
Synthesizing invariants by solving solvable loops?

Steven de Oliveira1, Saddek Bensalem2, Virgile Prevosto1

1 : CEA, List 2 : Université Grenoble Alpes

Abstract. Formal program verification faces two problems. The first
problem is related to the necessity of having automated solvers that are
powerful enough to decide whether a formula holds for a set of proof obli-
gations as large as possible, whereas the second manifests in the need of
finding sufficiently strong invariants to obtain correct proof obligations.
This paper focuses on the second problem and describes a new method
for the automatic generation of loop invariants that handles polynomial
and non deterministic assignments. This technique is based on the eigen-
vector generation for a given linear transformation and on the polynomial
optimization problem, which we implemented on top of the open-source
tool Pilat.

1 Introduction

Program verification relies on different mathematical foundations to let users
prove that a piece of code behaves as intended. The problem is however unde-
cidable for any Turing complete language, partly because of loops. This is one of
the reasons why loop analysis is a highly studied topic in the field of verification.
Let us take for example linear filters, whose purpose are to apply a linear con-
straint to input signals. Such programs are heavily used in embedded software
for analyzing sensors’ data and are thus critical for the correction of the system.
Yet, linear filters are difficult to verify because of the non-determinism induced
by the unknown input signal and the use of floating-point computations. This
lack of precision forbids the direct use of exact mathematical techniques.

Figure 1 presents an example of program inspired by linear filters [21]. We
claim that loop invariants are a good way to obtain general information about
such a loop. In this particular case, the loop admits the invariant x2 + y2 6
14.9, bounding the maximal value of |x| and |y| to 3.9: this is an infinite loop.
More generally, if we can infer bounds for the value of the loop variables or for
polynomial expressions of these variables, we are then able to perform precise
analyses, such as reachability. In this paper, we aim at facing two major problems
of numeric invariant generation, namely the generation of polynomial relations
between variables and the search of inductive spaces to which variables of a
program belong, in the context of simple (i.e. non-nested) loops composed of

? This work has been partially conducted within the VESSEDIA project, that has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731453.

polynomial and non deterministic assignments. In particular, linear filters are
encompassed in such context. The relations we generate have the advantage
to be completely independent from the initial state of the loop, making them
fully generic, as opposed to full-program based techniques that start from a
specific initial state. This work is an extension of the algorithm PILA [11],
which generates polynomial equalities between variables manipulated by a simple
deterministic loop. We show in this paper that a refined version of this algorithm
can also produce inductive inequality invariants and tackle non-deterministic
assignments as well as deterministic ones. Moreover, we add to this analysis an
optimization algorithm enabling us to minimize the inductive set described by
invariants of non deterministic loops.

x = non_det(-1,1);
y = non_det(-1,1);
while(x < 4) do
N = non_det(-0.1,0.1);
(x,y) = (0.68 * (x-y) + N,\

0.68 * (x+y) + N);
done

Fig. 1: Example of linear filter

Contributions. The original PILA
approach generates inductive invari-
ants as equality relations of the form
P (X) = 0 with P a polynomial. This
paper extends this method (Section 2)
to generate new kinds of inductive in-
variants of the form |P (X)| 6 k and
|P (X)| > k. It is mostly based on lin-
ear algebra and is applicable to C pro-
grams manipulating integers and float-
ing point numbers. To simplify the pre-
sentation, we describe the method on a
simple imperative language (Section 3).
The two main results of this extension
are the treatment of loops with deter-

ministic (Section 4.1) and non-deterministic assignments (Section 4.2). Finally,
we explain how to manage imprecision in floating point computations (Sec-
tion 4.3). In the latter cases, we reduce the problem of generating invariants
to the polynomial optimization problem. An algorithm for solving this problem
is given. The proposed method in this paper is correct, fully implemented in
Pilat and is currently part of the Frama-C suite [17] as an external open-source
plug-in, available at [3]. We show its efficiency by applying it on several examples
from related literature in section 6. Due to space constraints, proofs have been
omitted. They are available in a separate report [12].

2 Overview
When synthesizing invariants, three ingredients are required :

1. what kind of invariants are computed;
2. what will be their most useful shape;
3. how strong they will be.

In abstract interpretation for example, we first choose the type of invariant
that will be computed, i.e. the abstract domain, then a symbolic execution of

properties of this domain will shape the initial state into an invariant that we
will try to keep as strong as possible by applying appropriate widening and
narrowing operators.

Overview of the PILA algorithm. Let us first recall how PILA works
on a simple example. Consider the loop of figure 2 for which we want to generate
all invariants (polynomials P such that P (x, y) = 0) of degree 2. By enhancing
the loop expressiveness with new variables representing the value of the mono-
mials of variables used in the loop, namely x2 for x2, y2 for y2 and xy for x ∗ y,
it first creates linear variables representing monomials.

x = non_det(-1,1);
y = non_det(-1,1);
while(*) do

(x,y) = (0.68 * (x-y),\
0.68 * (x+y));

done

Fig. 2: Simple affine loop

Let us take for instance x2. As the new
value of x is 0.68.(x−y), the new value of
x2 is 0.682.(x2−2.x.y+y2). x2 can then be
expressed as a linear application of x2, xy
and y2. More generally, any monomial of
variables of the loop in figure 2 evolves lin-
early along the execution of the enhanced
loop.

