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Abstract 

This work introduces a method to tune a sequence-based generative model for molecular de novo design that 
through augmented episodic likelihood can learn to generate structures with certain specified desirable properties. 
We demonstrate how this model can execute a range of tasks such as generating analogues to a query structure and 
generating compounds predicted to be active against a biological target. As a proof of principle, the model is first 
trained to generate molecules that do not contain sulphur. As a second example, the model is trained to generate 
analogues to the drug Celecoxib, a technique that could be used for scaffold hopping or library expansion start-
ing from a single molecule. Finally, when tuning the model towards generating compounds predicted to be active 
against the dopamine receptor type 2, the model generates structures of which more than 95% are predicted to be 
active, including experimentally confirmed actives that have not been included in either the generative model nor 
the activity prediction model.
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Background
Drug discovery is often described using the metaphor 
of finding a needle in a haystack. In this case, the hay-
stack comprises on the order of 1060−10100 syntheti-
cally feasible molecules [1], out of which we need to find 
a compound which satisfies the plethora of criteria such 
as bioactivity, drug metabolism and pharmacokinetic 
(DMPK) profile, synthetic accessibility, etc. The fraction 
of this space that we can synthesize and test at all—let 
alone efficiently—is negligible. By using algorithms to vir-
tually design and assess molecules, de novo design offers 
ways to reduce the chemical space into something more 
manageable for the search of the needle.

Early de novo design algorithms [1] used structure 
based approaches to grow ligands to sterically and elec-
tronically fit the binding pocket of the target of interest 
[2, 3]. A limitation of these methods is that the molecules 
created often possess poor DMPK properties and can be 
synthetically intractable. In contrast, the ligand based 

approach is to generate a large virtual library of chemi-
cal structures, and search this chemical space using a 
scoring function that typically takes into account sev-
eral properties such as DMPK profiles, synthetic acces-
sibility, bioactivity, and query structure similarity [4, 5]. 
One way to create such a virtual library is to use known 
chemical reactions alongside a set of available chemical 
building blocks, resulting in a large number of syntheti-
cally accessible structures [6]; another possibility is to use 
transformational rules based on the expertise of medici-
nal chemists to design analogues to a query structure. For 
example, Besnard et al. [7] applied a transformation rule 
approach to the design of novel dopamine receptor type 
2 (DRD2) receptor active compounds with specific poly-
pharmacological profiles and appropriate DMPK profiles 
for a central nervous system indication. Although using 
either transformation or reaction rules can reliably and 
effectively generate novel structures, they are limited by 
the inherent rigidness and scope of the predefined rules 
and reactions.

A third approach, known as inverse Quantitative Struc-
ture Activity Relationship (inverse QSAR), tackles the 
problem from a different angle: rather than first gener-
ating a virtual library and then using a QSAR model to 
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score and search this library, inverse QSAR aims to map 
a favourable region in terms of predicted activity to the 
corresponding molecular structures [8–10]. This is not a 
trivial problem: first the solutions of molecular descrip-
tors corresponding to the region need to be resolved 
using the QSAR model, and these then need be mapped 
back to the corresponding molecular structures. The fact 
that the molecular descriptors chosen need to be suitable 
both for building a forward predictive QSAR model as 
well as for translation back to molecular structure is one 
of the major obstacles for this type of approach.

The Recurrent Neural Network (RNN) is commonly 
used as a generative model for data of sequential nature, 
and have been used successfully for tasks such as natu-
ral language processing [11] and music generation [12]. 
Recently, there has been an increasing interest in using 
this type of generative model for the de novo design of 
molecules [13–15]. By using a data-driven method that 
attempts to learn the underlying probability distribution 
over a large set of chemical structures, the search over the 
chemical space can be reduced to only molecules seen as 
reasonable, without introducing the rigidity of rule based 
approaches. Segler et al. [13] demonstrated that an RNN 
trained on the canonicalized SMILES representation of 
molecules can learn both the syntax of the language as well 
as the distribution in chemical space. They also show how 
further training of the model using a focused set of actives 
towards a biological target can produce a fine-tuned model 
which generates a high fraction of predicted actives.

