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Abstract—Recently, the hybrid deep neural network (DNN)-hidden
Markov model (HMM) has been shown to significantly improve speech
recognition performance over the conventional Gaussian mixture model
(GMM)-HMM. The performance improvement is partially attributed to
the ability of the DNN to model complex correlations in speech features.
In this paper we show that further error rate reduction can be obtained
by using convolutional neural networks (CNNs). We first present a concise
description of the basic CNN and explain how it can be used for speech
recognition. We further propose a limited-weight-sharing scheme that
can better model speech features. The special structure such as local
connectivity, weight sharing, and pooling in CNNs exhibits some degree
of invariance to small shifts of speech features along the frequency axis,
which is important to deal with speaker and environment variations.
Experimental results show that CNNs reduce the error rate by 6-10%
compared with DNNs on the TIMIT phone recognition and the voice
search large vocabulary speech recognition tasks.
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I. INTRODUCTION

The aim of automatic speech recognition (ASR) is the transcription
of human speech into spoken words. It is a very challenging task
because human speech signals are highly variable due to various
speaker attributes, different speaking styles, uncertain environmental
noises, and so on. ASR, moreover, needs to map variable-length
speech signals into variable-length sequences of words or phonetic
symbols. It is well known that hidden Markov models (HMMs) have
been very successful in handling variable length sequences as well as
modeling the temporal behavior of speech signals using a sequence
of states, each of which is associated with a particular probability
distribution of observations. Gaussian mixture models (GMMs) have
been, until very recently, regarded as the most powerful model for
estimating the probabilistic distribution of speech signals associated
with each of these HMM states. Meanwhile, the generative training
methods of GMM-HMMs have been well developed for ASR based
on the popular expectation maximization (EM) algorithm. In addition,
a plethora of discriminative training methods, as reviewed in [1], [2],
[3], are typically employed to further improve HMMs to yield the
state-of-the-art ASR systems.

Very recently, HMM models that use artificial neural networks
(ANNs) instead of GMMs have witnessed a significant resurgence
of research interest [4], [5], [6], [7], [8], [9], initially on the TIMIT
phone recognition task with mono-phone HMMs for MFCC features
[10], [11], [12], and shortly thereafter on several large vocabulary
ASR tasks with triphone HMM models [6], [7], [13], [14], [15],
[16]; see an overview of this series of studies in [17]. In retrospect,
the performance improvements of these recent attempts have been
ascribed to their use of “deep” learning, a reference both to the
number of hidden layers in the neural network as well as to the
abstractness and, by some accounts, psychological plausibility of
representations obtained in the layers furthest removed from the input,
which hearkens back to the appeal of ANNs to cognitive scientists
thirty years ago. A great many other design decisions have been
made in these alternative ANN-based models to which significant
improvements might have been attributed.

Even without deep learning, ANNs are powerful discriminative
models that can directly represent arbitrary classification surfaces in
the feature space without any assumptions about the data’s structure.
GMMs, by contrast, assume that each data sample is generated from
one hidden expert (i.e., a Gaussian) and a weighted sum of those
Gaussian components is used to model the entire feature space. ANNs
have been used for speech recognition for more than two decades.
Early trials worked on static and limited speech inputs where a
fixed-sized buffer was used to hold enough information to classify a
word in an isolated speech recognition scheme [18], [19]. They have
been used in continuous speech recognition as feature extractors, in
both the TANDEM approach [20], [21] and in so-called bottleneck
feature methods [22], [23], [24], and also as nonlinear predictors to
aid the recognition of speech units [25], [26]. Their first successful
application to continuous speech recognition, however, was in a
manner that almost exactly parallels the use of GMMs now, i.e., as
sources of HMM state posterior probabilities, given a fixed number
of feature frames [27].

How do the recent ANN-HMM hybrids differ from earlier ap-
proaches? They are simply much larger. Advances in computing
hardware over the last twenty years have played a significant role in
the advance of ANN-based approaches to acoustic modeling because
training ANNs with so many hidden units on so many hours of speech
data has only recently become feasible. The recent trend towards
ANN-HMM hybrids began with using restricted Boltzmann machines
(RBMs), which can take (temporally) subsequent context into ac-
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count. Comparatively recent advances in learning through minimizing
“contrastive divergence” [28] enable us to approximate learning with
RBMs. Compared to conventional GMM-HMMs, ANNs can easily
leverage highly correlated feature inputs, such as those found in much
wider temporal contexts of acoustic frames, typically 9-15 frames.
Hybrid ANN-HMMs also now often directly use log mel-frequency
spectral coefficients without a decorrelating discrete cosine transform
[29], [30], DCTs being largely an artifact of the decorrelated mel-
frequency cepstral coefficients (MFCCs) that were popular with
GMMs. All of these factors have had a significant impact upon
performance.

This historical deconstruction is important because the premise
of the present paper is that very wide input contexts and domain-
appropriate representational invariance are so important to the recent
success of neural-network-based acoustic models that an ANN-HMM
architecture embodying these advantages can in principle outperform
other ANN architectures of potentially unlimited depth for at least
some tasks. We present just such a novel architecture below, which
is based upon convolutional neural networks (CNNs) [31]. CNNs are
among the oldest deep neural-network architectures [32], and have
enjoyed great popularity as a means for handwriting recognition. A
modification of CNNs will be presented here, called limited weight
sharing, however, which to some extent impairs their ability to be
stacked unboundedly deep. We moreover illustrate the application
of CNNs to ASR in detail, and provide additional experimental
results on how different CNN configurations may affect final ASR
performance (Section V).