Next, PILA starts generating invari-
ants. Instead of starting with an initial
state, which is not assumed to be known,
it generates relations that are preserved
by each step of the loop. Let f be the loop
transformation, (here f(x, y) = (0.68∗(x−
y), 0.68∗(x+y)). A linear application ϕ is a semi-invariant if, given any valuation
of the variables, it stays constant through one iteration of f . In other words, it
must respect the following property:

If ϕ(X) = 0 then ϕ(f(X)) = 0

In linear algebra, this is strictly equivalent to the following:

If ϕ(X) = 0 then f∗(ϕ)(X) = 0

where f∗(ϕ) = ϕ ◦ f is the dual application of f . If there exists a scalar λ such
that f∗(ϕ) = λ.ϕ (i.e. ϕ an eigenvector of f∗ associated to the eigenvalue λ) the
criterion becomes obviously true, thus ϕ is a semi-invariant.

In fact, it is shown in [11] that eigenvectors of f∗ are exactly the set of such
invariants bound to the transformation f . More precisely, when an eigenvector ϕ
is associated to the eigenvalue 1 (i.e. f∗(ϕ) = ϕ), it represents an affine invariant
of f (ϕ.X = k). When the associated eigenvalue is not 1, the PILA algorithm
is not always capable of lifting the semi-invariant into a proper invariant. In the
example of figure 2, the associated eigenvalue of the only semi-invariant x2 + y2

is 0.9248. Pilat concludes that x2+y2 = 0 is inductive but if it does not respect
the initial state, this is not an invariant.

The key idea of this paper is to consider not only equalities, but also in-
equalities. If the left eigenvector ϕ is associated to an eigenvalue λ such that

0 < λ 6 1 then λ.ϕ(X) will necessarily be smaller than ϕ(X). Thus for any
k > 0, the following proposition holds:

If ϕ(X) 6 k then f∗(ϕ)(X) 6 k

ϕ(X) 6 k is thus inductive. In our example, the relation x2+y2 6 k is inductive,
and contrarily to x2+y2 = 0 it can be made an invariant even if the initial values
of x and y are not 0: we just have to choose k = x2init + y2init.

Non determinism. The same reasoning can be applied to treat non de-
terministic values in assignments. By setting the non deterministic values to a
random value, e.g. 0, we are left to find inductive inequality relations, which can
be easily performed as we just saw. In the deterministic case, generated formu-
las are inductive because the set of possible values for x and y that respects the
formula gets bigger by applying the loop transformation once. Adding the non
deterministic noise may lead to non inductive formulas. A solution consists in
finding upper and lower bounds for this noise and check if the set obtained in
deterministic case stays stable under this new transformation. If this is not the
case, we must consider a weaker invariant.

3 Setting
Mathematical background. We work in the real field R. Let (Rn, ‖.‖)

the normed vector space of dimension n associated to the usual euclidean norm
‖.‖. Elements of Rn are denoted x = (x1, ..., xn)

t a column vector. The variables
vector of a mapping f is denoted X.Mn(R) is the set of matrices of size n ∗ n
and R[X] is the set of polynomials with coefficients in R. The complex field
C is the algebraic closure of R. Let |.| be the euclidian norm on C. We use
〈., .〉 the linear algebra standard notation, 〈u, v〉 = ut.v, with . the usual dot
product (i.e. the sum of the product of each component of u and v). For a
linear mapping f(X) = A.X, we define its dual f∗(X) = AtX. The kernel of a
matrix A ∈ Mn(R), denoted ker(A), is the vectorial space defined as ker(A) =
{x ∈ Rn, Ax = 0}. Every matrix of Mn(R) admits a finite set of eigenvalues
λ ∈ C and their associated eigenspaces Eλ, defined as Eλ = ker(A − λId),
where Id is the identity matrix and Eλ 6= {0}. Similarly, every matrix A admits
left-eigenspaces, i.e. eigenspaces of At. The limit of a multivariate function f :
Rn → R for ‖X‖ → l is defined by the maximal value of f(X) with ‖X‖ in the
neighborhood of l ∈ R ∪ {+∞} and is denoted lim

‖X‖→l
f(X).

Invariants. A formula requires two canonical properties to be a loop in-
variant: it must be true at the beginning of the loop (initialization); it must be
preserved by a loop step (inductivity). Similarly to [11], we define the inductive
relation ϕ by the following constraint.

Definition 1 Exact
ϕ ∈ Rn is an exact inductive invariant for a linear mapping f iff

∀X ∈ Rn, | 〈ϕ,X〉 | = 0⇒ | 〈ϕ, f(X)〉 | = 0 (1)

In the present paper, we add to this definition the concept of convergent and
divergent inductive relation.

