of the nucleoid, contributing to
chromosome packaging within the cell. Some nucleoid-associated proteins have
been implicated in the facilitation of chromosome evolution through their ability
to silence transcription, allowing new genes to be integrated into the nucleoid
both physically and in a regulatory sense. The dynamic composition of the
population of nucleoid-associated proteins in model bacteria such as Escherichia
coli and Salmonella enterica links nucleoid structure and the global regulation of
gene expression, enhancing microbial competitive fitness and survival in

complex environments.
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The nucleoid and its associated proteins
One of the defining features of prokaryotes is the absence of a nuclear membrane
and the presence instead of a nucleoid consisting of the genetic material and its
attached macromolecules where the processes of transcription and translation
are coupled. Early electron microscopic studies of the nucleoid in freeze-
fractured Escherichia coli cells revealed little evidence of organization: the
nucleoid appeared to be simply that part of the cell interior that was ribosome-
free (Kellenberger et al., 1958). Electron micrographs of chromosomes released
from E. coli cells that had been gently lysed were suggestive of an underlying
structure that involved subdivision of the circular chromosome into loops, but
the details were obscure (Kavenoff and Bowen, 1976; Kavenoff and Ryder,
1976). The large size of the chromosome and the small volume of the cell
suggested that packaging was necessary and the need to solve the packaging
problem in a way that met simultaneously the needs of DNA replication,
chromosome segregation and gene transcription implied that a nucleoid
organizing principle was likely to be at work. Over a period of several decades a
multidisciplinary approach involving genetics, biophysics and the use of imaging
methods of ever-greater resolution has led us to a model of the bacterial
nucleoid in which the millimetre-scale chromosome is seen to be organized on a
micrometre-scale macrodomain level and a nanometre-scale microdomain level
(Benza et al., 2013; Dorman, 2013; Espéli and Boccard, 2006; Junier et al., 2014;
Macvanin and Adhya, 2012; Waldminghaus, 2014; Wang et al,, 2011; 2013).
Nucleoid-associated proteins (NAPs) are abundant, low-molecular-mass
polypeptides that bind DNA using either direct or indirect readout mechanisms

(Azam et al., 1999; Browning et al.,, 2010; Dillon and Dorman, 2010). Most have
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been shown to alter DNA shape at least locally and many can affect transcription
and other DNA-based transactions such as replication, transposition and
recombination (Browning et al., 2010; Chodavarapu et al., 2008a; Dillon and
Dorman, 2010; Freundlich et al., 1992; Haykinson and Johnson, 1993; Liu et al,,
2011; Makris et al., 1990; Swingle et al., 2004). The fact that many NAPs have
been discovered during investigations of site-specific recombination
mechanisms or in studies of gene regulation is indicative of the wide-ranging
contributions that NAPs make in the lives of bacteria and of the bacteriophage
that parasitize them. This point is usefully illustrated by the case of the gene that
encodes H-NS, one of the most intensively studied NAPs. The hns gene was
discovered and re-discovered several times and given a variety of names (e.g.
bglY, pilG, dxdR, virR, osmZ) that were specific to individual genes or sets of genes
whose expression it affected (Defez and De Felice, 1981; Dorman et al., 1990;
Goransson et al.,, 1990; Higgins et al,, 1988; Spears et al., 1986). It is now
understood that H-NS (encoded by hns) binds to hundreds of targets in the
genome and affects the expression of hundreds of genes at the level of
transcription, usually negatively (Dillon et al., 2010; Lucchini et a., 2006; Navarre
et al.,, 2006; Oshima et al,, 2006). Similarly, the integration host factor (IHF) is an
important NAP that was originally identified as a protein encoded by E. coli that
facilitates both the integration and the excision of bacteriophage lambda by site-
specific recombination at the lambda attachment site on the bacterial
chromosome (Oppenheim et al., 2005). Subsequently IHF was found to influence
the expression of large numbers of bacterial genes and other DNA transactions in
addition to lambda integration and excision (Dorman and Higgins, 1987;

Eisenstein et al., 1987; Mangan et al., 2006; Silva-Rocha et al., 2013). This article



81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

will consider those NAPs that have been studied in greatest detail both from the

standpoint of chromosome structuring and as participants in gene regulation.

