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Summary

A simultaneous confidence band provides a variety of inferences on the unknown

components of a regression model. There are several recent papers using confidence

bands for various inferential purposes; see for example Sun, Raz and Faraway (1999),

Spurrier (1999), Al-Saidy et al. (2003), Liu, Jamshidian and Zhang (2004), Bhargava

and Spurrier (2004), Piegorsch et al. (2005), and Liu et al. (2007). Construction of

simultaneous confidence bands for a simple linear regression model has a rich history,

going back to the work of Working and Hotelling (1929). The purpose of this article

is to consolidate the disparate modern literature on simultaneous confidence bands
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in linear regression, and to provide expressions for the construction of exact 1 − α

level simultaneous confidence bands for a simple linear regression model of either one-

sided or two-sided form. We center attention on the three most recognized shapes:

hyperbolic, two-segment, and three-segment (which is also referred to as a trapezoidal

shape and includes a constant-width band as a special case). Some of these expressions

have already appeared in the statistics literature, and some are newly derived in this

article. The derivations typically involve a standard bivariate t random vector and

its polar coordinate transformation.

Key words: Simple linear regression; Simultaneous inferences; Bivariate normal; Bivariate t; Polar

coordinators.

1 Introduction

Suppose that data (xj , yj) are available which are modelled as

yj = b0 + b1xj + εj

for 1 ≤ j ≤ n, where the εj are independently distributed as N(0, σ2) random variables, and b0,

b1 and σ2 are unknown parameters.

Let X denote the design matrix, whose ith row is given by (1, xi), i = 1, · · · , n. Then

(XT X)−1 =
1∑n

j=1(xj − x̄)2




∑n
j=1 x2

j/n, −x̄

−x̄, 1




where x̄ =
∑n

j=1 xj/n. Denote the least square estimators of b = (b0, b1)T and σ by b̂ = (b̂0, b̂1)T

and σ̂ respectively. Then b̂ ∼ N2(b, σ2(XT X)−1), σ̂/σ ∼
√

χ2
k/k where k = n − 2, and b̂ and

σ̂ are independent random variables.
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In this article we consider the construction of confidence bands (l(x), u(x)) for b0 + b1x over

an interval x ∈ (a,A) that have simultaneous confidence level equal to 1− α:

inf
−∞<b0,b1<∞, σ>0

P{ l(x) < b0 + b1x < u(x) for all x ∈ (a,A) } = 1− α (1)

where l(x) and u(x) are given functions representing the lower and upper components respectively

of the band, with −∞ ≤ a < A ≤ ∞ and α ∈ (0, 1) as given constants. A confidence band

provides useful information on where the true but unknown regression line lies; a straight line is

a plausible candidate for the unknown regression line if and only if it is contained completely inside

the confidence band. There are several recent papers that consider applications of confidence

bands. For example, Sun, Raz and Faraway (1999) used simultaneous confidence bands for

making inferences about growth and response curves, Al-Saidy et al. (2003) and Piegorsch et al.

(2005) used confidence bands in quantitative risk analysis, while Spurrier (1999), Bhargava and

Spurrier (2004), and Liu et al. (2004, 2007) used confidence bands for simultaneous comparisons

of several linear regression models in some medical problems.

We will focus on the three most frequently quoted confidence bands in the statistics literature:

hyperbolic bands, three-segment bands, and two-segment bands. All the two-sided bands are

symmetric about the estimated regression line b̂0 + b̂1x and have the form

l(x) = b̂0 + b̂1x− σ̂H(x), u(x) = b̂0 + b̂1x + σ̂H(x)

where σ̂H(x) > 0 is the half width of the band at x and H(x) determines its shape. One can

also construct upper one-sided confidence bands with l(x) = −∞, or lower one-sided confidence

bands with u(x) = ∞. Denote d = (c, d)T and

v(c, d) = v(d) = Var{dT b̂}/σ2 = dT (XT X)−1d.

Let x = (1, x)T . A two-sided hyperbolic band has

Hh,2(x) = ch,2

√
v(x) (2)
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where the critical constant ch,2 is chosen so that the confidence level is equal to 1 − α. This

band for (a,A) = (−∞,∞) was proposed by Working and Hotelling (1929) for the special case of

known σ while Scheffé (1953, 1959) generalized the Working and Hotelling band to the multiple

linear regression model and to unknown σ. When (a,A) is a finite interval, methods of computing

ch,2 were given by Wynn and Bloomfield (1971) and Uusipaikka (1983). A one-sided hyperbolic

band has

Hh,1(x) = ch,1

√
v(x) (3)

where the critical constant ch,1 is chosen so that the confidence level is equal to 1 − α. This

one-sided band was considered by Bohrer and Francis (1972) and Pan et al. (2003). The shapes

of the two-sided and lower one-sided hyperbolic confidence bands are illustrated in Figures 1a

and 1b respectively.