Definition 2 Convergence
ϕ ∈ Rn is a convergent inductive invariant for a linear mapping f iff

∀X ∈ Rn,∀k ∈ R, | 〈ϕ,X〉 | 6 k ⇒ | 〈ϕ, f(X)〉 | 6 k (2)

Definition 3 Divergence
ϕ ∈ Rn is a divergent inductive invariant for a linear mapping f iff

∀X ∈ Rn,∀k ∈ R| 〈ϕ,X〉 | > k ⇒ | 〈ϕ, f(X)〉 | > k (3)

The convergent invariant definition could have been written equivalently
| 〈ϕ,X〉 | 6 | 〈ϕ, f(X)〉 |. We choose the other notation as the idea of the tech-
nique is to find a suitable value of k such that | 〈ϕ,X〉 | 6 k is an invariant of
the loop. A vector ϕ satisfying the inductive relation is called a semi-invariant
in contrast with invariants that also verify the initialization criterion, denoted
〈ϕ,Xinit〉 with Xinit the variables’ initial values. The exact semi-invariants set
of a linear mapping f is the union of all eigenspaces of f∗ as proven in [11]. Also,
we define the solvability of a mapping introduced in [27].

Definition 4 Let g ∈ (R[X])m be a polynomial mapping. g is solvable if there
exists a partition of X into sub-vectors of variables x = w1] ...]wk and we can
divide g into different mappings gwj

manipulating variables of wj such that

gwj (x) =Mjw
t
j + Pj(w1, ..., wj−1, N)

with Pj a polynomial and N eventual non deterministic parameters.

For example, the mapping gN (x, y) = (x+y2, y+N) depending on the parameter
N is solvable because we can set w1 = {y} and w2 = {x}. gy(x, y) = y+P1(N),
where P1 = N and gx(x, y) = x + P2(y) where P2(y) = y2. We also can write
gN (x, y) = (gx(x, y), gy(x, y))

Remark. As shown in [11], deterministic solvable assignments are lineariz-
able, i.e. they can be replaced by equivalent linear mappings. This allows to
consider deterministic linear mappings X ′ = A.X with X a vector containing
both variables and monomials of those variables to represent deterministic solv-
able assignments.

Programming model. We use a basic programming language whose syn-
tax is given in figure 3. V ar is the set of variables used by the program. Variables
take their value in R. A program state is then a partial mapping V ar ⇀ R. Any
given program only uses a finite number n of variables, thus program states can
be represented as vectors X = (x1, ..., xn)

t. Finally, we assume that for all pro-
grams, there exists xn+1 = 1 a constant variable always equal to 1. This allows to
represent any affine assignment by a matrix. The expression non_det(exp1, exp2)
returns a random value between the valuation of exp1 and exp2 when the pro-
gram reaches this location. Multiple variables assignments occur simultaneously

i ::= skip
| i; i
| (x1, .., xn) := (exp1, ..., expn)
| while ∗ do i done

exp ::= cst ∈ R
| x ∈ V ar
| exp+ exp
| exp ∗ exp
| non_det(exp, exp)

Fig. 3: Code syntax

within a single instruction. We say an assignment X = exp is affine (resp. solv-
able) when exp is an affine (resp. solvable) combination. Also, we say that an
instruction is non-deterministic when it is an assignment in which the right value
contains the expression non_det.

4 Convergent and divergent linear applications

4.1 Deterministic assignments

Being an inductive invariant requires for a formula F to be true after an itera-
tion of the loop under the hypothesis that F holds before the iteration. The left
eigenspace of a linear transformation (i.e. the eigenspace of the dual transforma-
tion) is exactly its set of exact invariants as defined in definition 1.

Convergence. By linear algebra, | 〈ϕ,X〉 | 6 k ⇒ | 〈f∗(ϕ), X〉 | 6 k is
strictly equivalent to the definition 2 of convergent semi-invariants. The formula
| 〈ϕ,X〉 | 6 k represents what we call a domain described by ϕ, i.e. a polynomial
relation over the variables of the program. The previous constraint specify that
the domain described by ϕ is stable by f . The loop in figure 2 admits the
invariant x2 + y2 6 2, a domain described by ϕ = (0, 0, 0, 1, 0, 1)t in the base
(1, x, xy, x2, y, y2) where x2 represents x2, xy represents x ∗ y and y2 represents
y2. We can check with the PILA algorithm that ϕ is an exact semi-invariant of
the loop as it is a left eigenvector of the transformation performed by the loop.
As such, it generates a vectorial space of exact semi-invariants I = {k.(x2+y2) =
0 | k ∈ R}, which is a very poor result as x2 + y2 is constant only if it starts
at 0 (else, k = 0 and we don’t know anything about x2 + y2). We focus now
on the eigenvalue associated to ϕ on f∗, which is 0.9248. Thus, we can replace
| 〈f∗(ϕ), X〉 | by |λ|.| 〈ϕ,X〉 |, which returns | 〈ϕ,X〉 | 6 k ⇒ |λ|.| 〈ϕ,X〉 | 6 k. As
|λ| < 1, the vector ϕ satisfies the equation, thus ϕ is a convergent semi-invariant.
Knowing the maximal initial value of x2 + y2 allows to determine the value of
k, which is 2.

More generally, the set of convergent semi-invariants is exactly the set of
eigenvectors bound to an eigenvalue λ such that |λ| < 1. The proof of this
assertion requires the following lemma :

Lemma 1 (∀k, | 〈ϕ,X〉 | 6 k ⇒ | 〈ϕ, f(X)〉 | 6 k)⇒ f∗(ϕ) = λ.ϕ

In other words, convergent invariants are eigenvectors. The goal of the fol-
lowing property is to characterize the associated eigenvalue.