In two recent studies, reinforcement learning (RL) [16] 
was used to fine tune pre-trained RNNs. Yu et al. [15] use 
an adversarial network to estimate the expected return 
for state-action pairs sampled from the RNN, and by 
increasing the likelihood of highly rated pairs improves 
the generative network for tasks such as poem genera-
tion. Jaques et al. [17] use Deep Q-learning to improve a 
pre-trained generative RNN by introducing two ways to 
score the sequences generated: one is a measure of how 
well the sequences adhere to music theory, and one is 
the likelihood of sequences according to the initial pre-
trained RNN. Using this concept of prior likelihood they 
reduce the risk of forgetting what was initially learnt by 
the RNN, compared to a reward based only on the adher-
ence to music theory. The authors demonstrate significant 
improvements over both the initial RNN as well as an RL 
only approach. They later extend this method to several 
other tasks including the generation of chemical struc-
tures, and optimize toward molecular properties such as 
cLogP [18] and QED drug-likeness [19]. However, they 
report that the method is dependent on a reward function 
incorporating handwritten rules to penalize undesirable 
types of sequences, and even then can lead to exploitation 
of the reward resulting in unrealistically simple molecules 

that are more likely to satisfy the optimization require-
ments than more complex structures [17].

In this study we propose a policy based RL approach 
to tune RNNs for episodic tasks [16], in this case the 
task of generating molecules with given desirable prop-
erties. Through learning an augmented episodic likeli-
hood which is a composite of prior likelihood [17] and a 
user defined scoring function, the method aims to fine-
tune an RNN pre-trained on the ChEMBL database [20] 
towards generating desirable compounds. Compared 
to maximum likelihood estimation finetuning [13], this 
method can make use of negative as well as continuous 
scores, and may reduce the risk of catastrophic forgetting 
[21]. The method is applied to several different tasks of 
molecular de novo design, and an investigation was car-
ried out to illustrate how the method affects the behav-
iour of the generative model on a mechanistic level.

Methods
Recurrent neural networks
A recurrent neural network is an architecture of neural 
networks designed to make use of the symmetry across 
steps in sequential data while simultaneously at every 
step keeping track of the most salient information of pre-
viously seen steps, which may affect the interpretation of 
the current one [22]. It does so by introducing the con-
cept of a cell (Fig.  1). For any given step t, the cellt is a 
result of the previous cellt−1 and the current input xt−1 . 
The content of cellt will determine both the output at 
the current step as well as influence the next cell state. 
The cell thus enables the network to have a memory of 
past events, which can be used when deciding how to 
interpret new data. These properties make an RNN par-
ticularly well suited for problems in the domain of natu-
ral language processing. In this setting, a sequence of 
words can be encoded into one-hot vectors the length of 
our vocabulary X. Two additional tokens, GO and EOS, 
may be added to denote the beginning and end of the 
sequence respectively.

Learning the data
Training an RNN for sequence modeling is typically done 
by maximum likelihood estimation of the next token xt 

Cellt=1

P (x1)

GO

Cellt=2

P (x2)

x1

Cellt=3

P (x3)

x2

Cellt=4

P (EOS)

x3

Fig. 1 Learning the data. Depiction of maximum likelihood training 
of an RNN. xt are the target sequence tokens we are trying to learn by 
maximizing P(xt) for each step
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in the target sequence given tokens for the previous steps 
(Fig. 1). At every step the model will produce a probabil-
ity distribution over what the next character is likely to 
be, and the aim is to maximize the likelihood assigned to 
the correct token:

The cost function J (�), often applied to a subset of all 
training examples known as a batch, is minimized with 
respect to the network parameters �. Given a predicted 
log likelihood log P of the target at step t, the gradient 
of the prediction with respect to � is used to make an 
update of �. This method of fitting a neural network is 
called back-propagation. Due to the architecture of the 
RNN, changing the network parameters will not only 
affect the direct output at time t, but also affect the flow 
of information from the previous cell into the current 
one iteratively. This domino-like effect that the recur-
rence has on back-propagation gives rise to some par-
ticular problems, and back-propagation applied to RNNs 
is referred to as back-propagation through time (BPTT).