Figures 1a and 1b here

A two-sided three-segment band has

H3,2(x) =
1

A− a

{
(x− a)c3,2,1

√
v(A) + (A− x)c3,2,2

√
v(a)

}
, x ∈ (a,A) (4)

where a = (1, a)T , A = (1, A)T , and the two critical constants c3,2,1 and c3,2,2 are chosen so that

the confidence level is equal to 1− α. This band was proposed by Bowden and Graybill (1966).

Notice that this two-sided three-segment band is constructed by putting the following two-sided

bounds on the regression line at both x = a and x = A

b0 + b1a ∈ b̂0 + b̂1a± σ̂c3,2,2

√
v(a), b0 + b1A ∈ b̂0 + b̂1A± σ̂c3,2,1

√
v(A). (5)

For x outside of (a,A) the bands are formed of straight lines corresponding to the diagonal

elements of the band region within (a,A), so that the upper and lower parts of the band both

consist of three line segments. (Although we focus on three linear segments here, diagonal linear

extensions can be applied to any band form. See Piegorsch, 1985, for other uses of diagonal
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band extensions.) When c3,2,2

√
v(a) = c3,2,1

√
v(A), the three-segment band becomes a constant

width band over x ∈ (a,A) which was first considered by Gafarian (1964). In fact, Gafarian’s

article was the first to restrict a band’s inferences to an interval such as (a,A). As we will see, this

simple idea has opened up construction of a broad variety of confidence band forms. A one-sided

three-segment band has

H3,1(x) =
1

A− a

{
(x− a)c3,1,1

√
v(A) + (A− x)c3,1,2

√
v(a)

}
, x ∈ (a,A) (6)

where the critical constants c3,1,1 and c3,1,2 are chosen so that the confidence level is equal to

1 − α. The shapes of the two-sided and lower one-sided three-segment confidence bands are

illustrated in Figures 2a and 2b respectively.

Figures 2a and 2b here

A two-sided two-segment band is defined over the whole range (a, A) = (−∞,∞) and has

H2,2(x) = c2,2,1

√
v(x̄) + c2,2,2|x− x̄|

√
v(e), x ∈ (−∞,∞) (7)

where x̄ = (1, x̄)T , e = (0, 1)T , and the critical constants c2,2,1 and c2,2,2 are chosen so that the

confidence level in (1) with a = −∞ and A = ∞ is equal to 1−α. The special case c2,2,1 = c2,2,2

of this band was first considered by Graybill and Bowden (1967). Notice that this two-sided

two-segment band is constructed by putting the following two-sided bounds on the regression

line at x = x̄ and on the gradient of the regression line b1

b0 + b1x̄ ∈ b̂0 + b̂1x̄± σ̂c2,2,1

√
v(x̄), b1 ∈ b̂1 ± σ̂c2,2,2

√
v(e). (8)

A one-sided two-segment band is also defined over the whole range (a,A) = (−∞,∞) and has

H2,1(x) = c2,1,1

√
v(x̄) + c2,1,2|x− x̄|

√
v(e), x ∈ (−∞,∞) (9)

where the critical constants c2,1,1 and c2,1,2 are chosen so that the confidence level in (1) with

a = −∞ and A = ∞ is equal to 1 − α. The shapes of the two-sided and lower one-sided

two-segment confidence bands are illustrated in Figures 3a and 3b respectively.
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Figures 3a and 3b here

In this paper we derive expression(s) of the simultaneous confidence level, i.e. the left side of

equation (1), for each of the confidence bands listed above for given critical constant(s). These

expressions can be used to calculate the required critical constants to achieve the preassigned

1− α simultaneous confidence level.

For each of these confidence bands, the probability in (1) is in fact independent of b0, b1 and

σ and so the infimum in (1) can be ignored. The corresponding lower and upper one-sided bands

use the same critical constant(s) and so only the lower one-sided confidence bands will be dealt

with below. Note that, when 1−α > 0.5, each critical constant is larger than the t critical value

of the 1 − α one-sided t confidence interval and so is positive. In the rest of the paper, it is

assumed that all the critical constants are positive.

2 Preliminaries

Let U be a symmetric positive definite matrix satisfying (XT X)−1 = U2; U is used in the

derivations but not the final formulae of the simultaneous confidence level. Note that

v(d) = Var{dT b̂}/σ2 = dT (XT X)−1d = {Ud}T {Ud} = ‖Ud‖2. (10)

Since b̂ ∼ N2(b, σ2(XT X)−1), it is clear that

N := U−1( b̂− b)/σ ∼ N2(0, I).

Furthermore, since σ̂/σ ∼
√

χ2
k/k and b̂ are independent random variables it follows immediately

that

T := N/(σ̂/σ) = U−1( b̂− b)/σ̂ (11)
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has a standard bivariate t distribution (see e.g. Tong, 1990) whose probability density function

(pdf) is given by

fT (t1, t2) =
1
2π

[
1 +

1
k
(t21 + t22)

]−(2+k)/2

, (t1, t2) ∈ R2.

Define the polar coordinates of N = (N1, N2)T , (RN , θN ), by

N1 = RN cos θN , N2 = RN sin θN for RN ≥ 0 and θN ∈ [0, 2π).