Property 1 ϕ is a convergent semi-invariant ⇔ ∃λ, |λ| 6 1, f∗(ϕ) = λ.ϕ

Proof. If |λ| 6 1, then ϕ is a convergent semi-invariant (see introduction of
section 4.1). As the exact semi-invariants set of f is the union of the eigenspaces
of f∗, we can deduce that this set is a superset of all the relations satisfying the
definition 2. Moreover by the lemma 1, we have

(| 〈ϕ,X〉 | 6 k ⇒ | 〈ϕ, f(X)〉 | 6 k)⇒ (| < ϕ,X > | 6 k ⇒ |λ|.| < ϕ,X > | 6 k)

For k = | < ϕ,X > | it is true if and only if |λ| 6 1. �

Divergence. The same reasoning applies to the generation of divergent
invariants. For example, an eigenvalue λ such that |λ| > 1 associated to a semi-
invariant ϕ implies that | 〈ϕ,X〉 | > k is an inductive invariant.

Property 2 ∃λ, |λ| > 1, f∗(ϕ) = λ.ϕ⇒ ϕ is a divergent semi-invariant

Proof. If there exists λ such that f∗(ϕ) = λ.ϕ, then we have that being a
divergent semi invariant is equivalent to

| < ϕ,X > | > k ⇒ |λ|.| < ϕ,X > | > k

If we also have that |λ| > 1, then the previous equation is true. �

Note that this time, we only have an implication. For example, the trans-
formation f(x,1) = (x + 1,1) admits x > xinit as a divergent invariant but
the only left eigenvector of f is (0, 1), which correspond to the invariant "1 is
constant". Moreover, not all invariants of the form P (X) 6 k are generated : the
loop with the only assignment x = x− 1 admits the (non-convergent) invariant
x 6 xinit. This invariant does not enter the scope of our setting as |x| 6 xinit is
false for 2xinit + 1 iterations of x = x− 1.

4.2 Non-deterministic assignments

while (*) do
N = non_det(-0.1,0.1);
(x,y) = (0.68 * (x-y) + N, \

0.68(x+y) + N);
done

Fig. 4: Non deterministic variant of the
Figure 2

Some programs depend on inputs
given all along their execution, for ex-
ample linear filters. More generally,
an important part of program analysis
consists in studying non-deterministic
assignments. As an example let us
consider the program in figure 4, a
slightly modified version of the pro-
gram in figure 2. Our previous reason-
ing is not applicable now because, due
to the non-determinism of N , the loop
is no longer a linear mapping.

Idea. Intuitively, we will represent this loop by a matrix parametrized by
N . For that purpose we use the concept of abstract mapping introduced in [15].

Definition 5 An abstract linear mapping f : Rq 7→ Mn(R) is a mapping as-
sociating a vector N ∈ Rq to a matrix. We call f∗ the dual mapping of f (i.e.
the mapping such that f∗(N) = (f(N))T). The expression of the parametrized
matrix with respect to an abstract linear mapping will be called the abstract
matrix.

In our setting, the parameters are the non-deterministic values. For example,
the previous loop can be represented by the abstract matrix MN :

1 0 0 0 0 0
N 0.68 0 0 −0.68 0
N2 1.36N 0 0.462 0 −0.462
N2 1.36N 0.925 0.462 −1.36N 0.462
N 0.68 0 0 0.68 0
N2 1.36N 0.925 0.462 1.36N 0.462

Remark. Similarly to deterministic solvable mappings defined in section 3,

non deterministic solvable mappings can be linearized to an abstract matrix. By
considering non deterministic parameters as constants, the problem is reduced
to the linearization of deterministic solvable mappings.

We have shown in section 4.1 thatM0 admits the invariant e0 = (0, 0, 0, 1, 0, 1)
associated to the eigenvalue λ0 = 0.9248. By decomposingMN as the sum ofM0

and (MN −M0), we also have e0.MN = e0.M0 + e0.(MN −M0) = λ0.e0 + δN0 ,
where δN0 = e0.(MN − M0) = (2N2, 2.72N, 0, 0, 0, 0). As the eigenvalue λ0 is
smaller than 1, we are looking for relations ϕ such that ∀X, | 〈ϕ,X〉 | 6 k ⇒
|
〈
MT
N .ϕ,X

〉
| 6 k. We will call e0 a candidate invariant for MN . For e0 to be a

proper invariant for this transformation, the following property must hold:

∀X, | 〈e0, X〉 | 6 k ⇒ |λ0 〈e0, X〉+
〈
δN0 , X

〉
| 6 k (4)

Intuitively, multiplying 〈e0, X〉 by λ0 reduces its norm strictly under k. We need
to make sure that adding

〈
δN0 , X

〉
does not contradict the induction criterion

by increasing the result over k. The variables of the program depend on k, as
does

〈
δN0 , X

〉
. If it increases faster than |λ0 〈e0, X〉 | when k is increased, then no

value of k will make the candidate invariant inductive. In particular, if 〈e0, X〉 is
a polynomial P of degree d, we need to be able to give an upper bound of

〈
δN0 , X

〉
knowing that |P (X)| < k. If the degree of

〈
δN0 , X

〉
is strictly smaller than d,

then it will grow asymptotically slower than |P (X)|, thus for a big enough k the
induction criterion is respected.

