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ABSTRACT:      The energy of the gravitational field and the mass related to it are 

calculated. The momentum of the gravitational field of a moving body and the 

appropriate mass of the field are determined. Comparison of the given masses shows 

their difference. The reasons of violation of relativity and equivalence principles are 

discussed.  
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According to the General Theory of Relativity (GTR), energy of all kinds contributes to 

gravitational mass of a body. The density of gravitational energy in the Lorentz-invariant Theory 

of Gravity (LITG) according to [1], [2] is equal: 
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where G  –  gravitational constant, 

Γ –  gravitational field strength, 

gc  –  the speed of gravitation propagation, 

Ω  –  gravitational torsion. 

 

Let's find gravitational energy U  for a rest round body, when 0Ω . With homogeneous 

matter density   for the gravitational field strength inside and outside of the body it is possible to 

write down: 
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where r  – current radius, 

M  – mass of the body. 

 

We substitute the strengths in (1) and then integrate by volume: 
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here R  – radius of the body. 

 

In (2) the basic contribution to gravitational energy U  is given by the energy of the field 

outside the body. 

Owing to interrelation between mass and energy we should expect, that negative mass 

corresponds there to energy (2):  
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where c  –  speed of light. 

 

Due to mass Gm  there should be reduction of the gravitational mass of the body in relation to 

initial mass M . 

Let's consider now a case when the body is moving with constant speed v  along axis Z. As far 

as the body is moving, that is why 0Ω  and there is the vector of momentum density of the 

gravitational field which is not equal to zero: 
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It is convenient to find Γ  and Ω  through scalar   and vector D  potentials of the gravitational 

field. In LITG it is accepted, that: 
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In their turn, potentials of the field outside the body are set taking into account the delay of 

gravitational influence and consequently have the Lorentz-invariant form: 
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Substituting (6) in (5), we find: 
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It is evident, that 
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Γv
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
 . From all components of the vector g  from (4) only the 

component directed along axis Z  is important: 
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Let's integrate zog  by all points of the field in space outside the body at the moment of time 

0t . We should consider the speed v  small in order to neglect the Lorentz’s factor 
22v1/1 gc

. As the round body is going, it seems flattened in the direction of movement and turns into 

ellipsoid. In case of small speeds this change of the form can be neglected. It is convenient to use 

spherical coordinates:  
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Then for the field momentum outside the body we have: 
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Inside the body within the limits of small speed the result is the following: 
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The component of vector of momentum density of gravitational field inside the body is 

calculated similarly (7). For the total momentum of the field inside the body we get: 
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The sum of momentums of the field inside and outside the body with the account (2) and (3) 

equals to: 
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if ccg  . 

 

The factor before the speed v  in (10) it is natural to treat as the mass of the moving gravitational 

field related to the body: 
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The mass of the field 
fm  by absolute value appears to be more, than mass Gm  of the 

gravitational field of a motionless body. 

 

 

DISCUSSION 

 

As the mass of the field 
fm  is included into momentum of the gravitational field it can be 

considered inertial mass. The mass of the field Gm  is connected with the energy of motionless 
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potential gravitational field and is related to gravitational mass of the body. The inequality of 

masses 
fm  and Gm  means inapplicability of the principle of equivalence of inertial and 

gravitational masses with respect to mass-energy of the gravitational field. 

On the other hand, we find out also breaking of the traditional relativity principle. Really, while 

the observer is motionless towards the body, he fixes potential energy of the gravitational field and 

correspondingly the mass of the field Gm . As soon as the observer starts to move against the body, 

he observes the changed mass of the body owing to the presence of the momentum of the body in 

his reference system. Thereby the effective mass of the body depends smoothly on the speed of 

movement of the observer against the body, taking into account the Lorentz’s factor. But this does 

not apply to the mass 
fm  – it at once increases in 4/3 times in relation to Gm . 

All aforesaid can be repeated also concerning mass-energy of the electromagnetic field for the 

body having an electric charge. Maybe equivalence and relativity principles should be fulfilled 

only for the total mass-energy of the body including the energy of rest of its constituent particles 

and binding energy of fields? But then we should refuse from the superposition principle of field 

potentials and its intensities, from the possibility of independent addition of energies of various 

types and the masses corresponding to them. 