It is well known that RN has the distribution
√

χ2
2, θN has a uniform distribution on the interval

[0, 2π), and RN and θN are independent. It is clear that the polar coordinates of T , (RT , θT ),

are given by

RT = ‖T ‖ = RN /(σ̂/σ), θT = θN

and so RT has the distribution
√

2F2,k where Fk1,k2 denotes an F random variable with degrees

of freedom k1 and k2, θT has a uniform distribution on the interval [0, 2π), and RT and θT are

independent. Straightforward calculation shows that the cumulative distribution function (cdf)

of RT is given explicitly by

FRT
(x) = 1− (1 + x2/k)−k/2, x > 0. (12)

For a given vector v ∈ R2 and number r > 0, the set

{T : vT T /‖v‖ < r} ⊂ R2 (13)

is made up of all the points that are on the same side of the straight line vT T /‖v‖ = r as the

origin; the straight line vT T /‖v‖ = r is perpendicular to the vector v and distance r away, in

the direction of v, from the origin. It follows that the set

{T : |vT T |/‖v‖ < r} ⊂ R2 (14)

is simply the strip bounded by the parallel straight lines vT T /‖v‖ = r and vT T /‖v‖ = −r.
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3 Hyperbolic bands

3.1 Two-sided band

For the two-sided hyperbolic band with Hh,2(x) given in (2), the simultaneous confidence level is

given by

P{b0 + b1x ∈ b̂0 + b̂1x± ch,2σ̂
√

v(x) for all x ∈ (a,A)}

= P

{
sup

x∈(a,A)
|xT ( b̂− b)/σ̂|/

√
v(x) < ch,2

}

= P

{
sup

x∈(a,A)

∣∣∣{Ux}T T
∣∣∣ / ‖Ux‖ < ch,2

}
= P {T ∈ Rh,2} (15)

where the first equality in (15) follows from the definition of T in (11) and expression (10). The

set Rh,2 ⊂ R2 in (15) is given by Rh,2 = ∩x∈(a,A)Rh,2(x) where

Rh,2(x) =
{
T :

∣∣∣{Ux}T T
∣∣∣ / ‖Ux‖ < ch,2

}
.

Note that Rh,2(x) is of the form (14) and so Rh,2 is given by the spindle region depicted in Figure

4a. In particular the angle φ depicted in the figure is formed by the vectors Ua and UA, and

can be calculated from

cosφ = aT (XT X)−1A/
√

v(a)v(A). (16)

It is worth noting that cosφ is simply the correlation coefficient between b̂0 + b̂1a and b̂0 + b̂1A.

Figures 4a and 4b here

Note that the probability of T in any region that results from rotating Rh,2 around the origin

is equal to the probability of T in Rh,2 since the pdf of T is rotationally invariant. In particular,

let R∗
h,2 be the region that results from rotating Rh,2 around the origin so that the angle φ is

divided into two equal halves by the t2-axis, as depicted in Figure 4b. This region R∗
h,2 has the

expression

R∗
h,2 = {T : |vT T |/‖v‖ < ch,2 for all v ∈ E(φ)}
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where E(φ) = {v = (v1, v2)T : v2 > ‖v‖ cos(φ/2)} is a cone. Hence the simultaneous confidence

level is equal to

P {T ∈ Rh,2} = P
{
T ∈ R∗

h,2

}
= P

{
sup

v∈E(φ)
|vT T |/‖v‖ < ch,2

}
. (17)

Next we derive three expressions for this simultaneous confidence level.

3.1.1 The method of Wynn and Bloomfield (1971)

This method was given by Wynn and Bloomfield (1971) and calculates the probability P{T ∈

R∗
h,2} directly. Note that R∗

h,2 can be partitioned into the whole disc of radius ch,2 and the

remaining region. The probability of T in the disc is given by

P{‖T ‖ < ch,2} = P{RT < ch,2} = 1−
(
1 + c2

h,2/k
)−k/2

(18)

where the last equality follows immediately from the cdf of RT in (12). The probability of T in

the remaining region is equal to four times the probability of T in the cross-line shaded region

in Figure 4b and so given by

4P{ θT ∈ [0, (π − φ)/2], ‖T ‖ > ch,2, (cos[(π − φ)/2], sin[(π − φ)/2])T < ch,2 }

= 4P{ 0 < θT < (π − φ)/2, ch,2 < RT < ch,2/ cos[(π − φ)/2− θT ] } (19)

= 4
∫ (π−φ)/2

0

1
2π

P{ ch,2 < RT < ch,2/ cos[(π − φ)/2− θ] }dθ

=
2
π

∫ (π−φ)/2

0





[
1 +

c2
h,2

k

]−k/2

−
[
1 +

c2
h,2

k sin2(θ + φ/2)

]−k/2


 dθ (20)

where equality (19) follows directly by representing T in the polar coordinates. Combining

expressions (18) and (20) gives the simultaneous confidence level as

1− φ

π

[
1 +

c2
h,2

k

]−k/2

− 2
π

∫ (π−φ)/2

0

[
1 +

c2
h,2

k sin2(θ + φ/2)

]−k/2

dθ. (21)
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3.1.2 An algebraic method

This method evaluates

P

{
sup

v∈E(φ)
|vT T |/‖v‖ < ch,2

}
= P

{
‖T ‖ sup

v∈E(φ)
|vT T |/(‖v‖‖T ‖) < ch,2

}
(22)

by finding an explicit expression for the supremum. The approach is similar to that of Casella

and Strawderman (1980).