BPTT is dealing with gradients that through the chain-
rule contains terms which are multiplied by themselves 
many times, and this can lead to a phenomenon known 
as exploding and vanishing gradients. If these terms are 
not unity, the gradients quickly become either very large 
or very small. In order to combat this issue, Hochreiter 
et al. introduced the Long-Short-Term Memory cell [23], 
which through a more controlled flow of information can 
decide what information to keep and what to discard. The 
Gated Recurrent Unit is a simplified implementation of 
the Long-Short-Term Memory architecture that achieves 
much of the same effect at a reduced computational cost 
[24].

Generating new samples
Once an RNN has been trained on target sequences, it 
can then be used to generate new sequences that follow 
the conditional probability distributions learned from 
the training set. The first input—the GO token—is given 
and at every timestep after we sample an output token xt 
from the predicted probability distribution P(Xt) over 
our vocabulary X and use xt as our next input. Once the 
EOS token is sampled, the sequence is considered fin-
ished (Fig. 2).

Tokenizing and one‑hot encoding SMILES
A SMILES [25] represents a molecule as a sequence 
of characters corresponding to atoms as well as spe-
cial characters denoting opening and closure of rings 
and branches. The SMILES is, in most cases, tokenized 

J (�) = −

T
∑

t=1

log P(xt | xt−1, . . . , x1)

based on a single character, except for atom types which 
comprise two characters such as “Cl” and “Br” and spe-
cial environments denoted by square brackets (e.g [nH]), 
where they are considered as one token. This method of 
tokenization resulted in 86 tokens present in the train-
ing data. Figure  3 exemplifies how a chemical structure 
is translated to both the SMILES and one-hot encoded 
representations.

There are many different ways to represent a single 
molecule using SMILES. Algorithms that always rep-
resent a certain molecule with the same SMILES are 
referred to as canonicalization algorithms [26]. However, 
different implementations of the algorithms can still pro-
duce different SMILES.

Reinforcement learning
Consider an Agent, that given a certain state s ∈ S has to 
choose which action a ∈ A(s) to take, where S is the set 
of possible states and A(s) is the set of possible actions 
for that state. The policy π(a | s) of an Agent maps a 
state to the probability of each action taken therein. 

Cellt=1

x1

GO

Cellt=2

x2

Cellt=3

x3

Cellt=4

EOS

Fig. 2 Generating sequences. Sequence generation by a trained 
RNN. Every timestep t we sample the next token of the sequence xt 
from the probability distribution given by the RNN, which is then fed 
in as the next input

Cl

N

NH

ClCc1c[nH]cn1

Cl C c 1 c nH c n 1

C 0 1 0 0 0 0 0 0 0

c 0 0 1 0 1 0 1 0 0

n 0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 1

nH 0 0 0 0 0 1 0 0 0

Cl 1 0 0 0 0 0 0 0 0

Graph:

SMILES:

One-hot
encoding:

Fig. 3 Three representations of 4-(chloromethyl)-1H-imidazole. 
Depiction of a one-hot representation derived from the SMILES of a 
molecule. Here a reduced vocabulary is shown, while in practice a 
much larger vocabulary that covers all tokens present in the training 
data is used
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Many problems in reinforcement learning are framed as 
Markov decision processes, which means that the cur-
rent state contains all information necessary to guide our 
choice of action, and that nothing more is gained by also 
knowing the history of past states. For most real prob-
lems, this is an approximation rather than a truth; how-
ever, we can generalize this concept to that of a partially 
observable Markov decision process, in which the Agent 
can interact with an incomplete representation of the 
environment. Let r(a | s) be the reward which acts as a 
measurement of how good it was to take an action at a 
certain state, and the long-term return G(at , St =

∑T
t rt) 

as the cumulative rewards starting from t collected up 
to time T. Since molecular desirability in general is only 
sensible for a completed SMILES, we will refer only to 
the return of a complete sequence.