Nucleoid-shape-determining protein HU

One of the first NAPs to be described in detail was HU, whose name is derived
from histone-like protein from E. coli strain U93 (HU). In E. coli and related
bacteria, HU is encoded by hupA and hupB, with these two genes encoding its

a and P subunits, respectively. The functional form of HU is dimeric and the of3
heterodimer is the dominant form. The composition of the dimer changes
through the growth cycle and reflects changes in the relative abundances of the
monomers (Claret and Rouviere-Yaniv, 1997); it also reflects differential
responses of the two hup genes to environmental signals (Claret and Rouviére -
Yaniv, 1996; Giangrossi et al., 2002). Results from atomic force microscopy
studies of cells lysed in situ show that the higher order structure of the E. coli
chromosome in the nucleoid is altered when the genes encoding HU are
inactivated (Ohniwa et al,, 2013). Single molecule studies have shown recently
that when HU proteins act cooperatively in a side-by-side binding mode (Noort
et al.,, 2004) they stabilize the DNA helix in the nucleoid; while individual HU
dimers create bends in DNA, cooperative binding of HU leads to higher order
complexes through dimer-dimer interaction (Dame et al., 2013). In addition to
global effects on chromosome structure, HU can also have important influence at
a local level through its ability to facilitate the looping of short lengths of DNA.
This loop-enhancing activity is useful in genetic switches that rely on site-

specific recombination or on loop closure by DNA binding transcription factors
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(Becker et al.,, 2007; Czapla et al., 2013; Merickel & Johnson, 2004; Semsey et al.,
2006).

The Kar and Adhya laboratories have isolated a mutant derivative of HUa
that introduces positive supercoils into DNA (Guo and Adhya, 2007; Kar et al.,
2006; Koli et al., 2011). The mutant protein contains just two amino acid
substitutions (E38K and V42L) but the resulting changes to global DNA topology
in the E. coli cells that express it causes a number of infection-related cryptic
genes to become expressed. This may be the basis of a life-style switch where
commensal E. coli becomes pathogenic (Koli et al., 2011).

Wildtype HU has a significant impact on gene expression at both the
transcriptional and posttranscriptional levels (Mangan et al., 2011; Oberto et al,,
2009; Prieto et al.,, 2012), the latter reflecting its RNA binding activity (Balandina
etal.,, 2001; Macvanin et al,, 2012); HU also possesses efficient single-stranded
DNA binding activity (Kamashev et al,, 2008). Thus HU is a highly versatile
protein, acting in an architectural mode to impose structure on the nucleoid
while simultaneously influencing transcription and translation. Among its
targets is rpoS, the gene that encodes the stationary phase and stress sigma
factor of RNA polymerase, RpoS or sigma-38. HU stimulates the translation of
rpoS mRNA and thus indirectly influences the expression of the large RpoS
regulon (Balandina et al., 2001). HU cooperates with DNA gyrase at specific
sequence motifs in the E. coli chromosome called REP elements (Yang and Ames,
1990). These elements are found at the ends of some open reading frames and
may represent a means of positioning gyrase so that this type Il topoisomerase
can extinguish positive supercoils that are created by the trafficking of RNA

polymerase along the open reading frames during transcription. HU seems to
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recognize and bind distortions in B-DNA such as the Holliday junctions that arise
during recombination (Pontiggia et al., 1993). The extraordinary abilities of HU
to interact with DNA and RNA, and to act both as a structural and a regulatory
element in the nucleoid should be considered in the context of its conservation
across the prokaryotes. Mycoplasma genitalium possesses one of the smallest
known self-replicating genome (Zhang and Baseman, 2011). This organism has
no transcription factors and has just one NAP: HU. Perhaps this is illustrative of a
genome of unusual simplicity where DNA supercoiling (M. genitalium has a
similar complement of topoisomerases to E. coli) and HU cooperate to manage
simultaneously the nucleoid architectural and gene regulatory needs of the
organism without contributions from a variety of sigma factors or any
conventional transcription factors (Dorman, 2011).

The HU protein does not have a specific nucleotide sequence to which it
prefers to bind. HU interacts with DNA through a mechanism that involves
insertion of a beta ribbon into the minor groove of DNA, a mechanism that is
reminiscent of the one used by the related protein integration host factor (IHF)
(Swinger and Rice, 2004) (Fig. 1). Minor groove width is important for HU
binding with the narrower groove found in A+T-rich DNA offering the better
substrate for binding (Swinger and Rice, 2007). The proteins differ in that IHF
distorts the DNA to a greater extent than HU. Both proteins bend the sugar-
phosphate backbone of DNA but only IHF perturbs the bases at the DNA target,
doing so within a sequence that matches the IHF consensus for DNA binding sites
(Fig. 1). In addition, once it has bound to DNA HU can recruit additional copies of
the HU dimer through a cooperative binding mechanism whereas IHF dimers act

alone (Benevides et al., 2008).
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DNA bending specialist IHF

Early insights into IHF molecular biology came from investigations of its
interactions with three high-affinity binding sites in bacteriophage lambda (Rice
et al,, 1996; Yang and Nash, 1989). The heterodimeric IHF protein is composed of
the products of the ihfA and the ihfB genes and its cellular concentration seems
to fluctuate during the growth cycle, achieving a maximum at the transition from
exponential growth to stationary phase in E. coli cells growing in batch culture
(Bushman et al., 1985). It is also important in managing the transition from
exponential growth to stationary phase in Pseudomonas putida (Silva-Rocha et
al, 2013) and in Salmonella enterica (Mangan et al., 2006). IHF is also involved in
the cell cycle where it interacts with the DnaA protein to determine its position
within the origin of chromosome replication; HU also contributes to this process
(Polaczek et al., 1998) but operates by a distinct mechanism (Ryan et al., 2004).
Although IHF is contrasted routinely with HU on the grounds of the DNA
sequence specificity shown by the former in binding site selection, it is becoming
apparent that IHF can also interact non-specifically with DNA and has the
potential to be even more involved in organizing the structure of the nucleoid
than was thought hitherto (Ali etal.,, 2001; Lin et al., 2012).