Property 3 (
∀X, | 〈e0, X〉 | 6 k ⇒ |

〈
δN0 , X

〉
| 6 (1− |λ0|).k

)
⇒ (5)

| 〈e0, X〉 | 6 k is an invariant of the loop.

In our example,
〈
δN0 , X

〉
= 2.72 ∗ N ∗ x + 2 ∗ N2. The polynomial x is of

degree 1 while < e0, X >= x2+ y2 is of degree 2. We need to find a k such that

−0.0752 ∗ k 6 2.72 ∗N ∗ x+ 2 ∗N2 6 0.0752 ∗ k (6)

Optimizing expressions. We will now maximize and minimize 2.72∗N ∗
x+2∗N2, knowing that x2+y2 6 k and −0.1 6 N 6 0.1. Solving this problem is
very close to solving a constrained polynomial optimization (CPO) problem [7].
CPO techniques provide ways to find values minimizing and maximizing expres-
sions under a set of inequalities constraints. Our main issue is related to the
parameter k that must be known in order to use CPO directly. We will not
investigate in this article how CPO works in detail, but how we can reduce the
problem of finding an optimal k to the CPO problem.

Assuming we have a function min computing the minimum, if it exists, of an
expression under polynomial constraints, we propose an algorithm that refines
the value of k in figure 5. The idea is to find k by dichotomy.

Data:
λ : float
Q : objective function
P : polynomial constraint
non_det_c : non deterministic constraints
N : int
Result: k such that ∀X,P (X) 6 k ⇒ f(X) 6 (1− |λ|).k
low_k = 0;
up_k = MAX_INT;
k = MAX_INT / 2;
i = 0;
while i<N ∧ up_k = MAX_INT do

i = i+1;
Pk = function (x → P(x) + k);
min = min(Q,[Pk] ∪ non_det_c);
max = min(-1*Q,[Pk] ∪ non_det_c);
if min > (-1+|λ|) * k and max < (1-|λ|)*k then

up_k = k;
else

low_k = k;
end
k = (low_k + up_k) / 2;

end

Fig. 5: Dichotomy search of a k satisfying the condition (6)

• If k doesn’t satisfy the constraints, we try a bigger one.
• If we find a k satisfying the two conditions, then it is a potential candidate.

We can still try to refine it by searching for a smaller k.

We can improve this algorithm by guessing an upper value of k instead of taking
an arbitrary maximal value MAX_INT. For our example, we started at k = 50
and found that k = 14.9 respects all the constraints.

• x2 + y2 6 14.9⇒ |x| 6 3.9
• |N | 6 0.1
• |2.72 ∗ x ∗N + 2 ∗N2| 6 1.08, and k ∗ (1− |λ|) = 1.12.

Convergence. Note however that the existence of a k satisfying (6) is not
guaranteed. For example, the set S = {(x, y,N)|x2 + y2 6 k ∧−0.1 6 N 6 0.1}
is a compact set for any value of k, which means that x, y and N have maximum
and minimum values. This implies the existence of a lower and an upper bound
for every expression composed with x, y andN , but the value of those expressions
may be always higher than k such as for x2 + y2 + 1 bounded by k + 1.

Property 4 Let P and Q two polynomials and M > 0 ∈ R.
If lim
‖X‖→+∞

|Q(X)
P (X) | < M , then there exists k ∈ R such that for all k′ > k

|P (X)| 6 k′ ⇒ |Q(X)| 6M.k′

By taking M = (1 − |λ0|), this theorem gives us a sufficient condition to
guarantee the convergence of the algorithm in figure 5.

Corollary. If the objective has a lower degree in the deterministic variables
than the candidate invariant, then the algorithm converges. If it has the same
degree, then it depends on the main coefficients.

As we are dealing with two polynomials P and Q, then if P (the candidate
invariant) has a higher degree than Q (the objective function) in all its variables,
the limit of Q(X)

P (X) will be 0, which is enough to ensure the convergence of the
method. If we come back to the objective function for the loop of figure 2,
Q(X) = 2.72.x.N + 2.N2 is a polynomial of degree 1 in x and 0 in y, thus

lim
‖X‖→+∞

|Q(X,N)
P (X) | = 0 and we can be sure that the optimization will converge.

On the other hand, if we have X = (x, y), P (X) = x2 + y2 and Q(X,N) =
10.N(x2 + y2 +1), with |N | 6 0.1, the optimization procedure may not produce
a result by theorem 4 because lim

‖X‖→+∞
|Q(X,N)
P (X) | = 10N is higher than 1 − |λ|

for N = 0.1.

Initial state. The knowledge of the initial state is not one of our hypotheses
yet, but the previous theorem provides the necessary information we need to
treat the case where the initial state is strictly higher than the minimal k we
found. The previous theorem tells us that there exists a k such that for all

k′ > k, k′ is a solution to the optimization problem. Our optimization algorithm
is searching for a value of k for which the set is inductive, though, and this
solution may be only local : there may be a k′ > k which is not a solution of the
optimization procedure. If the value of P (Xinit) is strictly higher than k, there
are two possibilities :

• it satisfies the objective (6), optimization is then not necessary as k =
P (Xinit) is correct, and we directly have a solution.
• it doesn’t satisfy the objective, we have to find a k > P (Xinit) satisfying it.