Note that vT T /(‖v‖‖T ‖) is equal to the cosine of the angle between T and v, and cos θ is

monotone decreasing in θ ∈ [0, π]. So the supremum is attained at the vector v ∈ E(φ) ∪−E(φ)

that forms the smallest angle with T . From this geometric reasoning it is clear that

sup
v∈E(φ)

|vT T |
‖v‖ =





‖T ‖ if θT ∈ [(π − φ)/2, (π + φ)/2] ∪ [(3π − φ)/2, (3π + φ)/2],

‖T ‖| sin(θT + φ/2)| if θT ∈ [0, (π − φ)/2] ∪ [π, (3π − φ)/2],

‖T ‖| sin(θT − φ/2)| if θT ∈ [(π + φ)/2, π] ∪ [(3π + φ)/2, 2π).

The simultaneous confidence level (22) is therefore equal to

P
{

θT ∈ [(π − φ)/2, (π + φ)/2] ∪ [(3π − φ)/2, (3π + φ)/2], ‖T ‖ < ch,2

}

+ P
{

θT ∈ [0, (π − φ)/2] ∪ [π, (3π − φ)/2], ‖T ‖| sin(θT + φ/2)| < ch,2

}

+ P
{

θT ∈ [(π + φ)/2, π] ∪ [(3π + φ)/2, 2π], ‖T ‖| sin(θT − φ/2)| < ch,2

}

=
2φ

2π
P { ‖T ‖ < ch,2 }

+ 2
∫ (π−φ)/2

0

1
2π

P { ‖T ‖| sin(θ + φ/2)| < ch,2 } dθ (23)

+ 2
∫ π

(π+φ)/2

1
2π

P { ‖T ‖| sin(θ − φ/2)| < ch,2 } dθ (24)

=
φ

π
P

{
RT < ch,2

}
(25)

+
2
π

∫ (π−φ)/2

0
P

{
RT < ch,2/| sin(θ + φ/2)| }

dθ

=
φ

π


1−

(
1 +

c2
h,2

k

)−k/2

 +

2
π

∫ (π−φ)/2

0


1−

(
1 +

c2
h,2

k sin2(θ + φ/2)

)−k/2

 dθ (26)

where equality (25) follows by observing that the two integrals in (23) and (24) are equal, and
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equality (26) follows from the cdf of RT . It is clear that expression (26) is equal to expression

(21).

3.1.3 The method of Uusipaikka (1983)

This method was given by Uusipaikka (1983) and hinges on the volume of tubular neighborhoods

of E(φ). Due to the simplicity of the cone E(φ), the exact volume of tubular neighborhoods

of E(φ) can be easily calculated. The idea of this method has been further developed by many

authors (e.g. Naiman, 1986 and 1990). From (17), the simultaneous confidence level is given by

1− P

{
sup

v∈E(φ)

|vT T |
‖v‖‖T ‖ ≥

ch,2

‖T ‖

}

= 1−
∫ ∞

0
P

{
sup

v∈E(φ)

|vT T |
‖v‖‖T ‖ ≥

ch,2

w

}
dFRT

(w) (27)

= 1−
∫ ∞

ch,2

P

{
sup

v∈E(φ)

|vT T |
‖v‖‖T ‖ ≥

ch,2

w

}
dFRT

(w) (28)

where (27) is due to the independence of RT and θT since the supremum depends on T only

through θT (see below), and (28) follows directly from the fact that the supremum is no larger

than one. The probability in (28) can be written as P{θT ∈ |E|(φ, ch,2/w)} where, for 0 < r < 1,

|E|(φ, r) =

{
T : sup

v∈E(φ)

|vT T |
‖v‖‖T ‖ ≥ r

}

=

{
θT : sup

v∈E(φ)
| cos(θT − θv)| ≥ cos (arccos r)

}
.

Figure 5 here

|E|(φ, r) refers to the tubular neighborhoods of E(φ) ∪ −E(φ) of angular radius arccos r, and is

depicted in Figure 5. It is clear from the definition and Figure 5 that |E|(φ, r) can further be

expressed as

|E|(φ, r) =
{

θT ∈
[
π − φ

2
− arccos r,

π + φ

2
+ arccos r

]
∪

[
3π − φ

2
− arccos r,

3π + φ

2
+ arccos r

]}

when φ/2 + arccos r < π/2 and

|E|(φ, r) = {θT ∈ [0, 2π]}

11



when φ/2 + arccos r ≥ π/2. Note that

φ/2 + arccos(ch,2/w) < π/2 ⇐⇒ w < ch,2/sin(φ/2)

and θT has a uniform distribution on [0, 2π). We therefore have, for ch,2 ≤ w < ch,2/ sin(φ/2),