CNNs have been applied to acoustic modeling before, notably by
[33] and [34], in which convolution was applied over windows of
acoustic frames that overlap in time in order to learn more stable
acoustic features for classes such as phone, speaker and gender.
Weight sharing over time is actually a much older idea that dates
back to the so-called time-delay neural networks (TDNNs) [35] of
the late 1980s, but TDNNs had emerged initially as a competitor with
HMMs for modeling time-variation in a “pure” neural-network-based
approach. That purity may be of some value to the aforementioned
cognitive scientists, but it is less so to engineers. As far as modeling
time variations is concerned, HMMs do relatively well at this task;
convolutional methods, i.e., those that use neural networks endowed
with weight sharing, local connectivity and pooling (properties that
will be defined below), are probably overkill, in spite of the initially
positive results of [35]. We will continue to use HMMs in our model
for handling variation along the time axis, but then apply convolution
on the frequency axis of the spectrogram. This endows the learned
acoustic features with a tolerance to small shifts in frequency, such as
those that may arise from differing vocal tract lengths, and has led
to a significant improvement over DNNs of similar complexity on
TIMIT speaker-independent phone recognition, with a relative phone
error rate reduction of about 8.5%. Learning invariant representations
over frequency (or time) are notoriously more difficult for standard
DNNs.

Deep architectures have considerable merit. They enable a model
to handle many types of variability in the speech signal. The work
of [29], [36] shows that the feature representations used in the
upper hidden layers of DNNs are indeed more invariant to small
perturbations in the input, regardless of their putative deep structural
insight or abstraction, and in a manner that leads to better model gen-
eralization and improved recognition performance, especially under
speaker and environmental variations. The more crucial question we
have undertaken to answer is whether even better performance might
be attainable if some representational knowledge that arises from a
careful study of the empirical domain can be used to explicitly handle

the variations in question.2 Vocal tract length normalization (VTLN)
is another very good example of this. VTLN warps the frequency
axis based on a single learnable warping factor to normalize speaker
variations in the speech signals, and has been shown [41], [16] to
further improve the performance of DNN-HMM hybrid models when
applied to the input features. More recently, the deep architecture
taking the form of recurrent neural networks, even with unstacked
single-layer variants, have been reported with very competitive error
rates [42].

We first review the DNN and its use within the hybrid DNN-
HMM architecture (Section II). Section III explains and elaborates
upon the CNN architecture and its uses in speech recognition. Section
IV presents limited weight sharing and the new CNN structure that
incorporates it.

II. DEEP NEURAL NETWORKS: A REVIEW

Generally speaking, a deep neural network (DNN) refers to a
feedforward neural network with more than one hidden layer. Each
hidden layer has a number of units (or neurons), each of which takes
all outputs of the lower layer as input, multiplies them by a weight
vector, sums the result and passes it through a non-linear activation
function such as sigmoid or tanh as follows:

o
(l)
i = σ(

∑
j

o
(l−1)
j w

(l)
j,i + w

(l)
0,i) (1)

where o(l)i denotes the output of the i-th unit in the l-th layer, w(l)
j,i

denotes the connecting weight from the j-th unit in the layer l − 1
to the i-th unit in the l-th layer, w(l)

0,i is a bias added to the i-th unit,
and σ(x) is the non-linear activation function. In this paper, we only
consider the sigmoid function, i.e., σ(x) = 1/(1 + exp(−x)). For
simplicity of notation, we can represent the above computation in the
following vector form:

o
(l)
i = σ(o(l−1) ·w(l)

i ) (2)

where the bias term is absorbed in the column weight vector w
(l)
i

by expanding the vector o(l−1) with an extra dimension of 1.
Furthermore, all neuron activations in each layer can be represented
in the following matrix form:

o(l) = σ(o(l−1)W(l)) (l = 1, 2, · · · , L− 1) (3)

where W(l) denotes the weight matrix of the l-th layer, with ith
column w

(l)
i for any i.

The first (bottom) layer of the DNN is the input layer and the
topmost layer is the output layer. For a multi-class classification
problem, the posterior probability of each class can be estimated
using an output softmax layer:

yi =
exp(o

(L)
i )∑

j
exp(o

(L)
j )

(4)

where o(L)
i is computed as o(L)

i = o(L−1) ·w(L)
i .

In the hybrid DNN-HMM model, the DNN replaces the GMMs to
compute the HMM state observation likelihoods. The DNN output
layer computes the state posterior probabilities which are divided
by the states’ priors to estimate the observation likelihoods. In the
training stage, forced alignment is first performed to generate a
reference state label for every frame. These labels are used in super-
vised training to minimize the cross-entropy function, Q({W(l)}) =

2Portions of this research program have appeared in [37], [38] and [39].
There have also been important extensions of this work to larger vocabulary
speech recognition tasks and to deep-learning models that retain some of the
advantages presented here [39], [40].
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−
∑

i
di log yi, shown here for one training frame with i ranging

over all target labels. The cross-entropy objective function aims at
minimizing the discrepancy between the reference target d and the
softmax DNN prediction y.

The derivative of Q with respect to each weight matrix, W(l),
can be efficiently computed based on the well-known error back-
propagation algorithm. If we use the stochastic gradient descent
algorithm to minimize the objective function, for each training sample
or mini-batch, each weight matrix update can be computed as:

∆W(l) = ε ·
(
o(l−1)

)′
e(l) (l = 1, 2, · · · , L) (5)

where ε is the learning rate and the error signal vector in the l-th
layer, e(l), is computed backwards from the sigmoid hidden unit as
follows:

e(L) = d− y (6)

e(l) =
(
e(l+1)

(
W(l+1)

)′)
•o(l)•

(
1− o(l)

)
(l = L−1, · · · , 2, 1)

(7)
where • represents element-wise multiplication of two equally sized
matrices or vectors.

Because of the increased model complexity of DNNs, a pretraining
algorithm is often needed, which initializes all weight matrices prior
to the above back-propagation algorithm, especially when the amount
of training data is limited and when no constraints are imposed on the
DNN weights (see [43] for more detailed discussions). One popular
method to pretrain DNNs uses the restricted Boltzmann machine
(RBM) as a building block. An RBM is a generative model that
models the data’s probability distribution. An RBM has a set of
hidden units that are used to compute a better feature representation
of the input data. After learning, all RBM weights can be used as a
good initialization for one DNN layer. The weights are learned one
layer at a time starting from the bottom hidden layer. The hidden
activations computed using the learned weights are sent as input to
another RBM that can be used to initialize another layer on top.
The contrastive divergence algorithm is normally used to learn RBM
weights; see [13] for more details.