The early work with lambda revealed that IHF contributed to phage site-
specific recombination by functioning as an architectural element and that its
primary role is to introduce bends of up to 180° at specific sites in the phage DNA
so that a functional folded intasome is formed (Oppenheim et al., 2005). The DNA
bending function can be supplied by other, unrelated proteins once the preferred

binding sites for those proteins had been substituted for the ones normally used
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by IHF (Goodman and Nash, 1989). The phasing of the IHF-induced bends in the
phage DNA is also crucial for efficient recombination (Snyder et al., 1989). These
insights continue to inform much of our understanding of what IHF does and
how it does it at its many targets in the bacterial genome.

The contributions of IHF range far beyond lambda integration and
excision. It is involved in other site-specific recombination systems (Corcoran
and Dorman, 2009; Dorman and Higgins, 1987; Eisenstein et al., 1987), in
transposition (Haniford, 2006; Makris et al., 1990; Saha et al., 2013), plasmid
replication (Biek and Cohen, 1989; Fekete et al., 2006; Filutowicz and Appelt,
1988), and conjugation-mediated plasmid transfer (Karl et al., 2001; Williams
and Schildbach, 2007). IHF also makes many important contributions to
transcription control (see below).

IHF affects transcription principally through its ability to bend DNA, just
as DNA bending is usually at the heart of its contributions to other DNA
transactions such as site-specific recombination or transposition (Engelhorn and
Geiselmann, 1998; Goosen and van de Putte, 1995; Parekh and Hatfield, 1996).
DNA bending provides a means to introduce physical contact between distant
segments of DNA or proteins that are bound to those segments of DNA. This
mechanism is particularly important at enhancer-activated sigma-54-dependent
promoters, where DNA bending by IHF can facilitate physical contact between a
transcription activator bound at an upstream enhancer and RNA polymerase
bound to the target promoter (Bertoni et al., 1998; Carmona and Magasanik,
1996; Shingler, 2011) (Fig. 1A). The relationship is not necessarily positive in all
cases and there are examples where IHF activity can be both positive and

negative (Wassem et al.,, 2000).
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H-NS, genome guardian and transcription silencer

The H-NS protein, encoded by the hns gene in the Ter macrodomains of E. coli
and S. enterica, is expressed at all stages of growth and contributes both to the
structure of the nucleoid (Dorman, 2013; Hardy and Cozzarelli, 2005) and to the
repression of hundreds of genes (Dillon et al., 2010; Kahramanoglou et al., 2011;
Lucchini et a,, 2006; Navarre et al., 2006; Oshima et al., 2006). The hns gene is
negatively autoregulated and is under the positive control of the Fis NAP, with
Fis antagonizing H-NS-mediated repression (Falconi et al., 1993; 1996).
Transcription of hns is also sensitive to the iron regulator protein Fur (Troxell et
al, 2011) and to the cold shock protein CspA (Brandi et al., 1994; La Teana et al.,
1991). In the plant pathogen Dickeya dadantii, the PecS protein is a regulator of
hns expression (Reverchon and Nasser, 2013). Autorepression of hns by H-NS is
exerted tightly when the movement of the chromosome replication fork is
arrested either genetically or by drug treatment, suggesting that hns
transcription is sensitive to the progression of the bacterial cell cycle (Free and
Dorman, 1995). Expression of H-NS is further modulated negatively at a
posttranscriptional level by the Hfg-dependent DsrA small regulatory RNA
(sRNA), an sRNA molecule that is involved in the stimulation of translation of the
mRNA specifying expression of the stress and stationary phase sigma factor
RpoS (Majdalani et al., 2005). H-NS also binds directly to, and modifies the half-
lives of, the DsrA and the RpoS mRNA molecules (Brescia et al., 2004 ). These
links to RpoS expression are likely to be of physiological importance in the global
modification of the transcription profile of the cell as it undergoes growth phase

transitions and responds to environmental stresses. H-NS is also active in
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influencing gene expression posttranscriptionally by targeting translation; it is
an efficient RNA binding protein and has been shown to modulate positively
translation initiation efficiencies in mRNA molecules possessing poor translation
initiation signals (Park et al., 2010).