P{θT ∈ |E|(φ, ch,2/w)} = [2 arccos(ch,2/w) + φ]/π (29)

and, for w ≥ ch,2/ sin(φ/2),

P{θT ∈ |E|(φ, ch,2/w)} = 1. (30)

Substituting (29) and (30) into (28) gives the confidence level as

1−
∫ ch,2/ sin(φ/2)

ch,2

2 arccos(ch,2/w) + φ

π
dFRT

(w)−
∫ ∞

ch,2/ sin(φ/2)
1dFRT

(w)

= 1−
(

1 +
c2
h,2

k sin2(φ/2)

)−k/2

−
∫ ch,2/ sin(φ/2)

ch,2

2 arccos(ch,2/w) + φ

π
dFRT

(w). (31)

Both expressions (26) and (31) involve one-dimensional integrations and can be used to compute

the simultaneous confidence level. It can be shown that the two expressions are equal as expected.

For the special case of (a,A) = (−∞,∞), the angle φ = π. From expressions (18) or (25) the

simultaneous confidence level becomes P{RT < ch,2} = P{F2,k < c2
h,2/2} and so ch,2 =

√
2fα

2,k,

where fα
2,k is the upper α-point of the F2,k distribution.

3.2 One-sided band

For the lower one-sided hyperbolic band with Hh,1(x) given in (3), the simultaneous confidence

level is given by

P

{
sup

x∈(a,A)
[xT ( b̂− b)/σ̂]/

√
v(x) < ch,1

}
= P {T ∈ Rh,1} (32)

where the set Rh,1 ⊂ R2 in (32) is given by Rh,1 = ∩x∈(a,A)Rh,1(x) with

Rh,1(x) =
{
T :

[
{Ux}T T

]
/ ‖Ux‖ < ch,1

}
.

12



Note that Rh,1(x) is of the form (13).

Rotate Rh,1 around the origin, in a similar way to rotating Rh,2 in the two-sided case, to R∗
h,1

as depicted in Figure 6; the angle φ is the same as in the two-sided case and divided into two

equal halves by the t2-axis. This region R∗
h,1 has the expression

R∗
h,1 = {T : vT T /‖v‖ < ch,2 for all v ∈ E(φ)}

where E(φ) is the same as in the two-sided case. Due to the rotational invariance of the T

probability distribution, the simultaneous confidence level is further equal to

P
{
T ∈ R∗

h,1

}
= P

{
sup

v∈E(φ)
vT T /‖v‖ < ch,1

}
. (33)

We next derive three expressions for this simultaneous confidence level.

Figure 6 here

3.2.1 The method of Bohrer and Francis (1972)

Bohrer and Francis (1972) calculate the probability P{T ∈ R∗
h,1} directly. Note that R∗

h,1 can

be partitioned into four parts as depicted in Figure 6: the fan C1, the cone C2, and the two

half-strips C3 and C4. The probability of T in C1 is equal to

P
{

θT ∈ [(π − φ)/2, (π + φ)/2], ‖T ‖ ≤ ch,1

}
=

φ

2π
P { ‖T ‖ ≤ ch,1 } =

φ

2π
F2,k

(
c2
h,1

2

)
. (34)

The probability of T in C2 is given by

P
{

θT ∈ [(3π − (π − φ))/2, (3π + (π − φ))/2]
}

=
π − φ

2π
. (35)

Again due to the rotational invariance of the T probability distribution, the probability of T in

C3 ∪ C4 is equal to the probability of T in the strip which is the union of C4 and the half-strip

that results from rotating C3 clockwise at angle φ, and further equal to the probability of T in

the strip that results from rotating the last strip clockwise at angle (π − φ)/2:

P{ 0 < T1 < ch,1 } =
1
2
F1,k(c2

h,1). (36)

13



Collecting (34), (35) and (36) together gives the simultaneous confidence level as

π − φ

2π
+

1
2
F1,k(c2

h,1) +
φ

2π
F2,k

(
c2
h,1

2

)
. (37)

3.2.2 An algebraic method

This method is similar to that for the two-sided case in Section 3.1.2; the key is to find an explicit

expression for the supremum in (33), which is given by

sup
v∈E(φ)

vT T

‖v‖ =





‖T ‖ if θT ∈ [(π − φ)/2, (π + φ)/2],

‖T ‖ cos[(π − φ)/2− θT] if θT ∈ [−π/2, (π − φ)/2],

‖T ‖ cos[θT − (π + φ)/2] if θT ∈ [(π + φ)/2, 3π/2].

Note in particular that the supremum is negative when θT ∈ (−π/2, (π−φ)/2−π/2)∪((π+φ)/2+

π/2, 3π/2) and that ch,1 > 0. A derivation similar to the two-sided case gives the simultaneous

confidence level (33) equal to

φ

2π
FRT

(ch,1) +
π − φ

2π
+

1
π

∫ π/2

0
FRT

(
ch,1

cos(θ)

)
dθ. (38)

3.2.3 The method of Uusipaikka

Uusipaikka’s (1983) method of Section 3.1.3 was manipulated by Pan, Piegorsh and West (2003)

to also provide one-sided bounds. From (33), the simultaneous confidence level is given by

1−
∫ ∞

ch,1

P

{
sup

v∈E(φ)

vT T

‖v‖‖T ‖ ≥
ch,1

w

}
dFRT

(w).