III. CONVOLUTIONAL NEURAL NETWORKS AND THEIR USE IN

ASR

The convolutional neural network (CNN) can be regarded as a
variant of the standard neural network. Instead of using fully con-
nected hidden layers as described in the preceding section, the CNN
introduces a special network structure, which consists of alternating
so-called convolution and pooling layers.

A. Organization of the Input Data to the CNN

In using the CNN for pattern recognition, the input data need
to be organized as a number of feature maps to be fed into the
CNN. This is a term borrowed from image-processing applications, in
which it is intuitive to organize the input as a two-dimensional (2-D)
array, being the pixel values at the x and y (horizontal and vertical)
coordinate indices. For color images, RGB (red, green, blue) values
can be viewed as three different 2-D feature maps. CNNs run a small
window over the input image at both training and testing time, so that
the weights of the network that looks through this window can learn
from various features of the input data regardless of their absolute
position within the input. Weight sharing, or to be more precise in
our present situation, full weight sharing refers to the decision to use
the same weights at every positioning of the window. CNNs are also
often said to be local because the individual units that are computed

at a particular positioning of the window depend upon features of the
local region of the image that the window currently looks upon.

In this section, we discuss how to organize speech feature vectors
into feature maps that are suitable for CNN processing. The input
“image” in question for our purposes can loosely be thought of as a
spectrogram, with static, delta and delta-delta features (i.e., first and
second temporal derivatives) serving in the roles of red, green and
blue, although, as described below, there is more than one alternative
for how precisely to bundle these into feature maps.

In keeping with this metaphor, we need to use inputs that preserve
locality in both axes of frequency and time. Time presents no
immediate problem from the standpoint of locality. Like other DNNs
for speech, a single window of input to the CNN will consist of a wide
amount of context (9–15 frames). As for frequency, the conventional
use of MFCCs does present a major problem because the discrete
cosine transform projects the spectral energies into a new basis that
may not maintain locality. In this paper, we shall use the log-energy
computed directly from the mel-frequency spectral coefficients (i.e.,
with no DCT), which we will denote as MFSC features. These will
be used to represent each speech frame, along with their deltas and
delta-deltas, in order to describe the acoustic energy distribution in
each of several different frequency bands.

There exist several different alternatives to organizing these MFSC
features into maps for the CNN. First, as shown in Fig. 1.b, they can
be arranged as three 2-D feature maps, each of which represents
MFSC features (static, delta and delta-delta) distributed along both
frequency (using the frequency band index) and time (using the
frame number within each context window). In this case, a two-
dimensional convolution is performed (explained below) to normalize
both frequency and temporal variations simultaneously. Alternatively,
we may only consider normalizing frequency variations. In this
case, the same MFSC features are organized as a number of one-
dimensional (1-D) feature maps (along the frequency band index), as
shown in Fig. 1.c. For example, if the context window contains 15
frames and 40 filter banks are used for each frame, we will construct
45 (i.e., 15 times 3) 1-D feature maps, with each map having 40
dimensions, as shown in Fig. 1.c. As a result, a one-dimensional
convolution will be applied along the frequency axis. In this paper,
we will only focus on this latter arrangement found in Fig. 1.c, a
one-dimensional convolution along frequency.

Once the input feature maps are formed, the convolution and
pooling layers apply their respective operations to generate the
activations of the units in those layers, in sequence, as shown in Fig.
2. Similar to those of the input layer, the units of the convolution and
pooling layers can also be organized into maps. In CNN terminology,
a pair of convolution and pooling layers in Fig. 2 in succession is
usually referred to as one CNN “layer.” A deep CNN thus consists of
two or more of these pairs in succession. To avoid confusion, we will
refer to convolution and pooling layers as convolution and pooling
plies, respectively.

B. Convolution Ply

As shown in Fig. 2, every input feature map (assume I is the
total number), Oi (i = 1, · · · , I), is connected to many feature
maps (assume J in the total number), Qj (j = 1, · · · , J), in the
convolution ply based on a number of local weight matrices (I × J
in total), wi,j (i = 1, · · · , I; j = 1, · · · , J). The mapping can
be represented as the well-known convolution operation in signal
processing. Assuming input feature maps are all one dimensional,
each unit of one feature map in the convolution ply can be computed
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Fig. 1. Two different ways can be used to organize speech input features to a CNN. The above example assumes 40 MFSC features plus first and second
derivatives with a context window of 15 frames for each speech frame.
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ply and a pooling ply in succession, where mapping from either the input layer
or a pooling ply to a convolution ply is based on eq.(9) and mapping from a
convolution ply to a pooling ply is based on eq.(10).

as:

qj,m = σ(

I∑
i=1

F∑
n=1

oi,n+m−1wi,j,n + w0,j), (j = 1, · · · , J) (8)

where oi,m is the m-th unit of the i-th input feature map Oi, qj,m is
the m-th unit of the j-th feature map Qj in the convolution ply, wi,j,n

is the nth element of the weight vector, wi,j , which connects the ith
input feature map to the jth feature map of the convolution ply. F
is called the filter size, which determines the number of frequency
bands in each input feature map that each unit in the convolution
ply receives as input. Because of the locality that arises from our
choice of MFSC features, these feature maps are confined to a limited
frequency range of the speech signal. Equation (8) can be written in
a more concise matrix form using the convolution operator ∗ as:

Qj = σ(

I∑
i=1

Oi ∗wi,j) (j = 1, · · · , J), (9)

where Oi represents the i-th input feature map and wi,j represents
each local weight matrix, flipped to adhere to the convolution oper-
ation’s definition. Both Oi and wi,j are vectors if one dimensional
feature maps are used, and are matrices if two dimensional feature
maps are used (where 2-D convolution is applied to the above
equation), as described in the previous section. Note that, in this
presentation, the number of feature maps in the convolution ply
directly determines the number of local weight matrices that are used
in the above convolutional mapping. In practice, we will constrain
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connected
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Frames

Fig. 3. An illustration of the regular CNN that uses so-called full weight
sharing. Here, a 1-D convolution is applied along frequency bands.

many of these weight matrices to be identical. It is also important
to remember that the windows through which we view the input
and apply one of these weight matrices will generally overlap. The
convolution operation itself produces lower-dimensional data — each
dimension decreases by filter size F minus one — but we can pad
the input with dummy values (both dummy time frames and dummy
frequency bands) to preserve the size of the feature maps. As a result,
there could in principle be as many locations in the feature map of
the convolution ply as there are in the input.