H-NS has been implicated by chromosome conformation capture
experiments, by super resolution imaging and by genetic studies as one of the
architectural elements that determines nucleoid structure (Hardy and Cozzarelli,
2005; Wang et al,, 2011). The precise details of the structural contribution made
by H-NS are still unclear and may be conditional on the growth and/or
experimental conditions used immediately prior to the measurements (Cagliero
etal, 2013; Wang et al., 2014). H-NS has been classified as a "domainin” protein,
one that closes the 10-to-15-kb microdomains that contribute to the
organization of the folded bacterial chromosome in the nucleoid (Hardy and
Cozzarelli, 2005; Waldminghaus, 2014) (Fig. 2). Thus H-NS is likely to play a key
role simultaneously in the shaping of the nucleoid and in determining the
transcription profile of the cell in any given set of growth conditions (Dorman,
2013).

Single molecule studies have shown that H-NS can form bridges within
and between DNA molecules (Dame et al., 2006) and this observation has been
supported by atomic force microscopy work (Dame et al., 2000; Dame and
Goosen, 2002; Maurer et al,, 2009). Bridging in vitro is conditional and is
sensitive to magnesium cation concentrations. At 10 mM MgCl;, bridging of DNA
duplexes by H-NS is observed whereas at lower concentrations of MgCl; H-NS
coats the DNA and stiffens it without bridging (Liu et al,, 2010). Single molecule

analyses of the 52%-identical H-NS paralogue StpA indicated that that protein
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too shows Mg2*-sensitive DNA bridging behaviour (Lim et al., 2012). This is an
interesting observation in light of the fact that StpA is an excellent RNA
chaperone and has the ability to bridge RNA molecules (Rajkowitsch and
Schroeder, 2007) suggesting that it might perform at the RNA level a role
analogous to that performed by H-NS with DNA. Bridging lends itself to a facile
explanation of microdomain formation wherein H-NS closes the chromosomal
loops by binding DNA together in a bridged structure; it also provides a
mechanism for transcription silencing wherein H-NS imprisons RNA polymerase
in a looped structure closed by DNA-H-NS-DNA bridges, with the H-NS protein
polymerizing in the space between the aligned DNA duplexes, bridging them
together (Fig. 2).

Both H-NS polymerization along a single DNA duplex and the bridging by
H-NS of DNA-duplexes lead to easy-to-appreciate models of transcription
silencing in which RNA polymerase is either excluded from a promoter or held
prisoner at a promoter, respectively (Fig. 2) (Dame, 2014). How are these
silenced promoters to be activated? A survey of the literature reveals that the
mechanisms of H-NS antagonism are legion, typically involving a remodelling of
the repressive nucleoprotein complex such that H-NS tenure there becomes
unsustainable (Stoebel et al., 2008). Linking the remodelling to an environmental
signal makes the anti-silencing mechanism physiologically responsive. This is
achieved in some cases through an environmental-stress-mediated alteration to
local DNA structure or, more typically, the activation of a DNA binding protein
whose intervention disrupts the H-NS nucleoprotein transcription-silencing
complex (Kane and Dorman, 2011; Stoebel et al., 2008; Stonehouse et al., 2011;

Walthers et al.,, 2011).
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H-NS family proteins, transcription and genome evolution
Horizontal gene transfer (HGT) is one of the forces driving bacterial genome
evolution, but acquiring novel genetic elements is a mixed blessing for the
receiving cell. The newly acquired genes may confer new capabilities on the host
but their (inappropriate) expression may also impair the competitive fitness of
the bacterium, costing it its place in the ecosphere and putting at risk its survival.
There is also the problem of the physical integration of the new genes into the
genome, an aspect of HGT that has been little studied. Can new genes be placed
at random into the chromosome, are there preferred locations for new arrivals
or is it better to maintain the new genes on extrachromosomal element such as
plasmids? There is a marked association between genes that have been acquired
via HGT and genes that express transfer RNA (tRNA), with many pathogenicity
islands being found adjacent to tRNA genes or operons (Dobrindt et al., 2002;
Guo et al,, 2014). Recent discoveries concerning barriers to the free diffusion of
proteins in the cytoplasm (Montero Llopis et al., 2010; Parry et al., 2014) and the
finding that folding of the nucleoid brings together in space many genes that
interact suggest that inserting new genes into the genome in a completely
random fashion may not produce optimal gene-gene communication and
regulatory integration (Berlatzky et al., 2008; Dorman, 2013; Janga et al., 2009;
Jeong et al.,, 2004; Junier et al., 2012; Kepes, 2004; Mathelier and Carbonne,
2010; Muskhelishvili, 2014; Wright et al,, 2007; Xiao et al., 2011).