What reinforcement learning concerns, given a set 
of actions taken from some states and the rewards thus 
received, is how to improve the Agent policy in such a 
way as to increase the expected return E[G]. A task which 
has a clear endpoint at step T is referred to as an episodic 
task [16], where T corresponds to the length of the epi-
sode. Generating a SMILES is an example of an episodic 
task, which ends once the EOS token is sampled.

The states and actions used to train the agent can be 
generated both by the agent itself or by some other 
means. If they are generated by the agent itself the learn-
ing is referred to as on-policy, and if they are generated by 
some other means the learning is referred to as off-policy 
[16].

There are two different approaches often used in rein-
forcement learning to obtain a policy: value based RL, 
and policy based RL [16]. In value based RL, the goal is to 
learn a value function that describes the expected return 
from a given state. Having learnt this function, a policy 
can be determined in such a way as to maximize the 
expected value of the state that a certain action will lead 
to. In policy based RL on the other hand, the goal is to 
directly learn a policy. For the problem addressed in this 
study, we believe that policy based methods is the natural 
choice for three reasons:

  • Policy based methods can learn explicitly an optimal 
stochastic policy [16], which is our goal.

  • The method used starts with a prior sequence model. 
The goal is to finetune this model according to some 
specified scoring function. Since the prior model 
already constitutes a policy, learning a finetuned 
policy might require only small changes to the prior 
model.

  • The episodes in this case are short and fast to sample, 
reducing the impact of the variance in the estimate of 
the gradients.

In “Target activity guided structure generation“ section 
the change in policy between the prior and the finetuned 
model is investigated, providing justification for the sec-
ond point.

The prior network
Maximum likelihood estimation was employed to 
train the initial RNN composed of 3 layers with 1024 
Gated Recurrent Units (forget bias 5) in each layer. 
The RNN was trained on the RDKit [27] canoni-
cal SMILES of 1.5 million structures from ChEMBL 
[20] where the molecules were restrained to contain-
ing between 10 and 50 heavy atoms and elements 
∈ {H ,B,C ,N ,O, F , Si,P, S,Cl,Br, I}. The model was 
trained with stochastic gradient descent for 50,000 steps 
using a batch size of 128, utilizing the Adam optimizer 
[28] (β1 = 0.9, β2 = 0.999, and ǫ = 10−8 ) with an initial 
learning rate of 0.001 and a 0.02 learning rate decay every 
100 steps. Gradients were clipped to [−3, 3]. Tensorflow 
[29] was used to implement the Prior as well as the RL 
Agent.

The agent network
We now frame the problem of generating a SMILES 
representation of a molecule with specified desirable 
properties via an RNN as a partially observable Markov 
decision process, where the agent must make a decision 
of what character to choose next given the current cell 
state. We use the probability distributions learnt by the 
previously described prior model as our initial prior pol-
icy. We will refer to the network using the prior policy 
simply as the Prior, and the network whose policy has 
since been modified as the Agent. The Agent is thus 
also an RNN with the same architecture as the Prior. 
The task is episodic, starting with the first step of the 
RNN and ending when the EOS token is sampled. The 
sequence of actions A = a1, a2, . . . , aT  during this epi-
sode represents the SMILES generated and the product 
of the action probabilities P(A) =

∏T
t=1 π(at | st) repre-

sents the model likelihood of the sequence formed. Let 
S(A) ∈ [−1, 1] be a scoring function that rates the desir-
ability of the sequences formed using some arbitrary 
method. The goal now is to update the agent policy π 
from the prior policy πPrior in such a way as to increase 
the expected score for the generated sequences. How-
ever, we would like our new policy to be anchored to the 
prior policy, which has learnt both the syntax of SMILES 
and distribution of molecular structure in ChEMBL [13]. 
We therefore denote an augmented likelihood log P(A)U 
as a prior likelihood modulated by the desirability of a 
sequence:

log P(A)U = log P(A)Prior + σS(A)
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where σ is a scalar coefficient. The return G(A) of a 
sequence A can in this case be seen as the agreement 
between the Agent likelihood log P(A)A and the aug-
mented likelihood:

The goal of the Agent is to learn a policy which maxi-
mizes the expected return, achieved by minimiz-
ing the cost function J (�) = −G. The fact that we 
describe the target policy using the policy of the 
Prior and the scoring function enables us to formu-
late this cost function. In the Additional file 1 we show 
how this approach can be described using a REIN-
FORCE [30] algorithm with a final step reward of 
r(t) = [log P(A)U − log P(A)A]

2/ log P(A)A. We believe 
this is a more natural approach to the problem than 
REINFORCE algorithms directly using rewards of S(A) 
or log P(A)Prior + σS(A). In “Learning to avoid sulphur” 
section we compare our approach to these methods. The 
Agent is trained in an on-policy fashion on batches of 
128 generated sequences, making an update to π after 
every batch has been generated and scored. A standard 
gradient descent optimizer with a learning rate of 0.0005 
was used and gradients were clipped to [−3, 3].

Figure  4 shows an illustration of how the Agent, ini-
tially identical to the Prior, is trained using reinforcement 
learning. The training shifts the probability distribution 
from that of the Prior towards a distribution modulated 
by the desirability of the structures. This method adopts 
a similar concept to Jaques et al. [17], while using a pol-
icy based RL method that introduces a novel cost func-
tion with the aim of addressing the need for handwritten 
rules and the issues of generating structures that are too 
simple.

G(A) = −[log P(A)U − log P(A)A]
2

In all the tasks investigated below, the scoring func-
tion is fixed during the training of the Agent. If instead 
the scoring function used is defined by a discriminator 
network whose task is to distinguish sequences generated 
by the Agent from ‘real’ SMILES (e.g. a set of actives), 
the method could be described as a type of Generative 
Adversarial Network [31], where the Agent and the dis-
criminator would be jointly trained in a game where they 
both strive to beat the other. This is the approach taken 
by Yu et al. [15] to finetune a pretrained sequence model 
for poem generation. Guimaraes et al. demonstrates how 
such a method can be combined with a fixed scoring 
function for molecular de novo design [32].

The DRD2 activity model
In one of our studies the objective of the Agent is to gen-
erate molecules that are predicted to be active against a 
biological target. The dopamine type 2 receptor DRD2 
was chosen as the target, and corresponding bioactiv-
ity data was extracted from ExCAPE-DB [33]. In this 
dataset there are 7218 actives (pIC50 > 5) and 343204 
inactives (pIC50 < 5). A subset of 100,000 inactive com-
pounds was randomly selected. In order to decrease the 
nearest neighbour similarity between the training and 
testing structures [34–36], the actives were grouped in 
clusters based on their molecular similarity. The Jaccard 
[37] index, for binary vectors also known as the Tani-
moto similarity, based on the RDKit implementation of 
binary Extended Connectivity Molecular Fingerprints 
with a diameter of 6 (ECFP6 [38]) was used as a simi-
larity measure and the actives were clustered using the 
Butina clustering algorithm [39] in RDKit with a cluster-
ing cutoff of 0.4. In this algorithm, centroid molecules 
will be selected, and everything with a similarity higher 

Agent network

Prior network

Initialize Agent

Scoring function

SMILES strings

SMILES from ChEMBL

Augmented Likelihood

Generate sequences

Update Agent
Likelihood

Fig. 4 The Agent. Illustration of how the model is constructed. Starting from a Prior network trained on ChEMBL, the Agent is trained using the 
augmented likelihood of the SMILES generated
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than 0.4 to these centroids will be assigned to the same 
cluster. The centroids are chosen such as to maximize the 
number of molecules that are assigned to any cluster. The 
clusters were sorted by size and iteratively assigned to the 
test, validation, and training sets (assigned 4 clusters each 
iteration) to give a distribution of 16, 

1
6, and 46 of the clusters 

respectively. The inactive compounds, of which less than 
0.5% were found to belong to any of the clusters formed 
by the actives, were split randomly into the three sets 
using the same ratios.

A support vector machine (SVM) classifier with a 
Gaussian kernel was built in Scikit-learn [40] on the 
training set as a predictive model for DRD2 activity. The 
optimal C and Gamma values utilized in the final model 
were obtained from a grid search for the highest ROC-
AUC performance on the validation set.