A derivation similar to the two-sided case in Section 3.1.3 shows that the probability in the last

expression is equal to [2 arccos(ch,1/w) + φ]/[2π] and so the confidence level is given by

1−
∫ ∞

ch,1

2 arccos(ch,1/w) + φ

2π
dFRT

(w). (39)

It is straightforward to show that expressions (39), (38) and (37) are equal, as expected. But

of course expression (37) is the simplest to use as it involves only the cdf’s of F1,k and F2,k. When
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(a,A) = (−∞,∞), the angle φ = π. In this case expression (37) simplifies to

1
2
F1,k(c2

h,1) +
1
2
F2,k

(
c2
h,1

2

)
,

which agrees with the result of Hochberg and Quade (1975).

4 Three-segment bands

4.1 Two-sided band

For the two-sided three-segment band with H3,2(x) given in (4), the simultaneous confidence level

is given by

P

{
sup

x∈(a,A)
|xT ( b̂− b)/σ̂|/H3,2(x) < 1

}
. (40)

Note that

∂

∂x

{
[xT ( b̂− b)/σ̂]/H3,2(x)

}

has a fixed sign, either positive or negative, over x ∈ (−∞,∞). The supremum in (40) is therefore

attained at either x = a or x = A, and so the confidence level can further be expressed as

P
{

max
x=a or A

|xT ( b̂− b)/σ̂|/H3,2(x) < 1
}

= P {T ∈ R3,2}

where R3,2 = R3,2(a) ∩R3,2(A) with

R3,2(a) =
{
T : |aT ( b̂− b)/σ̂|/H3,2(a) < 1

}
=

{
T :

∣∣∣{Ua}T T
∣∣∣ / ‖Ua‖ < c3,2,2

}

and, in a similar fashion,

R3,2(A) =
{
T :

∣∣∣{UA}T T
∣∣∣ / ‖UA‖ < c3,2,1

}
.

Note that both R3,2(a) and R3,2(A) are of the form (14). Hence R3,2 is given by the parallelogram

depicted in Figure 7a. In particular the angle φ depicted in the picture is formed by the vectors
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Ua and UA as in the hyperbolic bands. It is noteworthy that R3,2 can actually be derived from

the two constraints in (5).

Figures 7a and 7b here

Let R∗
3,2 be the region that results from rotating R3,2 around the origin so that UA is in

the direction of the t1-axis, as depicted in Figure 7b. Hence the confidence level is equal to the

probability of T in R∗
3,2 and further equal to twice the probability of T in the portion of R∗

3,2 to

the right of the dotted line which has the expression

{
T : θT ∈ [−(π − η1), ξ1], RT cos θT ≤ c3,2,1

} ∪ {
T : θT ∈ [ξ1, η1], RT cos(θT − φ) ≤ c3,2,2

}

where the angles ξ1 and η1 are depicted in Figure 7b and given by

ξ1 = arcsin


 c3,2,2 − c3,2,1 cosφ√

c2
3,2,2 + c2

3,2,1 − 2c3,2,2c3,2,1 cosφ


 , (41)

η1 = arccos


 −c3,2,1 sinφ√

c2
3,2,2 + c2

3,2,1 + 2c3,2,2c3,2,1 cosφ


 . (42)

These two expressions can be found by first determining the (t1, t2)-equations of the four straight

lines that form the parallelogram R∗
3,2, then solving the (t1, t2)-coordinates of the four vertices of

R∗
3,2 and finally converting the (t1, t2)-coordinates into polar coordinates.

Hence the simultaneous confidence level is equal to

2P
{
θT ∈ [−(π − η1), ξ1], RT cos θT ≤ c3,2,1

}
+ 2P

{
θT ∈ [ξ1, η1], RT cos(θT − φ) ≤ c3,2,2

}

= 2
∫ ξ1

−(π−η1)

1
2π

P
{
RT cos θ ≤ c3,2,1

}
dθ + 2

∫ η1

ξ1

1
2π

P
{
RT cos(θ − φ) ≤ c3,2,2

}
dθ

=
1
π

∫ ξ1

−(π−η1)
FRT

(
c3,2,1

cos θ

)
dθ +

1
π

∫ η1−φ

ξ1−φ
FRT

(
c3,2,2

cos θ

)
dθ. (43)

Expression (43) involves only one-dimensional integration since FRT
(·) is given explicitly in (12).