A convolution ply differs from a standard, fully connected hidden
layer in two important aspects, however. First, each convolutional
unit receives input only from a local area of the input. This means
that each unit represents some features of a local region of the input.
Second, the units of the convolution ply can themselves be organized
into a number of feature maps, where all units in the same feature
map share the same weights but receive input from different locations
of the lower layer.

C. Pooling Ply

As shown in Fig. 2, a pooling operation is applied to the convo-
lution ply to generate its corresponding pooling ply. The pooling ply
is also organized into feature maps, and it has the same number of
feature maps as the number of feature maps in its convolution ply, but
each map is smaller. The purpose of the pooling ply is to reduce the
resolution of feature maps. This means that the units of this ply will
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serve as generalizations over the features of the lower convolution ply,
and, because these generalizations will again be spatially localized in
frequency, they will also be invariant to small variations in location.
This reduction is achieved by applying a pooling function to several
units in a local region of a size determined by a parameter called
pooling size. It is usually a simple function such as maximization
or averaging. The pooling function is applied to each convolution
feature map independently. When the max-pooling function is used,
the pooling ply is defined as:

pi,m =
G

max
n=1

qi,(m−1)×s+n (10)

where G is the pooling size, and s, the shift size, determines
the overlap of adjacent pooling windows. Similarly, if the average
function is used, the output is calculated as:

pi,m = r

G∑
n=1

qi,(m−1)×s+n (11)

where r is a scaling factor that can be learned. In image recognition
applications, under the constraint that G = s, i.e., in which the
pooling windows do not overlap and have no spaces between them,
it has been claimed that max-pooling performs better than average-
pooling [44]. In this work we will adjust G and s independently.
Moreover, a non-linear activation function can be applied to the above
pi,m to generate the final output. Fig. 3 shows a pooling ply with
a pooling size of three. Each pooling unit receives input from three
convolution ply units in the same feature map. If G = s, then the
pooling ply would be one-third of the size of the convolution ply.

D. Learning Weights in the CNN

All weights in the convolution ply can be learned using the same
error back-propagation algorithm but some special modifications are
needed to take care of sparse connections and weight sharing. In
order to illustrate the learning algorithm for CNN layers, let us
first represent the convolution operation in eq. (9) in the same
mathematical form as the fully connected ANN layer so that the
same learning algorithm in section II can be similarly applied.

When one-dimensional feature maps are used, the convolution op-
erations in eq. (9) can be represented as a simple matrix multiplication
by introducing a large sparse weight matrix Ŵ as shown in Fig. 4,
which is formed by replicating a basic weight matrix W as in Fig.
4a. The basic matrix W is constructed from all of the local weight
matrices, wi,j , as follows:

W =



w1,1,1 w1,2,1 · · · w1,J,1

...
...

. . .
...

wI,1,1 wI,2,1 · · · wI,J,1

...
...

. . .
...

wI,1,2 wI,2,2 · · · wI,J,2

...
...

. . .
...

wI,1,F wI,2,F · · · wI,J,F


I·F×J

(12)

where W is organized as I · F rows, where again F denotes filter
size, each band contains I rows for I input feature maps, and W
has J columns representing the weights of J feature maps in the
convolution ply.

Meanwhile, the input and the convolution feature maps are also
vectorized as row vectors ô and q̂. One single row vector ô is created
from all of the input feature maps Oi (i = 1, · · · , I) as follows:

ô = [ v1 |v2 | ... |vM ] , (13)

where vm is a row vector containing the values of the mth frequency
band along all I feature maps, and M is the number of frequency
bands in the input layer. Therefore, the convolution ply outputs
computed in eq. (9) can be equivalently expressed as a weight vector:

q̂ = σ
(
ôŴ

)
(14)

This equation has the same mathematical form as a regular fully
connected hidden layer as in eq.(2). Therefore, the convolution ply
weights can be updated using the back-propagation algorithm as in
eq.(5). The update for Ŵ is similarly calculated as:

∆Ŵ = ε · ô′e. (15)

The treatment of shared weights in the convolution ply is slightly
different from the fully-connected DNN case where there is no weight
sharing. The difference is that for the shared weights here, we sum
them in their updates according to:

∆wi,j,n =
∑
m

∆Ŵi+(m+n−2)×I,j+(m−1)×J (16)

where I and J are the number of feature maps in the input layer and
convolution ply, respectively. Moreover, the above error vector e is
either computed in the same way as in eq.(6) or back-propagated to
the lower layer using the sparse matrix, Ŵ, as in eq.(7). Similarly,
the biases can be handled by adding one row to the Ŵ matrix to
hold the bias values replicated among all convolution ply bands and
adding one element with a value of one to the vector ô.

Since the pooling ply has no weights, no learning is needed here.
However, the error signals should be back-propagated to lower plies
through the pooling function. In the case of max-pooling, the error
signal is passed backwards only to the most active (largest) unit
among each group of pooled units. That is, the error signal reaching
the lower convolution ply can be computed as:

elow
i,n =

∑
m

ei,m · δ(ui,m + (m− 1)× s− n), (17)

where δ(x) is the delta function and it has the value of 1 if x is 0 and
zero otherwise, and ui,m is the index of the unit with the maximum
value among the pooled units and is defined as:

ui,m =
G

argmax
n=1

qi,(m−1)×s+n (18)

E. Pretraining CNN Layers

RBM-based pretraining improves DNN performance especially
when the training set is small. Pretraining initializes DNN weights
to a proper range that leads to better optimization and regularization.
For convolutional structure, a convolutional RBM (CRBM) has been
proposed in [45]. Similar to RBMs, the training of the CRBM
aims to maximize the likelihood function of the full training data
according to an approximate contrastive divergence (CD) algorithm.
In CRBMs, the convolution ply activations are stochastic. CRBMs
define a multinomial distribution over each pool of hidden units in a
convolution ply. Hence, at most one unit in each pooled set of units
can be active. This requires either having no overlap between pooled
units (i.e., G = s) or attaching different convolution units to each
pooling unit as in the limited weight sharing described below in Sec.
IV. Refer to [45] for more details on CRBM-based pretraining.