Results and discussion
Structure generation by the Prior
After the initial training, 94% of the sequences gener-
ated by the Prior as described in “Generating new sam-
ples” section corresponded to valid molecular structures 
according to RDKit [27] parsing, out of which 90% are 
novel structures outside of the training set. A set of ran-
domly chosen structures generated by the Prior, as well 
as by Agents trained in the subsequent examples, are 
shown in the Additional file 2. The process of generating 
a SMILES by the Prior is illustrated in Fig.  5. For every 
token in the generated SMILES sequence, the conditional 
probability distribution over the vocabulary at this step 
according to the Prior is displayed. The sequence of dis-
tributions are depicted in Fig. 5. For the first step, when 
no information other than the initial GO token is present, 
the distribution is an approximation of the distribution 
of first tokens for the SMILES in the ChEMBL training 
set. In this case “O” was sampled, but “C”, “N”, and the 

halogens were all likely as well. Corresponding log likeli-
hoods were −0.3 for “C”, −2.7 for “N”, −1.8 for “O”, and 
−5.0 for “F” and “Cl”.

A few (unsurprising) observations:

  • Once the aromatic “n” has been sampled, the model 
has come to expect a ring opening (i.e. a number), 
since aromatic moieties by definition are cyclic.

  • Once an aromatic ring has been opened, the aromatic 
atoms “c”, “n”, “o”, and “s” become probable, until 5 or 
6 steps later when the model thinks it is time to close 
the ring.

  • The model has learnt the RDKit canonicalized 
SMILES format of increasing ring numbers, and 
expects the first ring to be numbered “1”. Ring num-
bers can be reused, as in the two first rings in this 
example. Only once “1” has been sampled does it 
expect a ring to be numbered “2” and so on.

Learning to avoid sulphur
As a proof of principle the Agent was first trained to gen-
erate molecules which do not contain sulphur. The method 
described in “The Agent network” is compared with three 
other policy gradient based methods. The first alternative 
method is the same as the Agent method, with the only 
difference that the loss is defined on an action basis rather 
than on an episodic one, resulting in the cost function:

We refer to this method as ‘Action basis’. The second alter-
native is a REINFORCE algorithm with a reward of S(A) 
given at the last step. This method is similar to the one 
used by Silver et al. to train the policy network in AlphaGo 
[41], as well as the method used by Yu et al. [15]. We refer 

J(�) =

[

T
∑

t=0

(log πPrior(at , st)− log π�(at , st))+ σS(A)

]2

O=C ( NC 1 CC 1 ) C 1 CCCN ( CC n 2 c c ( C ( F ) ( F ) F ) c c c 2 =O ) C 1 E
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loge P Structure
Fig. 5 How the model thinks while generating the molecule on the right. Conditional probability over the next token as a function of previously 
chosen ones according to the model. On the y-axis is shown the probability distribution for the character to be choosen at the current step, and on 
the x-axis is shown the character that in this instance was sampled. E = EOS
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to this method as ‘REINFORCE’. The corresponding cost 
function can be written as:

A variation of this method that considers prior likeli-
hood is defined by changing the reward from S(A) to 
S(A)+ log P(A)Prior. This method is referred to as ‘REIN-
FORCE + Prior’, with the cost function:

Note that the last method by nature strives to generate 
only the putative sequence with the highest reward. In 
contrast to the Agent, the optimal policy for this method is 
not stochastic. This tendency could be restrained by intro-
ducing a regularizing policy entropy term. However, it was 
found that such regularization undermined the models 
ability to produce valid SMILES. This method is therefor 
dependent on only training sufficiently long for the model 
to reach a point where highly scored sequences are gener-
ated, without being settled in a local minima. The experi-
ment aims to answer the following questions:

  • Can the models achieve the task of generating valid 
SMILES corresponding to structures that do not con-
tain sulphur?

  • Will the models exploit the reward function by converg-
ing on naïve solutions such as ‘C’ if not imposed hand-
written rules?

  • Are the distributions of physical chemical properties for 
the generated structures similar to those of sulphur 
free structures generated by the Prior?