The principle mechanisms of HGT are conjugation (plasmid self-
transmission or trans-acting plasmid mobilization), transformation (uptake of

naked DNA, including plasmids, by cells) and transduction (uptake of bacterial
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viruses or bacteriophage by bacterial cells) (Dorman, 2009). Some mobile
genetic elements encode NAPs of their own (Dorman, 2014; Paytubi et al., 2014;
Takeda et al,, 2011) and the arrival in naive cells of large genetic elements such
as A+T-rich high-molecular-mass plasmids can distort the H-NS-DNA balance,
leading to a loss of competitive fitness (Dillon et al.,, 2010; Doyle et al., 2007). The
H-NS protein targets those horizontally acquired genetic elements whose DNA
has a higher-than-average A+T content and intrinsic curvature (Bouffartigues et
al, 2007; Lang et al., 2007). This issue has been explored in some detail in the
facultative intracellular pathogen Salmonella enterica serovar Typhimurium
where a number of A+T-rich pathogenicity islands encode virulence factors that
are essential for host cell invasion and host defence evasion (Lucchini et al.,
2006; Navarre et al., 2006). In all cases, the H-NS protein silences virulence gene
transcription, leaving their expression to be activated by mechanisms that
interfere with H-NS silencing activity (Stoebel et al., 2008). A similar pattern of
silencing and anti-silencing has been described in pathogens such as Shigella
flexneri (Beloin and Dorman, 2003; Tran et al,, 2011; Turner and Dorman, 2007),
Vibrio cholerae (Stonehouse et al., 2011; Yu and DiRita, 2002), Yersinia spp.
(Banos et al., 2008; Ellison and Miller, 2006), disease-causing strains of E. coli
(Martinez-Santos et al., 2012; Trachman and Yasmin, 2004; Winardhi et al.,
2014) and the plant pathogen Dickeya (Reverchon and Nasser, 2013). In each
case the anti-silencing mechanism is triggered by an environmental signal, or a
set of signals, that characterise the niche in the host where infection occurs
(Rhen and Dorman, 2005; Stoebel et al., 2008). Other NAPs, such as HU, IHF and
Fis play more-or-less well-characterized roles in the modulation of H-NS-

mediated silencing in these pathogens, working in concert with conventional
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transcription factors to switch on virulence gene expression (Cameron et al.,
2012; Falconi et al,, 2001; Kahramanoglou et al., 2011; Ouafa et al.,, 2012; Porter
and Dorman, 1997 Schechter et al,, 2003; Walthers et al.,, 2011; Winardhi et al.,
2014). Some pathogenic strains of E. coli encode H-NS paralogues such as H-NSB
and Hfp that can confer new and subtle phenotypes on the bacterium. The genes
for these proteins are found within horizontally acquired gene islands on the
chromosome (Miiller et al., 2010; Williamson and Free, 2005). The locus of
enterocyte effacement (LEE) is a pathogenicity island in enteropathogenic
strains of E. coli that employs a protein called Ler to antagonize H-NS-mediated
silencing of LEE genes (Abe et al,, 2008; Bingle et al., 2014; Garcia et al., 2012).
Ler has a DNA binding domain that is similar to that of H-NS but the proteins are
otherwise non-identical. Ler competes with H-NS for access to a subset of H-NS
target sites that includes those within the LEE island (Cordeiro et al,, 2011;
Winardhi et al., 2014).

Such horizontally acquired islands frequently contain vestiges of mobile
genetic elements, suggesting a phage or plasmid origin (Williamson and Free,
2005). Some self-transmissible plasmids encode a full-length orthologue of H-NS
(Dorman, 2014; Doyle et al., 2007; Paytubi et al., 2014; Sherburne et al., 2000;
Takeda et al,, 2011) and these full-length H-NS-like proteins can form
associations with DNA that are distinct from those formed by H-NS itself (Dillon
et al, 2010; Fernandez-de-Alba et al,, 2013). These differences are thought to
arise from properties of the linker domains of these proteins whose flexibility
influences their capacity to form stable complexes with curved and non-curved

DNA sequences (Fernandez-de-Alba et al., 2013).
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Modulation of H-NS activity by Hha-like and H-NST-like proteins

H-NS activity is modulated by interaction with different NAPs that have varying
degrees of amino acid sequence similarity to it. These are usually shorter
proteins with sequence similarity to the parts of H-NS that are involved in
dimerization and higher-order oligomerization. The prototypic member of this
group is Hha, which is accompanied in model bacteria such as E. coli and
Salmonella by its paralogue YdgT (Ali et al,, 2013; Paytubi et al,, 2004; Ueda et al,,
2013). Orthologues such as the YmoA protein from Yersinia have also been
investigated as modulators of H-NS activity (Bafios et al., 2008; McFeeters et al,,
2007). The genes for the chromosomally encoded Hha and YdgT proteins have
counterparts on certain self-transmissible plasmids with the IncHI1 plasmid R27
being the most intensively studied (Dorman, 2014; Paytubi et al., 2013; Takeda
etal, 2011). In many cases these same plasmids encode an H-NS-like protein,
leading to complex interactions among the chromosomally- and plasmid-
encoded proteins and H-NS targets in the genome (Dillon et al., 2010; Doyle et al,,
2007; Paytubi et al., 2013; Takeda et al., 2011).