F. Treatment of Energy Features

In ASR, log-energy is usually calculated per frame and appended
to other spectral features. In a CNN, it is not suitable to treat energy
the same way as other filter bank energies since it is the sum of the
energy in all frequency bands and so does not depend on frequency.
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Fig. 4. All convolution operations in each convolution ply can be equivalently represented as one large matrix multiplication involving a sparse weight matrix,
where both local connectivity and weight sharing can be represented in the structure of this sparse weight matrix. This figure assumes a filter size of 5, 45
input feature maps and 80 feature maps in the convolution ply. Sub-figure b shows an additional vector consisting of energy bands.

Instead, the log-energy features should be appended as extra inputs
to all convolution units as shown in Fig. 4b. Other non-localized
features can be similarly treated. The experimental results in section
V show a consistent improvement in overall system performance
by using the log-energy feature. There has been some question as
to whether this improvement holds in larger-scale ASR tasks [40].
Nevertheless, these experiments at least show that nothing in principle
prevents frequency-independent features such as log-energy from
being accommodated within a CNN architecture when they stand
to improve performance.

G. The Overall CNN Architecture

The building block of the CNN contains a pair of hidden plies:
a convolution ply and a pooling ply. The input contains a number
of localized features organized as a number of feature maps. The
size (resolution) of feature maps gets smaller at upper layers as more
convolution and pooling operations are applied. Usually one or more
fully connected hidden layers are added on top of the final CNN layer
in order to combine the features across all frequency bands before
feeding to the output layer.

In this paper, we follow the hybrid ANN-HMM framework, where
we use a softmax output layer on top of the topmost layer of the
CNN to compute the posterior probabilities for all HMM states.
These posteriors are used to estimate the likelihood of all HMM
states per frame by dividing by the states’ prior probabilities. Finally,
the likelihoods of all HMM states are sent to a Viterbi decoder to
recognize the continuous stream of speech units.

H. Benefits of CNNs for ASR

The CNN has three key properties: locality, weight sharing, and
pooling. Each one of them has the potential to improve speech
recognition performance. Locality in the units of the convolution ply

allows more robustness against non-white noise where some bands
are cleaner than the others. This is because good features can be
computed locally from cleaner parts of the spectrum and only a
smaller number of features are affected by the noise. This gives a
better chance to higher layers of network to handle this noise because
they can combine higher level features computed for each frequency
band. This is clearly better than simply handling all input features
in the lower layers as in standard, fully connected neural networks.
Moreover, locality reduces the number of network weights to be
learned.

Weight sharing can also improve model robustness and reduce
overfitting as each weight is learned from multiple frequency bands
in the input instead of just from one single location. It reduces
the number of weights to learn in the network, moreover. Both
locality and weight sharing are needed for the property of pooling. In
pooling, the same feature values computed at different locations are
pooled together and represented by one value. This leads to minimal
differences in the features extracted by the pooling ply when the
input patterns are slightly shifted along the frequency dimension,
especially when max-pooling is used. This is very helpful in handling
small frequency shifts that are common in speech signals. These
frequency shifts may result from differences in vocal tract lengths
among different speakers. Even for the same speaker, small frequency
shifts may often occur. These shifts are difficult to handle within other
models such as GMMs and DNNs, where many Gaussians and hidden
units are needed to handle all possible pattern shifts. Moreover, it is
difficult to learn such an operation as max-pooling in a standard ANN.

The same difficulty applies to temporal differences in the speech
features as well. In a hybrid ANN-HMM, a number of frames
within a context window are usually processed simultaneously by the
ANN. The temporal variability due to varying speaking rate may be
difficult to handle. CNNs, however, can handle this type of variability
naturally when convolution is applied along the contextual window
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frames. On the other hand, since the CNN is required to compute
an output for each frame for decoding, pooling or shift size may
affect the fine resolution seen by higher layers of the CNN, and a
large pooling size may affect state labels’ localizations. This may
cause phonetic confusion, especially at segment boundaries. Hence,
a suitable pooling size must be chosen.

IV. CNN WITH LIMITED WEIGHT SHARING FOR ASR

A. Limited Weight Sharing (LWS)

The weight sharing scheme in Fig. 3, as described in the previous
section, is full weight sharing (FWS). This is the standard for CNNs
as used in image processing, since the same patterns may appear at
any location in an image. The properties of the speech signal typically
vary over different frequency bands, however. Using separate sets of
weights for different frequency bands may be more suitable since
it allows for detection of distinct feature patterns in different filter
bands along the frequency axis. Fig. 5 shows an example of the
limited weight sharing (LWS) scheme for CNNs, where only the
convolution units that are attached to the same pooling unit share
the same convolution weights. These convolution units need to share
their weights so that they compute comparable features, which may
then be pooled together. In other words, each frequency band can be
considered as a separate subnet with its own convolution weights. We
call each of these subnets a section for notational convenience. Each
section contains a number of feature maps in the convolution ply.
Each of these feature maps is produced by using one weight vector
to scan all input dimensions in this section to determine the existence
or absence of this feature. The pooling size determines the number
of applications of this weight vector to neighboring locations in the
input space, i.e., the size of each feature map in the convolution ply
equals the pooling size. Each pooling unit in this section summarizes
an entire convolution feature map into one number using a pooling
function, such as maximization or averaging. In mathematical terms,
the convolution ply activations can be computed as:

qk,j,m = σ(
∑

i

F∑
n=1

oi,(k−1)×s+n+m−1 · wk,i,j,n + wk,0,j) (19)

where wk,i,j,n denotes the n-th convolution weight, mapping from
the i-th input feature map to the j-th convolution map in the k-th
section, where m ranges from 1 up to G (pooling size). The pooling
ply activations in this case can be computed using:

pk,j =
G

max
m=1

qk,j,m. (20)

Similarly, the above LWS convolution ply can also be represented
with matrix multiplication using a large sparse matrix as in eq.(14)
but both ô and Ŵ need to be constructed in a slightly different way.
First of all, the sparse matrix Ŵ is constructed as in Fig. 6, where
each Wk is formed based on local weights, wk,i,j,n, as follows:

Wk =



wk,1,1,1 wk,1,2,1 · · · wk,1,J,1

...
...