The task is defined by the following scoring function:

J (�) = S(A)

T
∑

t=0

log π�(at , st)

J (�) = [log P(A)Prior + σS(A)]

T
∑

t=0

log π�(at , st)

S(A) =







1 if valid and no S
0 if not valid
−1 if contains S

All the models were trained for 1000 steps starting from 
the Prior and 12,800 SMILES sequences were sampled 
from all the models as well as the Prior. A learning rate of 
0.0005 was used for the Agent and Action basis methods, 
and 0.0001 for the two REINFORCE methods. The val-
ues of σ used were 2 for the Agent and ‘REINFORCE + 
Prior’, and 8 for ‘Action basis’. To explore what effect the 
training has on the structures generated, relevant prop-
erties for non sulphur containing structures generated 
by both the Prior and the other models were compared. 
The molecular weight, cLogP, the number of rotatable 
bonds, and the number of aromatic rings were all calcu-
lated using RDKit. The experiment was repeated three 
times with different random seeds. The results are shown 
in Table 1 and randomly selected SMILES generated by 
the Prior and the different models can be seen in Table 2. 
For the ‘REINFORCE’ method, where the sole aim is to 
generate valid SMILES that do not contain sulphur, the 
model quickly learns to exploit the reward funtion by 
generating sequences containing predominately ‘C’. This 
is not surprising, since any sequence consisting only of 
this token always gets rewarded. For the ‘REINFORCE 
+ Prior’ method, the inclusion of the prior likelihood in 
the reward function means that this is no longer a viable 
strategy (the sequences would be given a low prior prob-
ability). The model instead tries to find the structure with 
the best combination of score and prior likelihood, but as 
is evident from the SMILES generated and the statistics 
shown in Table  1, this results in small, simplistic struc-
tures being generated. Thus, both REINFORCE algo-
rithms managed to achieve high scores according to the 
scoring function, but poorly represented the Prior. Both 
the Agent and the ‘Action basis’ methods have explicitly 
specified target policies. For the ‘Action basis’ method the 
policy is specified exactly on a stepwise level, while for 
the Agent the target policy is only specified to the like-
lihoods of entire sequences. Although the ‘Action basis’ 
method generates structures that are more similar to the 
Prior than the two REINFORCE methods, it performed 
worse than the Agent despite the higher value of σ used 
while also being slower to learn. This may be due to the 

Table 1 Comparison of model performance and properties for non-sulphur containing structures generated by the two 
models

Properties reported as Mean ± SD

Model Prior Agent Action basis REINFORCE REINFORCE + Prior

Fraction of valid SMILES 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.98 ± 0.00 0.98 ± 0.00

Fraction without sulphur 0.66 ± 0.01 0.98 ± 0.00 0.92 ± 0.02 0.98 ± 0.00 0.92 ± 0.01

Average molecular weight 371 ± 1.70 367 ± 3.30 372 ± 0.94 585 ± 27.4 232 ± 5.25

Average cLogP 3.36 ± 0.04 3.37 ± 0.09 3.39 ± 0.02 11.3 ± 0.85 3.05 ± 0.02

Average NumRotBonds 5.39 ± 0.04 5.41 ± 0.07 6.08 ± 0.04 30.0 ± 2.17 2.8 ± 0.11

Average NumAromRings 2.26 ± 0.02 2.26 ± 0.02 2.09 ± 0.02 0.57 ± 0.04 2.11 ± 0.02
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less restricted target policy of the Agent, which could 
facilitate optimization. The Agent achieved the same 
fraction of sulphur free structures as the REINFORCE 
algorithms, while seemingly doing a much better job of 
representing the Prior. This is indicated by the similar-
ity of the properties of the generated structures shown 
in Table  1 as well as the SMILES themselves shown in 
Table 2.