In both cases, we can enhance the optimization algorithm by first testing the
objective (6) with k = P (Xinit). If it does not respect the objective, then starting
the dichotomy with low_k = P (Xinit) will return a solution (guaranteed by the
property 4) strictly higher than P (Xinit).

4.3 Rounding error

When dealing with real life programs, performing floating point arithmetic gen-
erates rounding error. As for an input signal abstracted by a non deterministic
value, we can add to every computation that may lead to a rounding error a non
deterministic value whose bounds are determined by the variables types and
values.

Addition. Addition over two floating-point values lose some properties like
associativity. For example, (264 − 264) + 2−64 will be strictly equal to 2−64 but
264+(−264+2−64) will be equal to 0. To deal with addition, we can consider the
highest possible error between a real value and its floating point representation,
a.k.a. the machine epsilon. It is completely dependent of the C type used : for
float (single precision) it corresponds to 2−23 ; for double (double precision) it
is 2−52. More generally, let x and y be two reals, with x̃ and ỹ their respective
C representation. The IEEE model [2] says that an operation on floating point
numbers must be equivalent to an operation on the reals, and then round the
result to one of the nearest1 floating point number. In this case, the relative
error |(x̃ + ỹ) − (x + y)| = (x + y) ∗ ε where ε is the highest machine epsilon
between the machine epsilon of the type of x, y and (x+y). The error is relative
to the value of x and y. This is not a problem, as we authorize in our setting
non deterministic calls with expressions as argument.

Multiplication. A similar approximation happens during a multiplication
of two floating point values. The relative error |(x̃ ∗ ỹ)− (x ∗ y)| = x ∗ y ∗ ε Thus
for every multiplication, we can add a non deterministic value between −x∗y ∗ε
and x ∗ y ∗ ε.

With these considerations, we are able to provide precise bounds for rounding
error for every operation performed in the loop.
1 depending on rounding mode, this may be the floating point value immediately below
or above the result.

Remark. Note that we can also deal with value casting. For example, when
a cast from a floating point value to a integer is performed, the maximal error
is bounded by 1 which can be abstracted in our setting by a non deterministic
assignment.

5 Related work

There exist mainly two kinds of polynomial invariants: equality relations be-
tween variables, representing precise relations, and inequality relations, provid-
ing bounds over the different values of the variables. After the results of Karr
in [16,22] on the complete search of affine equality relations between variables of
an affine program, Müller-Olm and Seidl [23] have proposed an inter-procedural
method for computing polynomial equalities of bounded degree as invariants.
For linear programs, Farkas’ lemma can be used to encode the invariance condi-
tion [9] under non linear constraints. Similarly, for polynomial programs, Gröb-
ner bases have been shown to be an efficient way to compute the exact relation
set of minimal polynomial loop invariants composed of solvable assignments by
computing the intersection of polynomial ideals [27,26]. Even if this algorithm is
known to be EXP-TIME complete in the degree of the invariant searched, high
degree invariants are very rare for common loops and the tool Aligator [18],
inspired from this technique for P-solvable loops[20,19], is very efficient for low
degree loops. Finally, [8] presents a technique that avoids the combination prob-
lem by using abstract interpretation to generate abstract invariants. This tech-
nique is implemented in the tool Fastind. The main issue is the completion loss:
some invariants are missed and a maximal degree must be provided. The direct
use of exact mathematical techniques is also not very efficient for the analysis of
non-deterministic assignments.

Synthesis of inequality invariants has become a growing field [21,29], for ex-
ample in linear filters analysis and automatic verification in general as it provides
good knowledge of the variables bounds when computing floating point opera-
tions. Abstract interpretation [10] with widening operators allows good approx-
imation of loops with the desired format. A recent work [14] mixes abstract
interpretation and loop acceleration (i.e. the precise computation of the transi-
tive closure of a loop) to extend the framework and obtain precise upper and
lower bounds on variables in the polyhedron domain. Very precise and comput-
ing non-trivial relations for complex loops and conditions, it has the drawback to
be applicable to a very restricted type of transformations (linear transformation
with eigenvalues λ such that |λ| = 0 or 1). We see this technique as complemen-
tary to ours as it generates invariants we do not find (such as k 6 kinit for loop
counters) and conversely. In order to treat non-deterministic loops, [21] refines
as precisely as possible the set of reachable states for linear filters, harmonic
oscillators and similar loops manipulating floating point numbers using a very
specific abstract domain. A specific domain of polynomial inequalities have been
imlplemented by [5], allowing conditions in the form P (X) 6 0.

Dynamic analysis is also widely used in the detection of invariants. Daikon [13]
infers linear likely invariants, i.e. candidate invariants, by confronting a given
property pattern against a large number of executions. By expanding the pat-
tern to more expressive terms with polynomial and array expressions, [24,25]
infers general and disjunctive polynomial and array invariants.