The H-NST group of proteins resembles superficially the Hha group in
having some amino acid sequence similarity to the dimerization and
oligomerization domain of H-NS but differs from the Hha-like proteins in having
independent DNA binding activity (Levine et al., 2014; Williamson and Free,
2005). Genes coding for proteins of the H-NST family have been found in
horizontally acquired genomic islands in pathogenic strains of E. coli (Levine et
al., 2014; Miller et al.,, 2010; Williamson and Free, 2005). Whereas Hha probably
affects H-NS activity through protein-protein interaction alone, with one Hha

dimer forming a complex with one H-NS dimer (Ali et al., 2013), H-NST may be
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able both to form a complex with H-NS and to bind to DNA, perhaps displaying a
wider range of activities in modulating H-NS-mediated gene silencing (Dorman,

2014).

The Fis protein, the great integrator

Fis is the Factor for Inversion Stimulation (Johnson et al., 1986; Koch and
Kahmann, 1986), a small DNA binding protein consisting of four alpha helices
that exists as a homodimer in solution (Koch et al.,, 1991; Kostrewa et al., 1991;
1992). Like most NAPs, the Fis protein is not essential for survival yet it is
involved in very many of the fundamental aspects of the life of the cell. These
include the initiation of chromosomal DNA replication, transcription initiation,
the expression of the translational machinery of the cell, transposition and site-
specific recombination (Chintakayala et al., 2013; Gille et al., 1991; Hillebrand et
al., 2005; Lei et al.,, 2007; Teras et al., 2009; Zhi et al., 2003).

The Fis protein exerts a global influence on the transcription profile of the
cell and can have positive or negative effects on promoter activity (Grainger et
al,, 2008; Kahramanoglou et al., 2011; Kelly et al., 2004; Nilsson et al., 1990;
Schnetz, 2008) (Fig. 3). It is expressed at maximal concentrations as bacteria exit
the lag phase of batch culture growth and enter the exponential growth phase
(Ball et al., 1992; Keane and Dorman, 2003). Fis concentrations then decline
rapidly until the protein is almost undetectable by the stationary phase of
growth. This expression pattern is sensitive to the degree of aeration of the
culture and fis gene expression can be sustained into stationary phase under
micro-aerobic growth conditions (Cameron et al., 2013; O Créinin and Dorman

2007). Transcription of the fis gene is negatively autoregulated (Ball et al.,, 1992;
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Keane and Dorman, 2003; Ninnemann et al., 1992; Osuna et al., 1995) and is
controlled by the stringent response (Mallik et al., 2004; 2006; Ninnemann et al,,
1992), nucleotide concentrations (Walker et al., 2004) and negative supercoiling
of the DNA (Schneider et al., 2000). Stringent regulation links expression of fis to
that of the genes that encode ribosomal components and other elements of the
translational apparatus of the cell; Fis itself acts to stimulate the activities of the
promoters of these same genes (Hillebrand et al., 2005; Lazarus and Travers,
1993; Opel et al.,, 2004; Zhi et al., 2003).

An important link exists between the Fis protein and the superhelical
state of bacterial DNA (Cameron et al,, 2011; Rochman et al,, 2004) (Fig. 3). Many
of the promoters that Fis targets are sensitive to variations in DNA superhelical
density, including the promoter of the fis gene (Schneider et al., 2000). DNA is
negatively supercoiled by DNA gyrase through an ATP-dependent double-
stranded DNA cleavage and passage mechanism (Bates et al,, 2011; Champoux,
2001). The dependency of this reaction on ATP, and its sensitivity to inhibition
by ADP links gyrase-mediated supercoiling to the metabolic flux of the cell
(Hsieh et al,, 1991a; 1991b; van Workum et al., 1996) making DNA supercoiling
levels physiologically responsive (Cameron and Dorman, 2012; Dorman, 1991).
In rapidly growing bacteria, a higher [ATP]/[ADP] ratio results in DNA having a
higher superhelical density (i.e. being more negatively supercoiled) than DNA in
stationary phase cells (Bordes et al., 2003; Cameron et al., 2013; Dorman et al.,
1988). These fluctuations in DNA supercoiling have an important modulatory
effect on transcription throughout the genome (Peter et al., 2014; Quinn et al,,
2014; Sobetzko et al,, 2012). Fis exerts influence through its action as a

transcription repressor of the gyrA and gyrB genes and through its ability to
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modulate the transcription of topA4, the gene that encodes DNA topoisomerase I,
an enzyme that relaxes negatively supercoiled DNA (Keane and Dorman, 2003;
Schneider et al., 1999; Weinstein-Fischer and Altuvia, 2007) (Fig. 3). Fis also acts
as a topological buffer throughout the genome by attenuating the ability of
gyrase and topoisomerase I to either over-supercoil or to over-relax the Fis-
decorated DNA, respectively (Schneider et al., 1999). The Fis protein can also
play this buffering role at a local level at promoters where it has binding sites
(Auner et al.,, 2003; Rochman et al,, 2004).

