

On the urgent need of an open camera to lens communication standard for vision systems

Bernd Jähne, HCI, Universität Heidelberg and EMVA Bernd.Jaehne@iwr.uni-heidelberg.de

2nd European Machine Vision Forum, September 6–8, 2017, Vienna

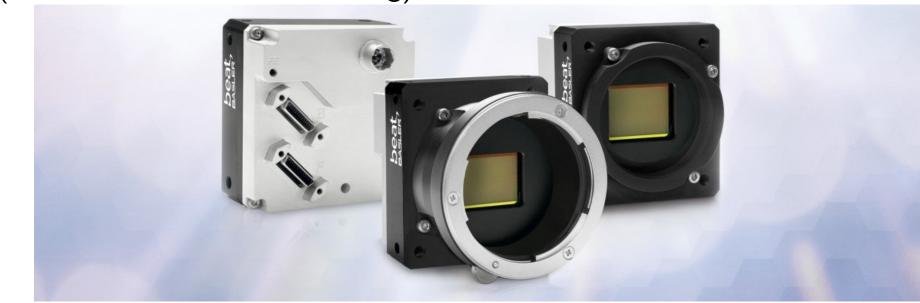
Heidelberg Collaboratory

for Image Processing

Machine Vision Lens Mounts

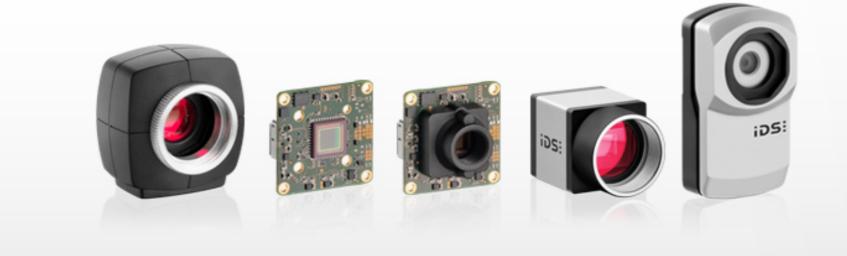
(Source Basler AG, Ahrensburg)

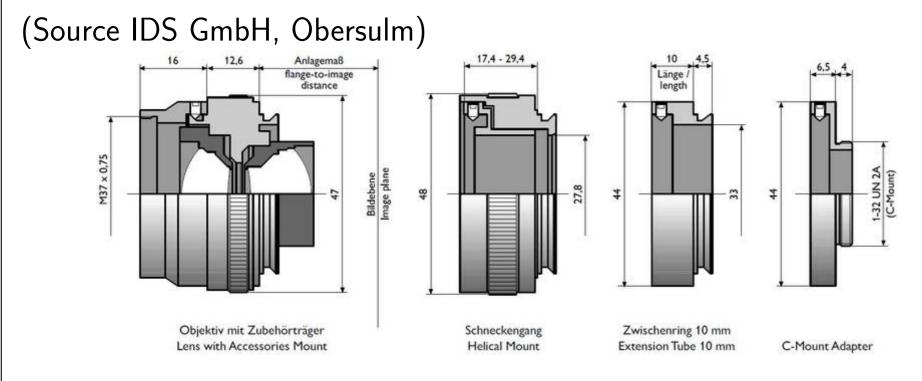
System Camera Lens Mounts



Need for Next Generation Vision Systems

Open camera to lens communication standard would enable wide-spread application of modern techniques, especially computational imaging in machine vision systems


This could include


• Autofocus sytems not only with traditional autofocus motors but also with liquid lenses

(Source Basler AG, Ahrensburg)

USB 3.0 INDUSTRIEKAMERAS VON IDS Das Plus an Funktionalität und Geschwindigkeit

Schneider-Kreuznach macro lenses with V-mount and adapters

(Source www.kenrockwell.com)

(Source www.kenrockwell.com)