6 Application and results
The plug-in Pilat, written in OCaml as a Frama-C plug-in (compatible with
the latest stable release, Aluminium) and originally generating exact relations for
deterministic C loops, has been extended with convergent invariant generation
and non deterministic loop treatment for simple C loops. It implements our main
algorithm of invariant generation in addition to the optimization algorithm of
figure 5, and generates invariants as ACSL [6] annotations, making them readily
understandable by other Frama-C plugins. The tool is available at [3].

int simple_filter(int s0, int s1){
float r;
while (1) {
r = 1.5*s0 - 0.7*s1 + [-0.1,0.1]
s1 = s0;
s0 = r;

}
}

Fig. 6: Generation of one of the smallest polynomial invariant of degree 2 for a
linear filter [21,31]

Let us now detail the work performed by Pilat over the example of figure 6
(taken from [21]). First, our tool generates the shape of the invariant, i.e. the
polynomial P such that |P (X)| 6 k is inductive for a certain k of the loop
by setting the non deterministic choice to 0. We know by property 1 that such
an invariant is an eigenvector of the transformation. By expressing s20, s0 ∗ s1
and s21 as linear variables, we find the eigenvector e0 = (1.42857,−2.14285, 1)
(in the base (s20, s0s1, s

2
1)) associated to the eigenvalue 0.7. Thus, P0(s0, s1) =

1.42857 ∗ s20 − 2.14285 ∗ s0 ∗ s1 + s21 6 k is an invariant of the loop when N is
set to 0. The error made between the deterministic transformation (with N = 0)
and the non deterministic one (with N ∈ [−0.1, 0.1]) is given by Q(s0, s1, N) =
2 ∗ N ∗ s1 − 2.142 ∗ N ∗ s0 − 1.428 ∗ N2. Q has a lower degree than P for a
fixed N , so we have that lim

‖(s0,s1)‖→+∞
Q(s0,s1,N)
P (s0,s1) = 0 < 1− λ. The optimization

PILAT Input Results Abs. Int. [21]

Program Var Degree # invariants Generation Optimization Proof
(in s) (in s) (in s)

Deterministic
Example 1 2 2 1 0.003 – 1.6

Dampened oscillator 2 2 1 0.007 – 0.036
Harmonic oscillator 2 2 1 0.004 – 0.035
Sympletic oscillator 2 2 1 0.002 – 0.008

[4] filter 2 1 1 0.0035 – 0.0017
Non deterministic
Simple linear filter 2 2 1 0.0015 1.3 6.5

Example 3 2 2 1 0.003 1.7 4.3
Linear filter 2 2 1 0.0019 1 1

Lead-lag controller 2 1 2 0.002 2.5 6
Gaussian regulator 3 2 1 0.007 2.5 –

Controller 4 2 5 0.066 14 –
Low-pass filter 5 2 2 0.06 7 –

Table 1: Performance results with our implementation Pilat. Tests have been
performed on a Dell Precision M4800 with 16GB RAM and 8 cores. The first
part represents deterministic loops (thus, no optimization is necessary). The
second part of the benchmark are non deterministic loops. Tests with abstract
interpretation have been performed with the fixpoint solver described in [21] by
attempting to prove goals implied by the invariants our tool synthesizes when
they were compatible. Details and benchmark are available in [1]

procedure is now certain to converge, thus we minimize and maximize Q(X,N)
with the hypothesis P (s0, s1) 6 k. By starting the procedure with k = 50
(which is usually a good heuristic) and performing 10 iterations the optimization
procedure returns k = 0.87891, thus 1.42857∗s20−2.14285∗s0s1+s21 6 0.87891 is
an inductive invariant represented in Figure 6. This is a real invariant, assuming
the initial state satisfies the relation.

Let us now consider that the initial state of the loop is (s0, s1) = (2, 1). Then
at the beginning of the loop, 1.42857∗s20−2.14285∗s0s1+s21 = 2.42858 > 0.87891,
which does not respect the invariant. In this case the procedure starts by testing
the optimization criterion with k = 2.14285. This choice of k is correct. In
conclusion, we know that 1.42857 ∗ s20 − 2.14285 ∗ s0s1 + s21 6 2.42858 is an
invariant of the loop.

More generally, we evaluated our method over the benchmark used in [28]
for which we managed to find an invariant for every program containing no
conditions. Though this benchmark has been built to test the effectiveness of a
specific abstract domain, we managed to find similar results with a more general
technique. Our results are given in table 1. As ellipsoids are a suitable repre-
sentation for those examples, we have choosen 2 as the input degree of almost
all our examples. The optimization script is based on Sage [30]. Note that the
candidate generation is a lot faster than the optimization technique, mainly be-
cause of two reasons : computing min is time consuming for a large number of
constraints; it is imprecise and its current implementation is incorrect (outputs

an under approximation of the answer), we have to approximate its results to
get a correct over approximation.

7 Conclusion and future work
Invariant generation for non deterministic linear loop is known to be a difficult
problem. We provide to this purpose a surprisingly fast technique generating
inductive relations that mostly relies on linear algebra algorithms widely used
in many fields of computer science. Also, the optimization procedure for the non
determinism treatment returns strong results. These invariants will be used in
the scope of Frama-C [17] as a help to static analyzers, weakest precondition
calculators and model-checkers.

We are currently facing three major issues that we intend to address in the
future. The current optimization algorithm is assumed to have an exact min
function. However, such function is both time consuming and imprecise. In ad-
dition, conditions are treated non deterministically, which reduces the strength
of our results and limits the size of our benchmark to simple loops (linear filters
with saturation are not included in our setting). Finally, the search of invariants
for nested loops is a complex problem on which we are currently focusing.