Bowden and Graybill (1966) expressed the simultaneous confidence level as a two-dimensional

integral of a bivariate t density function. In the special case of a constant width band, i.e.

c3,2,1

√
v(A) = c3,2,2

√
v(a), Gafarian (1964) expressed the simultaneous confidence level as a

one-dimensional integral similar to (43) by using polar coordinates.
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4.2 One-sided band

For the lower one-sided three-segment band with H3,1(x) given in (6), the simultaneous confidence

level is given by

P
{

max
x=a or A

[xT ( b̂− b)/σ̂]/H3,1(x) < 1
}

= P{T ∈ R3,1}

where R3,1 = R3,1(a) ∩R3,1(A) with

R3,1(a) =
{
T :

[
{Ua}T T

]
/ ‖Ua‖ < c3,1,2

}

and

R3,1(A) =
{
T :

[
{UA}T T

]
/ ‖UA‖ < c3,1,1

}
.

Note that both R3,1(a) and R3,1(A) are of the form (13).

Rotate R3,1 around the origin, in a similar way to rotating R3,2 in the two-sided case, to R∗
3,1

so that UA is in the direction of the t1-axis. Thus the confidence level is equal to the probability

of T in R∗
3,1 and has the following expression after a few lines of simple calculation

1
2π

∫ π/2

ξ2−φ
FRT

(
c3,1,2

cos θ

)
dθ +

1
2π

∫ ξ2

−π/2
FRT

(
c3,1,1

cos θ

)
dθ +

π − φ

2π
,

where the angle ξ2 corresponds to the angle ξ1 in the two-sided case and is given by

ξ2 = arcsin


 c3,1,2 − c3,1,1 cosφ√

c2
3,1,2 + c2

3,1,1 − 2c3,1,2c3,1,1 cosφ


 ,

and the angle φ is the same as in the two-sided case.

In practice, the values of a and A are chosen by the needs of the investigator. If the values

of a and A are such that b̂0 + b̂1a and b̂0 + b̂1A are independent random variables then φ = π/2

from (16) and all the simultaneous confidence expressions in Sections 3 and 4 can be simplified

to certain extent as shown in Hayter, Liu and Wynn (2007).
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5 Two-segment bands

5.1 Two-sided band

For the two-sided two-segment band with H2,2(x) given in (7), the simultaneous confidence level

is given by

P

{
sup

x∈(−∞,∞)
|xT ( b̂− b)/σ̂|/H2,2(x) < 1

}
. (44)

Note that

∂

∂x

{
[xT ( b̂− b)/σ̂]/H2,2(x)

}

has a fixed sign, either positive or negative, over x > x̄ and over x < x̄. The supremum in (44)

is therefore attained at either x = x̄ or limits x → −∞ or x → ∞. As a result, the confidence

level can further be expressed as

P
{

sup
x=−∞ or x̄ or ∞

|xT ( b̂− b)/σ̂|/H2,2(x) < 1
}

= P {T ∈ R2,2}

where R2,2 = R2,2(−∞) ∩R2,2(x̄) ∩R2,2(∞) with

R2,2(x̄) =
{
T : |x̄T ( b̂− b)/σ̂|/H2,2(x̄) < 1

}
=

{
T :

∣∣∣{U x̄}T T
∣∣∣ / ‖U x̄‖ < c2,2,1

}
,

and

R2,2(±∞) =
{
T : lim

x→∞ |x
T ( b̂− b)/σ̂|/H2,2(x) < 1

}
=

{
T :

∣∣∣{Ue}T T
∣∣∣ / ‖Ue‖ < c2,2,2

}
.

Note that R2,2(x̄) and R2,2(±∞) are of the form (14). Hence R2,2 is given by the parallelogram

depicted in Figure 8. In particular the angle φ∗ ∈ (0, π) depicted in the picture is formed by the

vectors Ue and U x̄ and can be calculated to be φ∗ = π/2 since cosφ∗ = 0. It is noteworthy that

R2,2 can actually be derived from the two constraints in (8).

Figure 8 here

By comparing the parallelogram R2,2 in Figure 8 with the parallelogram R3,2 for the two-sided

three-segment band in Figure 7a, the confidence level P{T ∈ R2,2} is given by expression (43)
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but with c3,2,1, c3,2,2, φ replaced with c2,2,1, c2,2,2, φ
∗ = π/2 respectively, i.e.

P{T ∈ R2,2} =
1
π

∫ ξ∗1

−(π−η∗1)
FRT

(
c2,2,1

cos θ

)
dθ +

1
π

∫ η∗1−φ∗

ξ∗1−φ∗
FRT

(
c2,2,2

cos θ

)
dθ (45)

where

ξ∗1 = arcsin


 c2,2,2√

c2
2,2,2 + c2

2,2,1


 , η∗1 = arccos


 −c2,2,1√

c2
2,2,2 + c2

2,2,1


 .

Note that the angles ξ∗1 and η∗1 correspond to the angles ξ1 in (41) and η1 in (42) respectively.

For the special case of c2,2,2 = c2,2,1, Graybill and Bowden (1967) expressed the simultaneous

confidence level as a two-dimensional integral of a bivariate t density function. Expression (45)

involves only one-dimensional integration, however.