• Automatic acquisition of focus series for

- Control of zooming and feed back of focal length
- Control of aperture and feed back of aperture setting
- Feed back of lens properties such as aperture dependent shading, geometrical distortion and lateral chromatic aberration of lens; camera can then correct these aberrations
- Camera vibration and motion compensation during exposure
- Extended depth of field imaging: lens tells camera its MTF and camera corrects images correspondingly
- Intelligent imaging: with known lens data, aperture and illumination are set automatically to the required depth of field
- Autoadaption of the lens to the pixel size of the camera for optimal imaging without aliasing
- Superresolution imaging by steering camera pixels

Challenges Lens Mount Mechanics

• All currently used bayonet mounts are not stable enough for all tasks that require a precise knowledge of the intrinsic orientation of the camera (e.g., stereo and any multicamera setup).

Machine vision lens mounts are dumb

- They do not support any communication between camera and lens
- For most the flange focal distance is defined (not for M12, V38, M52, M58, M72, and others)
- Most are pretty old.
- C-mount: introduced ca. 1926 by Bell & Howell for 16 mm cine cameras
- M42: Introduced 1938 by Carl Zeiss
- F-mount: Introduced 1959 by Nikon for the 35 mm SLR camera **T-mount:** Introduced 1962 by Tamron

Some commonly used lens mounts

(for more see Wikipedia under flange focal distance)

Name	Mount type/purpose	Flange focal distance
S-mount	Thread M12 $ imes$ 0.5, board cameras	
CS-mount	Thread 1" $ imes$ 1/26"	12.50 mm
C-mount	Thread 1" $ imes$ 1/26"	17.526 mm
E-mount	Bayonet, Sony mirrorless	18.00 mm
Micro Four Third	Bayonet, Olympus mirrorless	19.25 mm
FD-mount	Bayonet, Canon manual 35 mm SLR	42.00 mm
EF-mount	Bayonet, Canon autofocus 35 mm SLR	44.00 mm
M42	Thread M42 $ imes$ 1, 35 mm SLR	(45.46 mm)
F-mount	Bayonet, Nikon 35 mm SLR	46.5 mm
T-mount	Thread M42 $ imes$ 0.75, 35 mm SLR	55.00 mm
V-mount	groove, rotatable, macro lenses	
Leica	Thread M39 $ imes$ $1/26"$, macro lenses	(28.80 mm)
M72	Thread M72 $ imes$ 0.75, line cameras	—

(Source www.kenrockwell.com)

System camera lens mounts are a mess

- The bayonets look all the same, but are different and have different flange focal distances
- Almost each vendor has his proprietary electrical lens/camera interface and communication protocol
- But with these interfaces a lot of useful things can be done, which are all missing in machine vision
- With suitable adapters all commercial system lenses can be mounted mechanically at machine vision cameras (most often used are C-mount adapters); but without enabling communication and autofocus
- There are some notable exceptions: Ximea offers their xiB-cameras with integrated Canon EF-mount control, SVS-Vistek offers EXO Tracer cameras with a Micro Four Third Mount

The camera to lens interface provides

- Threaded mounts are more stable, but not suitable to integrate an electrical interface
- How to construct a new type of lens mount that is stable enough and includes an electrical interface?
- How to ensure backward compatibility with existing lens mounts, especially C-mount lenses, so that they can still be used?

Challenges Communication Interface

An open communication should include

- Versatile power supply to the lens for control motors (focus, focal length, aperture and possibly other features) and lens electronics
- Bidirectional communication interface to communicate lens data to the camera but also camera data to the lens (in future systems the lens might adapt itself to the camera resolution)
- Same electrical interface even if the lens mount changes with the size of the lens and/or image sensor.

• Power supply to the lens for autofocus motor and lens electronics • Control of autofocus and feed back of focal distance • Control of zooming and feed back of focal length • Control of aperture and feed back of aperture setting

• Feed back of lens properties such as aperture dependent shading, geometrical distortion and lateral chromatic aberration of lens; camera can correct these aberrations

Conclusions and Take Home Message

The international machine vision community is well advised to start work on a new open standard for lens mounts including a camera to lens communication standard. Otherwise it will be much harder to realize many exciting new features of next generation vision systems.