References
1. Benchmark for the invariant generation. Available at http://

steven-de-oliveira.fr/content/bench/pilat_nd.pdf.
2. IEEE Standard for Floating-Point Arithmetic. IEEE 754-2008.
3. PILAT. Available at https://github.com/Stevendeo/Pilat.
4. A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-definite

relaxation to compute accurate numerical invariants in static analysis. Logical
Methods in Computer Science, 8(1), 2012.

5. R. Bagnara, E. Rodríguez-Carbonell, and E. Zaffanella. Generation of basic semi-
algebraic invariants using convex polyhedra. In 12th International Symposium,
SAS 2005, London, UK, September 7-9, 2005, Proceedings, pages 19–34, 2005.

6. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI C Specification Language, 2008.

7. D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

8. D. Cachera, T. Jensen, A. Jobin, and F. Kirchner. Inference of polynomial invari-
ants for imperative programs: A farewell to gröbner bases. SCP, 93, 2014.

9. M. A. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear Invariant Generation
Using Non-linear Constraint Solving, pages 420–432. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252. ACM, 1977.

11. S. de Oliveira, S. Bensalem, and V. Prevosto. Polynomial invariants by linear
algebra. In ATVA 2016, pages 479–494. Springer, 2016.

http://steven-de-oliveira.fr/content/bench/pilat_nd.pdf
http://steven-de-oliveira.fr/content/bench/pilat_nd.pdf
https://github.com/Stevendeo/Pilat

12. S. de Oliveira, S. Bensalem, and V. Prevosto. Synthesizing invariants by
solving solvable loops. Technical report, CEA, 2016. available at http://
steven-de-oliveira.fr/content/publis/2017_atva.pdf.

13. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1):35–45, 2007.

14. L. Gonnord and P. Schrammel. Abstract acceleration in linear relation analysis.
Science of Computer Programming, 93:125–153, 2014.

15. B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Abstract acceleration of
general linear loops. ACM SIGPLAN Notices, 49(1):529–540, 2014.

16. M. Karr. Affine relationships among variables of a program. Acta Informatica,
6(2):133–151, 1976.

17. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:
A software analysis perspective. Formal Aspects of Computing, 27(3), 2015.

18. L. Kovács. Aligator: A mathematica package for invariant generation (system
description). In Automated Reasoning. Springer, 2008.

19. L. Kovács. Reasoning algebraically about P-solvable loops. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 249–264. Springer, 2008.

20. L. Kovács. A complete invariant generation approach for P-solvable loops. In
Perspectives of Systems Informatics. Springer, 2010.

21. A. Miné, J. Breck, and T. Reps. An algorithm inspired by constraint solvers
to infer inductive invariants in numeric programs. In European Symposium on
Programming Languages and Systems, pages 560–588. Springer, 2016.

22. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In Automata, Languages
and Programming, pages 1016–1028. Springer, 2004.

23. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In ACM SIGPLAN Notices, volume 39. ACM, 2004.

24. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using dynamic analysis to
discover polynomial and array invariants. In Software Engineering (ICSE), 2012
34th International Conference on, pages 683–693. IEEE, 2012.

25. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using dynamic analysis to
generate disjunctive invariants. In Proceedings of the 36th International Conference
on Software Engineering, pages 608–619. ACM, 2014.

26. E. Rodríguez-Carbonell and D. Kapur. Automatic generation of polynomial in-
variants of bounded degree using abstract interpretation. Science of Computer
Programming, 64(1):54–75, 2007.

27. E. Rodríguez-Carbonell and D. Kapur. Generating all polynomial invariants in
simple loops. Journal of Symbolic Computation, 42(4), 2007.

28. P. Roux. Analyse statique de systèmes de contrôle commande: synthèse d’invariants
non linéaires. PhD thesis, Toulouse, ISAE, 2013.

29. P. Roux, R. Jobredeaux, P.-L. Garoche, and É. Féron. A generic ellipsoid abstract
domain for linear time invariant systems. In Proceedings of the 15th ACM inter-
national conference on Hybrid Systems: Computation and Control, pages 105–114.
ACM, 2012.

30. W. Stein et al. Sage: Open source mathematical software. 7 December 2009, 2008.
31. Wolfram|Alpha. Polynomial invariant for the simple_filter function, http:

//www.wolframalpha.com/input/?i=(-2.14285714286*(s1*s0)%2B1.
42857142857*(s0*s0))%2B1.*(s1*s1)+%3C%3D++0.87891.

http://steven-de-oliveira.fr/content/publis/2017_atva.pdf
http://steven-de-oliveira.fr/content/publis/2017_atva.pdf
http://www.wolframalpha.com/input/?i=(-2.14285714286*(s1*s0)%2B1.42857142857*(s0*s0))%2B1.*(s1*s1)+%3C%3D++0.87891
http://www.wolframalpha.com/input/?i=(-2.14285714286*(s1*s0)%2B1.42857142857*(s0*s0))%2B1.*(s1*s1)+%3C%3D++0.87891
http://www.wolframalpha.com/input/?i=(-2.14285714286*(s1*s0)%2B1.42857142857*(s0*s0))%2B1.*(s1*s1)+%3C%3D++0.87891

	Synthesizing invariants by solving solvable loops