. . .
...

wk,I,1,1 wk,I,2,1 · · · wk,I,J,1

...
...

. . .
...

wk,I,1,2 wk,I,2,2 · · · wk,I,J,2

...
...

. . .
...

wk,I,1,F wk,I,2,F · · · wk,I,J,F


I·F×J

(k = 1, 2, · · · ,K)

(21)
where these matrices Wk differ by section and the same weight
matrix is replicated G times within each section. Secondly, the

Share same weights 

max pooling

layer nodes

Static, ∆, ∆∆
Convolution layer

feature maps

Frequency 

bands

Frames

Fig. 5. An illustration of a CNN with limited weight sharing. 1-D convolution
is applied along the frequency bands.

convolution ply input is vectorized as described in eq.(13), and the
computed feature maps are organized as a large row vector q̂ by
concatenating all values in each section as follows:

q̂ = [ v1,1 | ... |v1,G | ... |vK,1 | ... |vK,G ], (22)

where K is the total number of sections, G is the pooling size and
vk,m is a row vector containing the values of the units in the m-th
band of the k-th section across all feature maps of the convolution
ply:

v̂k,m = [ qk,1,m, qk,2,m, ... qk,I,m ], (23)

where I is the total number of input feature maps within each section.
Learning the weights, in the case of limited weight sharing, can

be done using the same eqs. (14) and (15) with Ŵ and q̂ as defined
above. Meanwhile, error vectors are propagated through the max
pooling function as follows:

elow
k,i,n = ek,i · δ(uk,i − n) (24)

with:
uk,i =

G
argmax

m=1

qk,i,m. (25)

LWS also helps to reduce the total number of units in the pooling
ply because each frequency band uses special weights that consider
only the patterns appearing in the corresponding frequency range.
As a result, a smaller number of feature maps per band should be
sufficient. On the other hand, the LWS scheme does not allow for the
addition of further convolution plies on top of the pooling ply since
the features in different pooling-ply sections in LWS are unrelated
and cannot be convolved locally. An LWS convolution ply on top of
a regular full weight sharing one would be possible, however.

B. Pretraining of LWS-CNN

In this section, we propose to modify the CRBM model in [45]
for pretraining the CNN with LWS as discussed in the preceding
subsection. For learning the CRBM parameters, we need to define
the conditional probabilities of the states of the hidden units given
the visible ones and vice versa. The conditional probability of the
activation for a hidden unit, hk,j,m, which represents the state of
the m-th frequency band of the j-th feature map from the k-th
section, given the CRBM input v, is defined as the following softmax
function:

P (hk,j,m = 1|v) =
exp
(
I(hk,j,m)

)∑p

n=1
exp
(
I(hk,j,n)

) , (26)



8

 

… 

… 

…
 

Frequency bands 

of the input 

45 rows for 

different 

feature maps in 

each band 

4 convolution bands in 

one section (pooling 

size of 4) 
80 columns for 

different feature 

maps in each 

band 

Filter size 

(5 bands) 

Shared weights of the 1st section (W�). 

Different 

convolution 

sections. 

Shift of 2 frequency 

bands (sub-sampling 

factor of 2) 

W� 
W� 
W� 
W� 

W� 
W� 
W� 
W� 

W� 
W� 
W� 
W� 
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figure assumes a filter size of 5, a pooling size of 4, 45 input feature maps,
and 80 feature maps in the convolution ply.

where I(hk,j,m) is the sum of the weighted signal reaching unit
hk,j,m from the input layer and is defined as:

I(hk,j,m) =
∑

i

f∑
n=1

vi,(k−1)×s+n+m−1wk,i,j,n + wk,i,j,0 (27)

The conditional probability distribution of vi,n, which is the visible
unit at the nth frequency band of the ith feature map, given the hidden
unit states, can be computed by the following Gaussian distribution:

P (vi,n|h) = N (vi,n;
∑

j,(k,m)∈C(i,n)

hk,j,mwk,i,j,f(n,k,m) , σ
2)

(28)
where the above mean is the sum of the weighted signal arriving
from the hidden units that are connected to the visible units, C(i, n)
represents these connections as the set of indices of convolution
bands and sections that receive input from the visible unit vi,n,
wk,i,j,f(n,k,m) is the weight on the link from the n-th band of the
i-th input feature map to the m-th band of the j-th feature map of the
k-th convolution section, f(n, k,m) is a mapping function from the
indices of connected nodes to the corresponding index of the filter
element, and σ2 is the variance of the Gaussian distribution and it is
a fixed model parameter.

Based on the above two conditional probabilities, all connection
weights of the above CRBM can be iteratively estimated by using
the regular contrastive divergence (CD) algorithm. The weights of the
trained CRBMs can be used as good initial values for the convolution
ply in the LWS scheme. After the first convolution ply weights are
learned, they are used to compute the convolution and pooling ply
outputs using eqs. (19) and (20). The outputs of the pooling ply are
used as inputs to continuously pretrain the next layer as done in deep
belief network training [46].

V. EXPERIMENTS

The experiments of this section have been conducted on two speech
recognition tasks to evaluate the effectiveness of CNNs in ASR:
small-scale phone recognition in TIMIT and large vocabulary voice
search (VS) task. There have been extensions of the work described
in this paper to other larger vocabulary speech recognition tasks that
lend further support to the value of this approach [39], [40].

A. Speech Data and Analysis

The method of speech analysis is similar in the two datasets.
Speech is analyzed using a 25-ms Hamming window with a fixed
10-ms frame rate. Speech feature vectors are generated by Fourier-
transform-based filter-bank analysis, which includes 40 log energy
coefficients distributed on a mel scale, along with their first and
second temporal derivatives. All speech data were normalized so that
each vector dimension has a zero mean and unit variance.

