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Mission Statement

» Mission: Given several initial dual-camera frames, predict the
table tennis ball's position in future frames

> In experiments:

» Camera sampling frequency: 30 Hz
» Algorithm’s input: 14 initial frames
» Algorithm's output: ball’s positions in 33th-38th frames
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Basics
MDN
» Supervised learning — model a conditional distribution p(t|x)
» Unimodal distribution:
» p(t|x) is often chosen to be Gaussian
» Multimodal Distribution:
» p(t|x) can be mixture density network (MDN)
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Figure : Unimodal and Multimodal

Source : Pattern Recognition and Machine Learning, Bishop, 2006
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Basics
MDN

» MDN Formulation:

K

p(tlz) =Y mi(@)N (¢lu(e), of (@)

s.t.

To satisfy the constraints:
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Basics
MDN

» MDN Loss: Maximum Likelihood

Zln {Z?Tk Ty, W t | (e, w), a,%(xn,w))}
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Basics
Highway Networks

» Training deeper networks is not as straightforward as simply
adding layers

» Highway Networks enables the optimization of networks with
virtually arbitrary depth

» Key: gating mechanism (inspired by LSTM)
y=H(x,Wg) -T(x,Wr)+x-(1-T(x, Wr))

where H can be an affine transform followed by a non-linear
activation function and:

T(x) = o(Wix + br)
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Basics
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Figure : LSTM

Source : http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Prediction Neural Network
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Function

» Two similar neural networks were designed and trained
» One is to predict the ball's position in a single future frame

» The other one is to predict the ball’s positions in multiple future
frames simultaneously
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Prediction Neural Network

Single Frame Prediction
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Training Process

Single Frame Prediction
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Figure : Training Loss
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Figure : Evaluation Loss
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Prediction Neural Network

Multiple Frame Predictions
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Training Process

Multiple Frame Predictions
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Figure : Training Loss
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Training Result
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How to Measure

» To get an appropriate threshold value of the distance between
true position and predicted position, the training data distribu-
tion should be considered
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Training Data Distribution

> As the Gazebo model is not perfect yet, the table tennis ball
cannot repeat its trajectory with high accuracy even under same
force condition

» When collecting the training and testing data, each force con-
dition is applied to the ball 50 times (get 50 similar trajectories)

> The degree of repeatability of each 50 trajectories is measured
by the average distance from each trajectory to the median
trajectory at each time step

» 480 force conditions were applied and collected, resulting in
24000 trajectories
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Training Data Distribution
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(a) 33th frame (b) 34th frame (c) 35th frame
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(e) 37th frame

Figure : Violin-plots of Average Distance to Median Trajectory
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Training Result

» Most trajectories from the training data are close to each other
by the upper bound: 1.5 cm x 2 =3 cm

» Single Frame Prediction

Data Source 1 cm error 2 cm error 3 cm error
Training 58.94 % 85.05 % 93.11 %
Testing 57.22 % 82.62 % 91.17 %
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Training Result

» Multiple Frame Prediction

Training Data:

Data Source 1 cm error 2 cm error 3 cm error
33th frame 69.15 % 89.86 % 97.04 %
34th frame 65.62 % 89.11 % 96.95 %
35th frame 65.05 % 88.09 % 96.01 %
36th frame 63.00 % 86.77 % 05.24 %
37th frame  62.07 % 86.23 % 94.73 %
38th frame 56.97 % 84.46 % 94.33 %




Training Result

» Multiple Frame Prediction
Testing Data:
Data Source 1 cm error 2 cm error 3 cm error
33th frame 68.72 % 89.21 % 96.33 %
34th frame 65.21 % 87.85 % 96.33 %
35th frame  64.35 % 87.36 % 95.64 %
36th frame 61.85 % 86.14 % 94.64 %
37th frame  60.36 % 85.56 % 94.32 %
38th frame 56.74 % 83.32 % 93.57 %
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Training Result

Single Frame Prediction
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Training Result

Multiple Frame Predictions
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Figure : Offline Testing Data Test Figure : Gazebo Real-time Test

25 /25



	Background
	Prediction Neural Network
	Training Result