We obtained the inequality of masses 
fm  and Gm  on the basis of the theory LITG. The 

equations of gravitational field in the theory are the following: 
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where Γ  – the vector of gravitational field strength, 

Ω  – the solenoidal vector of gravitational torsion or simply torsion,  

G  – the gravitational constant,  

  – the mass density,  

 VJ  – the vector of density of the mass current, dependent on the speed of motion  V of the 

mass element. 

 

The equations (12) to within signs coincide with Maxwell equations for an electromagnetic 

field. The density of energy of the field in electromagnetism is equal: 
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where E – the vector of electric field strength, 

B – the vector of magnetic induction,  

0  – the electric constant,  

c – the speed of propagation of electromagnetic field (speed of light). 

 

From comparison (13) and (1) it is visible, that these expressions also have the identical form. 

We should remind that in LITG the gravitational field is a real physical field of fundamental 

type similar to electromagnetic field. 

According to LITG, GTR has the function of describing the phenomena in noninertial reference 

systems. In order to find the correct metrics of space-time deviated by fields, it is necessary in 

equations of GTR to add energy-momentum stress tensor of gravitational field. This tensor is 
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defined in LITG in covariant form. The metrics found this way does not specify the gravitational 

field, but the degree of deviation from the flat Minkowski space-time. 

By the way in standard GTR the gravitational field is replaced with the metric field having 

geometrical meaning. Then, perhaps, in standard GTR there will be no difference between 
fm  and 

Gm ? However, as it was already shown in a number of works, for example in [3], [4], equations 

of GTR within the limits of a weak field coincide with equations of LITG (12). Hence, the problem 

remains in GTR too. 

Most likely, the inequality of masses of the gravitational field is connected neither with the 

special theory of relativity, nor with GTR. Probably, the reason lies in the essence of the 

gravitational field. Let's assume that gravitation between bodies is created due to effect of 

gravitons streams. The fact, that the gravitation force and the mass of bodies does not depend on 

their movement against streams of gravitons, we fix as the principle of relativity. But the principle 

of relativity concerning mass of the field does not work in the case when bodies do not change the 

movement against streams of gravitons, but the observer does it. In this case the mass-energy of 

the field connected with the body can not depend on the state of movement of the observer. At the 

same time, the inequality of masses 
fm  and Gm  can reflect the fact, that the inertial mass 

fm  

contains additional mass of the field. This additional mass, according to (11) equal to 
3

Gm
, is 

connected with the moving body. Probably, it represents the energy mass of excitation of the 

gravitational field, which is necessary to transfer a body from the condition of rest in relation to 

the streams of gravitons, to a certain condition of movement.  

Let's notice, that finding the correlation between masses 
fm  and Gm  we did not specify the 

initial state of the body. Due to the principle of relativity, it was insignificant for calculation Gm , 

whether there the body was motionless in relation to isotropic reference systems of gravitons 

streams or was moving together with the observer against this reference system. But from the point 

of view of the gravitation theory which is based on the concept of gravitons, it is important. As 

when the body is moving against the streams of gravitons these streams become nonisotropic, what 

can become the reason appearing of the gravitational field momentum and of the additional mass 

of the field 
3

Gm
. But for an observer who is motionless in relation to the body, the additional field 

mass 
3

Gm
 can not be found from the equations of the field (this is the consequence of the relativity 

principle). From the stated above it follows, that the distinction of inertial and gravitational masses 

of the gravitational field can be explained by the existence of the specific isotropic reference 

system. The feature of such reference system then is isotropy of gravitons streams which are 

responsible for gravitation. 

On falling of a test body in the gravitational field of a massive body the graviton streams are 

obviously not isotropic. In this case it is necessary to count, that the mass of the gravitational field 

of the test body for an external observer is equal to 
fm . For preservation of relativity and 

equivalence principles it is also necessary to draw certain conclusions for the observer who is 

motionless in relation to the test body. Though this observer finds the mass of own gravitational 

field of the test body Gm , but it is necessary to add to this mass the mass of the field 
3

Gm
 as the 

consequence of movement of the test body under influence of attraction of the massive body. 
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