B. TIMIT Phone Recognition Results

For TIMIT, we used the standard 462-speaker training set and
removed all SA records, since they may bias the results. A separate
development set of 50 speakers was used for tuning all meta-
parameters including the learning schedule and multiple learning
rates. Results are reported using the 24-speaker core test set, which
has no overlap with the development set. In addition to the log MFSC
features, we added a log energy feature per frame. The log energy
was normalized per utterance to have a maximum value of one, and
then normalized to have zero mean and unit variance over the whole
training data set. The energy feature is handled within a CNN as
described in section III.

We used 183 target class labels, i.e., 3 states for each HMM of 61
phones. After decoding, the original 61 phone classes were mapped
to a set of 39 classes as in [47] for final scoring. In our experiments, a
bigram language model over phones, estimated from the training set,
was used in decoding. To prepare the ANN targets, a mono-phone
HMM model was trained on the training data set, and it was used
to generate state-level labels based on forced alignment. For neural-
network training, learning rate annealing, in which the learning rate
is steadily decreased over successive iterations, and early stopping
strategies, in which a held-out development set is used to determine
when overfitting has started, were utilized, as in [46].

We conducted many experiments on CNNs using both full weight
sharing (FWS) and limited weight sharing (LWS) schemes. In this
section, we first evaluate the ASR performance of CNNs under
different settings of the CNN parameters. We normally fix all
parameters except one and show how recognition performance varies
with the remaining parameter. In these experiments we used one
convolution ply, one pooling ply and two fully connected hidden
layers on the top. The fully connected layers had 1000 units in each.
The convolution and pooling parameters were: pooling size of 6, shift
size of 2, filter size of 8, 150 feature maps for FWS, and 80 feature
maps per frequency band for LWS. In all experiments, we fixed a
random number generation seed for both weight initialization and
order randomization of the training data. In the last table, we report
the average of 3 runs with different seeds to compare recognition
performance among DNNs, FWS-CNNs and LWS-CNNs.

1) Effects of varying CNN parameters: In this section, we analyze
the effects of changing different CNN parameters. Figures 7, 8, 9, and
10 show the results of these experiments on both the core test set
(Test) and the development set (Dev). The figures show that both
the pooling size and the number of feature maps have the most
significant impact on the final ASR performance. Fig. 7 shows that all
configurations yield better performance with increasing pooling size
up to 6. LWS yields better performance with bigger pooling sizes.
Figs. 7 and 8 show that overlapping pooling windows do not produce
a clear performance gain, and that using the same value for both the
pooling size and the shift size produces a similar performance while
decreasing the model complexity. Fig. 9 shows that a larger number
of feature maps usually leads to better performance, especially with
FWS. It also shows that LWS can achieve better performance with a
smaller number of feature maps than FWS due to its ability to learn
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pooling plys use a filter size of 8, 150 feature maps for FWS, and 80 feature
maps per frequency band for LWS. A shift size of 2 is used with LWS and
FWS while a shift size equal to the pooling size is used for LWS(SS) and
FWS(SS).
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Fig. 8. Effects of different CNN shift sizes on Phone Error Rate (PER in
%) for LWS and FWS. The convolution and pooling plys use a pooling size
of 6, filter size of 8, 150 feature maps for FWS, and 80 feature maps per
frequency band for LWS.

different feature patterns for different frequency bands. This indicates
that the LWS scheme is more efficient in terms of the number of
hidden units.

2) Effects of energy features: Table I shows the benefit of using
energy features, producing a significant accuracy improvement, es-
pecially for FWS. While the energy features can be easily derived
from other MFSC features, adding them as separate inputs to the
convolution filters results in more discriminative power as it provides
a way to compare the local frequency bands processed by the filter
with the overall spectrum.

3) Effects of pooling functions: Table II shows that the max-
pooling function performs better than the average function with
the LWS scheme. These results are consistent with what has been
observed in image recognition applications [44].

4) Overall Performance: Here we compare the overall perfor-
mance of different CNN configurations with a baseline DNN system
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Fig. 9. Effects of different numbers of feature maps on Phone Error Rate
(PER in %) for LWS and FWS. The convolution and pooling plys used a
pooling size of 6, shift size of 2, filter size of 8.
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Fig. 10. Effects of different filter sizes on Phone Error Rate (PER in %) for
LWS and FWS. The convolution and pooling plys use a pooling size of 6,
shift size of 2, 150 feature maps for FWS, and 80 feature maps per frequency
band for LWS.

TABLE I
EFFECTS OF USING ENERGY FEATURES ON PERCENT PER FOR THE TEST
SET. THE CONVOLUTION AND POOLING PLYS USE A POOLING SIZE OF 6,

SHIFT SIZE OF 2, FILTER SIZE OF 8, 150 FEATURE MAPS FOR FWS, AND 80
FEATURE MAPS PER FREQUENCY BAND FOR LWS.

No Energy Energy
LWS 20.61% 20.39%
FWS 21.19% 20.55%

TABLE II
EFFECTS OF POOLING FUNCTIONS ON PERCENT PER. THE EXPERIMENTAL

SETTING IS THE SAME AS TABLE I.