The Fis protein has a preference for binding to A+T-rich DNA and its
interaction with DNA is affected by the width of the minor groove, something
that is narrower in A+T-rich sequences (Hancock et al.,, 2013; Stella et al., 2010).
Fis bends the DNA at its binding site (Hiibner et al., 1989; Verbeek et al., 1991)
and this allows Fis to perform an architectural role in the genome with both local
and global effects. Fis has also been identified in a genetic screen as a domainin, a
protein that closes the looped microdomains of E. coli (Hardy and Cozzarelli,
2005). The preference of Fis for A+T-rich DNA allows it to target the many A+T-
rich genes that are found among the virulence operons and regulons of
pathogens. In many cases Fis has been shown to antagonize the silencing of these
genes by H-NS, often working in association with conventional regulatory
proteins that transmit a specific environmental signal to control virulence gene
expression under growth conditions that are relevant to infection (Cameron and
Dorman, 2012; Duprey et al., 2014; Falconi et al., 2001; Goldberg et al., 2001;
Kelly et al.,, 2004; Labandeira-Rey et al., 2013; O Croéinin et al., 2006; Prosseda et
al,, 2004). In this way Fis activity represents an important integrating principle

in the genome, acting both as a structural element that helps to organize the
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nucleoid and as a global regulator that ties together the control of both
housekeeping genes and genes involved in specialist, infection-related functions.
In addition, it connects these functions to the cell cycle and to genome
maintenance. Although knockout mutations in the fis gene are tolerated, a
mutant deprived of the Fis protein fails to compete with its otherwise isogenic

ancestor (Schneider et al., 1999).

Dps and the end of growth

In the NAP literature it is common to see Dps and Fis contrasted in terms of the
periods in the growth cycle when each appears: Fis expression is associated with
the very early stages of exponential growth whereas Dps is most abundant in
stationary phase cultures (Dorman, 2013). The Dps protein (DNA binding
protein from starved cells) is a ferritin-like iron-binding protein that
accumulates in stationary phase and is thought to protect the genomic DNA from
chemical damage (Grant et al,, 1998; Jeong et al., 2008; Wolf et al., 1999). Dps
expression can be triggered at other stages of growth by oxidative stress, an
environmental insult that can damage DNA (Altuvia et al., 1994). Manganese
levels also control dps transcription in E. coli and this is facilitated by the MntR
transcription factor, which binds at the dps promoter, one of only a very few
targets that are bound by this protein (Yamamoto et al,, 2011). Dps forms a
complex with DNA that has crystalline properties and the structure of this
crystalline array may account for its protective properties (Frenkiel-Krispin et
al., 2004; Grant et al., 1998; Wolf et al., 1999). Fis may indirectly disrupt Dps-
DNA complexes through its regulatory effects on the transcription of the genes

that encode DNA gyrase and DNA topoisomerase I (Fig. 3), altering the topology
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of the chromosomal DNA in ways that compromise the stability of the Dps-DNA
complexes (Ohniwa et al., 2006). This would provide an attractive mechanism
for resetting the cell when exponential growth restarts. Surprisingly for a protein
that binds to and protects the entire genome, there are few data clearly linking
Dps directly to the regulation of transcription. The dps gene is the target for an
interesting transcription control circuit that involves other NAPs and
conventional transcription factors. In exponentially growing bacteria, dps
transcription is stimulated in response to oxidative stress by the OxyR
transcription factor through a mechanism that targets RNA polymerase
containing the RpoD sigma factor; in stationary phase, dps expression is
dependent on the stress-and-stationary-phase sigma factor RpoS and the NAP
[HF (Altuvia et al., 1994). Dps sequesters and oxidizes Fe?*, preventing the
generation of free radicals that could damage DNA. In addition, the appearance
of Dps in exponential growth reduces the number of initiations of chromosome
replication in the bacterial population through a mechanism in which Dps
interacts with the DnaA protein to block DNA duplex opening at the origin of
replication, oriC (Chodavarapu et al., 2008b).

In the absence of environmental stress during exponential growth, the H-
NS protein and Fis collaborate to repress RpoD-dependent transcription of dps.
Here, each NAP performs a separate function: Fis traps the RpoD-containing
form of RNA polymerase at the dps promoter while H-NS displaces RpoD-
containing RNA polymerase but not RpoS-containing RNA polymerase from the
promoter (Grainger et al., 2008). In this way, Fis and RpoS link Dps expression to

the growth phase of the culture, with Fis acting as a proxy for early exponential
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growth phase and down-regulation of dps combined with the presence of RpoS

signalling cessation of growth and the onset of stationary phase.