5.2 One-sided band

The lower one-sided two-segment band has H2,1(x) given in (9). Similar to the two-sided case, the

simultaneous confidence level is given by P {T ∈ R2,1}where R2,1 = R2,1(−∞)∩R2,1(x̄)∩R2,1(∞)

with

R2,1(x̄) =
{
T : {U x̄}T T / ‖U x̄‖ < c2,1,1

}
,

R2,1(∞) =
{
T : {Ue}T T / ‖Ue‖ < c2,1,2

}
,

and

R2,1(−∞) =
{
T : {Ue}T T / ‖Ue‖ > −c2,1,2

}
.

Note that R2,1(x̄) is of the form (13) and R2,1(∞) ∩R2,1(−∞) is of the form (14).

Let R∗
2,1 be the region that results from rotating R2,1 around the origin so that U x̄ is in the

direction of the t1-axis. Hence the confidence level is equal to the probability of T in R∗
2,1 and

has the following expression after a few lines of calculation similar to before:

1
2π

∫ ξ∗2

−(π−η∗2)
FRT

(
c2,1,1

cos θ

)
dθ +

1
2π

∫ π/2

ξ∗2−φ∗
FRT

(
c2,1,2

cos θ

)
dθ +

1
2π

∫ η∗2+π−φ∗

π/2
FRT

(−c2,1,2

cos θ

)
dθ,
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where the angles ξ∗2 and η∗2 correspond to the angles ξ1 and η1 in Figure 7b respectively and are

given by

ξ∗2 = arcsin


 c2,1,2√

c2
2,1,2 + c2

2,1,1


 and η∗2 = arccos


 −c2,1,1√

c2
2,1,2 + c2

2,1,1


 .

6 Concluding remarks

We have described expressions for calculating simultaneous confidence levels associated with

two-sided and one-sided hyperbolic, three-segment, and two-segment confidence bands. The

results are exact for the special, but nonetheless ubiquitous, case of simple linear regression with

homoscedastic normal errors. These expressions involve one-dimensional integration in general,

except for the one-sided hyperbolic band whose simultaneous confidence level can be expressed

to involve only the cdf’s of the F1,k and F2,k distributions.

The key idea in deriving these expressions is to express the simultaneous confidence level as

the probability of the bivariate vector T from (11) in a region R ⊂ R2. Note that the region R

can always be represented using the polar coordinates (RT , θT ) in the form

R = {T : θT ∈ [θ1, θ2], RT ≤ G(θT )}

for some given constants 0 ≤ θ1 ≤ θ2 ≤ 2π and given function G. So the simultaneous confidence

level is given by
∫ θ2

θ1

1
2π

FRT
[G(θ)]dθ

since θT is uniformly distributed on the interval [0, 2π) and independent of RT whose cdf FRT
(·)

is given in (12).

By inverting these expressions for the simultaneous confidence level, one can calculate the

critical constant(s) necessary to achieve a required confidence level. Note, however, that two

critical constants are employed in both the three-segment band and in the two-segment band.

So, an additional constraint above and beyond the 1−α specification is required to determine the
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two critical constants uniquely. Gafarian (1966) imposed c3,2,1

√
v(A) = c3,2,2

√
v(a) and Graybill

and Bowden (1967) imposed c2,2,1 = c2,2,2. This extra constraint may also be based on certain

optimality criteria, such as the average width optimality considered by Naiman (1983, 1984) and

Piegorsch (1985) among others, or the minimum area confidence set optimality considered by Liu

and Hayter (2007). Of course, the average width or minimum area confidence set optimality can

be used to compare two confidence bands and/or to identify the optimal confidence band.

There are other less well known confidence bands. For example, Bowden (1970) showed how

the two-sided hyperbolic, three-segment and two-segment bands and a general p-family confidence

bands can be derived from Hölder’s inequality. Piegorsch et al. (2000) used polar coordinates as

used in this paper and a bivariate t distribution to compute the simultaneous confidence level of

the p-family confidence bands with

Hp(x) = (1 + τ |x|p)1/p

where τ > 0 and p ≥ 1 are given constants. Other confidence bands include those given by

Naiman (1984, 1987a) which are optimal under certain criteria.

Confidence bands for multiple linear regression models are much harder to construct. Some

notable works include Knafl, Sacks and Ylvisaker (1985), Naiman (1987b, 1990), Sun and Loader

(1994), Sun, Loader and McCormick (2000) and Liu et al. (2005) for the situation that the ex-

planatory variables are constrained to a hyper-rectangle, and Bohrer (1973), Casella and Straw-

derman (1980), and Seppanen and Uusipaikka (1992) for the situation that the explanatory

variables are constrained to a hyper-ellipsoid.
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Figure 1a: two-sided hyperbolic band Figure 1b: lower one-sided hyperbolic band
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Figure 2a: two-sided 3-segment band Figure 2b: lower one-sided 3-segment band
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Figure 3a: two-sided 2-segment band Figure 3b: lower one-sided 2-segment band
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Figure 4a: the region Rh,2

Figure 4b: the region R∗
h,2
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Figure 5: the region |E|(φ, r)

Figure 6: the region R∗
h,1
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Figure 7a: the region R3,2

Figure 7b: the region R∗
3,2
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Figure 8: the region R2,2
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