Average Max
Development Set 19.63% 18.56%
Test Set 21.6% 20.39%

on the same TIMIT task. All results of the comparison are listed
in Table III, along with the numbers of weight parameters and
computations in each model. Average PERs were obtained over three
runs with different random seeds. The first row shows the average
PER obtained from a DNN that had three hidden layers. Its first
hidden layer had 2000 units, to match the increased number of units
in the CNN. The other two hidden layers had 1000 units in each.
The second row reports the average PER from a similar DNN with 5
layers. The parameters of CNNs in rows 3 and 4 were chosen based
on the performance obtained on the Dev set in the previous sections.
Both had a filter size of 8, a pooling size of 6, and a shift size of
2. The number of feature maps was 150 for LWS and 360 for FWS.
The results in Table III show that the CNN performance was much
better than that of the corresponding DNN and that LWS was slightly
better than FWS even with less than half the number of units in the
pooling ply. Although the number of units in the LWS convolution
ply was slightly larger than that of the FWS, LWS-CNN gives a
much smaller model size since LWS results in far fewer weights in
the upper, fully connected layers. The CNN with LWS gave more
than an 8% relative reduction in PER over the DNN. The fifth row
in Table III shows the performance of using two pairs of convolution
and pooling plies with FWS in addition to two fully connected hidden
layers on top. The sixth row shows the performance for the same
model when the second convolution layer uses LWS. We coarsely
tuned the two-layer parameters on the development set, and obtained
a PER of 20.23% and 20.36% which show only minor differences to
using one convolution layer. On the other hand, using two convolution
layers tends to result in a smaller number of parameters as the fourth
column shows.
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TABLE III
PERFORMANCE ON TIMIT OF DIFFERENT CNN CONFIGURATIONS, COMPARED WITH DNNS, ALONG WITH THE SIZE OF THE MODEL IN TOTAL NUMBER
OF PARAMETERS, AND THE SPEED IN TOTAL NUMBER OF MULTIPLY-AND-ACCUMULATE OPERATIONS. AVERAGE PERS WERE COMPUTED OVER 3 RUNS
WITH DIFFERENT RANDOM SEEDS AND SHOWN IN THE 3RD COLUMN, WHILE THE MINIMUM AND MAXIMUM PERS ARE SHOWN IN THE 4TH COLUMN.

THE SECOND COLUMN SHOWS THE NETWORK STRUCTURE AND THE CONFIGURATION OF THE HIDDEN LAYERS ARE SHOWN WITHIN BRACES. THE
NUMBER OF NODES OF A FULLY CONNECTED LAYER IS GIVEN DIRECTLY. FOR CNN LAYERS THE CNN LAYER PARAMETERS ARE GIVEN FOR FWS OR

LWS IN BRACKETS WHERE: ’M’ IS THE NUMBER OF FEATURE MAPS, ’P’ IS THE POOLING SIZE, ’S’ IS THE SHIFT SIZE, AND ’F’ IS THE FILTER SIZE.

ID Network structure Average PER min-max PER # param’s # op’s
1 DNN {2000 + 2×1000} 22.02% 21.86-22.11% 6.9M 6.9M
2 DNN {2000 + 4×1000} 21.87% 21.68-21.98% 8.9M 8.9M
3 CNN {LWS(m:150 p:6 s:2 f:8) + 2×1000} 20.17% 19.92-20.41% 5.4M 10.7M
4 CNN {FWS(m:360 p:6 s:2 f:8) + 2×1000} 20.31% 20.16-20.58% 8.5M 13.6M
5 CNN {FWS(m:150 p:4 s:2 f:8) 20.23% 20.11-20.29% 4.5M 11.7M

+ FWS(m:300 p:2 s:2 f:6) + 2×1000}
6 CNN {FWS(m:150 p:4 s:2 f:8) 20.36% 19.91-20.61% 4.1M 7.5M

+ LWS(m:150 p:2 s:2 f:6) + 2×1000}

TABLE IV
PERFORMANCE ON THE VS LARGE VOCABULARY DATA SET IN PERCENT

WER WITH AND WITHOUT PRETRAINING (PT). THE EXPERIMENTAL
SETTING IS THE SAME AS TABLE I.

No PT With PT
DNN 37.1% 35.4%
CNN 34.2% 33.4%

C. Large Vocabulary Speech Recognition Results

In this section, we examine the recognition performance of CNNs
on a large vocabulary ASR task. We used a voice search dataset
containing 18 hours of speech data. Initially, a conventional state-
tied triphone HMM was built. The HMM state labels were used as
the targets in training both the DNNs and CNNs, which both followed
the standard recipe. The first 15 epochs were run with a learning rate
of 0.08, followed by 10 additional epochs with a reduced learning rate
of 0.002. We investigated the effects of pretraining using an RBM for
the fully connected layers and using a CRBM, as described in section
IV-B, for the convolution and pooling plies. In this section, we used
bigger hidden layers of 2000 units each. The DNN had three hidden
layers while the CNN had one pair of convolution and pooling plies
in addition to two hidden fully connected layers. The CNN layer used
limited weight sharing and had 84 feature maps per section. It had a
filter size of 8, a pooling size of 6, and a shift size of 2. Moreover,
the context window had 11 frames. Frame energy features were not
used in these experiments.

Table IV shows that the CNN improves word error rate (WER)
performance over the DNN regardless of whether pretraining is used.
Similar to the TIMIT results, the CNN improves performance by
about an 8% relative error reduction over the DNN in the VS task
without pretraining. With pretraining, the relative word error rate
reduction is about 6%. Moreover, the results show that pretraining the
CNN can improve its performance, although the effect of pretraining
for the CNN is not as strong as that for the DNN.

VI. CONCLUSIONS

In this paper, we have described how to apply CNNs to speech
recognition in a novel way, such that the CNN’s structure directly
accommodates some types of speech variability. We showed a perfor-
mance improvement relative to standard DNNs with similar numbers
of weight parameters using this approach (about 6-10% relative error
reduction), in contrast to the more equivocal results of convolving
along the time axis, as earlier applications of CNNs to speech
had attempted [33], [34], [35]. Our hybrid CNN-HMM approach
delegates temporal variability to the HMM, while convolving along
the frequency axis creates a degree of invariance to small frequency

shifts, which normally occur in actual speech signals due to speaker
differences.

In addition, we have proposed a new, limited weight sharing
scheme that can handle speech features in a better way than the full
weight sharing that is standard in previous CNN architectures such
as those used in image processing. Limited weight sharing leads to
a much smaller number of units in the pooling ply, resulting in a
smaller model size and lower computational complexity than the full
weight sharing scheme.

We observed improved performance on two ASR tasks: TIMIT
phone recognition and a large-vocabulary voice search task, across a
variety of CNN parameter and design settings. We determined that
the use of energy information is very beneficial for the CNN in terms
of recognition accuracy. Further, the ASR performance was found to
be sensitive to the pooling size, but insensitive to the overlap between
pooling units, a discovery that will lead to better efficiency in storage
and computation. Finally, pretraining of CNNs based on convolutional
RBMs was found to yield better performance in the large-vocabulary
voice search experiment, but not in the phone recognition experiment.
This discrepancy is yet to be examined thoroughly in our future work.
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