Perspective

The important roles that NAPs play in the lives of bacterial cells have become
much better understood in recent years as more and more advanced methods
have been employed to study them. Interdisciplinary approaches relying on
insights from biophysics, computational biology, mechanobiology, sophisticated
imaging methods and whole-genome molecular biology are bringing us closer to
a fully integrated picture of the nucleoid within the context of the living bacterial
cell. This picture will enhance our ability to manipulate microorganisms to our
benefit. It will also provide blueprints from successful natural living cells that
can be applied in the quest to build synthetic ones for specific beneficial

purposes.
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Fig. 1. [HF and its paralogue HU. (A) The interaction of IHF with its target site
and the consequences for the pathway of the DNA are shown. Here RNA
polymerase (containing sigma-54) has formed an inactive complex with a
promoter and the bending of the DNA by IHF causes a transcription factor,
bound as two dimers to two copies of the upstream-located enhancer sequence,
to make physical contact with RNA polymerase, activating transcription. Not to
scale. (B) The details of the [HF site sequence are shown, with the highlighted
residues being the conserved members of the IHF binding site consensus. The
amino acids in the alpha and the beta subunits of [HF that interact with the DNA
sequence are shown. In the cases of proline residues P65 (alpha subunit) and
P64 (beta subunit) the protein makes an insertion into the minor groove of the

DNA duplex, bending it by up to 180°. (C) An alignment of the alpha and beta

nQ



1142

1143

1144

1145

1146

1147

1148

1149

subunits of the paralogous IHF and HU proteins from E. coli strain W3110 is
shown together with a summary of the main structural features of each
monomer. Amino acids that are completely conserved in all four proteins are
highlighted. The information in (B) and (C) is based on data from Swinger and
Rice (2004; 2007). The NCBI reference numbers for the four protein sequences
are: IHF alpha, YP_489974.1; IHF beta, YP_489184.1; HU alpha, YP_491460.1; HU

beta, YP_488732.1.
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Fig. 2. H-NS, transcription silencing and chromosome microdomain formation.
(A) A standard representation of RNA polymerase bound to a transcription
promoter is shown, consisting of the principal components of the holoenzyme:
the alpha subunit, in two copies with their carboxyl-terminal domains (CTD) and
amino terminal domains (NTD) shown connected by flexible linkers. The beta,
beta prime and sigma subunits are also illustrated. The locations of the
transcription start site (TSS, +1), the -10 and -35 elements are also shown
together with the consensus DNA sequences for the -10 and -35 motifs of
promoters that are bound by the RpoD sigma factor of RNA polymerase. (B) The
same promoter sequence is shown decorated by the H-NS protein in its DNA
stiffening mode, excluding RNA polymerase and silencing transcription. Here H-
NS polymerizes along the DNA duplex and the two DNA binding motifs of each H-

NS dimer bind to the same DNA molecule in cis. The H-NS monomers are
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arranged in an antiparallel orientation within each dimer. (C) H-NS is shown
bound to the same promoter element in its bridging mode. Here the DNA binding
domains of each H-NS dimer (shown in antiparallel configuration) bind to
spatially widely-separated segments of the same DNA molecule, creating a DNA-
protein-DNA bridge that excludes RNA polymerase from the promoter. (D) The
bridging function of H-NS can also form loops in DNA, including the 10-to-15-kb
microdomain loops that contribute to the higher-order structure of the bacterial

nucleoid. The drawings are not to scale.
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Fig. 3. The Fis protein and the management of DNA supercoiling in the bacterial
genome. Fis is a repressor of transcription at the gyrA and gyrB genes that
encode the alpha and beta subunits of DNA gyrase. Gyrase uses energy from ATP
hydrolysis to supercoil DNA negatively and this stimulates the promoters of the
dusB-fis operon and top4, the gene that encodes DNA topoisomerase .
Topoisomerase | in turn relaxes negatively-supercoiled DNA and this stimulates
the transcription of gyrA and gyrB while down-regulating transcription of topA
and the dusB-fis operon. These interactions create a homeostatic balance in the
cell, keeping global DNA superhelicity within limits that are beneficial for the
cell. Fis acts as a dual-functional transcriptional regulator at topA where it uses
alternative binding sites to activate or to repress topA transcription depending
on the stage of growth and the nature of the environmental stresses being

experienced by the cell (Weinstein-Fischer and Altuvia, 2007). Fis also
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modulates the global level of DNA supercoiling through its many interactions

with the chromosome, limiting the degree to which gyrase and topoisomerase I

can alter the linking number of the DNA. The dependence of gyrase on the ratio

of the concentrations of ATP to ADP and the sensitivity of the dusB-fis promoter

to metabolic flux in the cell through its stringent response control connects DNA

supercoiling levels to cellular physiology. Rapidly growing cells have high levels

of Fis, a high [ATP]/[ADP] ratio and DNA that is negatively supercoiled,
conditions that favour a large subset of genes; cells entering stationary phase
have few molecules of Fis, low [ATP]/[ADP] levels and DNA that is relaxed,
favouring the expression of an alternative set of genes, but with some overlap
with the exponential phase group. This provides the cell with the basis of a far-
reaching command and control system for the governance of its transcription

programme. The drawings are not to scale.
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