Similarity guided structure generation
The second task investigated was that of generating 
structures similar to a query structure. The Jaccard index 
[37] Ji,j of the RDKit implementation of FCFP4 [38] fin-
gerprints was used as a similarity measure between mol-
ecules i and j. Compared to the DRD2 activity model 
(“The DRD2 activity model” section), the feature invari-
ant version of the fingerprints and the smaller diameter 4 
was used in order to get a more fuzzy similarity measure. 
The scoring function was defined as:

This definition means that an increase in similarity is 
only rewarded up to the point of k ∈ [0, 1], as well as scal-
ing the reward from −1 (no overlap in the fingerprints 
between query and generated structure) to 1 (at least k 
degree of overlap). Celecoxib was chosen as our query 
structure, and we first investigated whether Celecoxib 
itself could be generated by using the high values of k = 1 
and σ = 15. The Agent was trained for 1000 steps. After a 
100 training steps the Agent starts to generate Celecoxib, 
and after 200 steps it predominately generates this struc-
ture (Fig. 6).

S(A) = −1+ 2×
min{Ji,j , k}

k

Celecoxib itself as well as many other similar struc-
tures appear in the ChEMBL training set used to build 
the Prior. An interesting question is whether the Agent 
could succeed in generating Celecoxib when these struc-
tures are not part of the chemical space covered by the 
Prior. To investigate this, all structures with a similar-
ity to Celecoxib higher than 0.5 (corresponding to 1804 
molecules) were removed from the training set and a 
new reduced Prior was trained. The prior likelihood 
of Celecoxib for the canonical and reduced Priors was 

Table 2 Randomly selected SMILES generated by the different models

Model Sampled SMILES

Prior CCOC(=O)C1=C(C)OC(N)=C(C#N)C1c1ccccc1C(F)(F)F

COC(=O)CC(C)=NNc1ccc(N(C)C)cc1[N+](=O)[O-]

Cc1ccccc1CNS(=O)(=O)c1ccc2c(c1)C(=O)C(=O)N2

Agent CC(C)(C)NC(=O)c1ccc(OCc2ccccc2C(F)(F)F)nc1-c1ccccc1

CC(=O)NCC1OC(=O)N2c3ccc(-c4cccnc4)cc3OCC12

OCCCNCc1cccc(-c2cccc(-c3nc4ccccc4[nH]3)c2OCCOc2ncc(Cl)cc2Br)c1

Action level CCN1CC(C)(C)OC(=O)c2cc(-c3ccc(Cl)cc3)ccc21

CCC(CC)C(=O)Nc1ccc2cnn(-c3ccc(C(C)=O)cc3)c2c1

CCCCN1C(=O)c2ccccc2NC1c1ccc(OC)cc1

REINFORCE CC1CCCCC12NC(=O)N(CC(=O)Nc1ccccc1C(=O)O)C2=O

CCCCCCCCCCCCCCCCCCCCCCCCCCCCNC(=O)OCCCCCC

CCCCCCCCCCCCCCCCCCCCCC1CCC(O)C1(CCC)CCCCCCCCCCCCCCC

REINFORCE + Prior Nc1ccccc1C(=O)Oc1ccccc1

O=c1cccccc1Oc1ccccc1

Nc1ccc(-c2ccccc2O)cc1

0 200 400 600 800 1,000
0.25
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Canonical prior k = 1 σ = 15
Canonical prior k = 0.7 σ = 12
Reduced prior k = 1 σ = 15
Reduced prior k = 0.7 σ = 12
Reduced prior k = 0.7 σ = 15

Fig. 6 Average similarity J of generated structures as a function 
of training steps. Difference in learning dynamics for the Agents 
based on the canonical Prior, and those based on a reduced Prior 
where everything more similar than J = 0.5 to Celecoxib have been 
removed
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compared, as well as the ability of the models to gener-
ate structures similar to Celecoxib. As expected, the 
prior probability of Celecoxib decreased when similar 
compounds were removed from the training set from 
loge P = −12.7 to loge P = −19.2, representing a reduc-
tion in likelihood of a factor of 700. An Agent was then 
trained using the same hyperparameters as before, but on 
the reduced Prior. After 400 steps, the Agent again man-
aged to find Celecoxib, albeit requiring more time to do 
so. After 1000 steps, Celecoxib was the most commonly 
generated structure (about a third of the generated struc-
tures), followed by demethylated Celecoxib (also a third) 
whose SMILES is more likely according to the Prior with 
loge P = −15.2 but has a lower similarity (J = 0.87 ), 
resulting in an augmented likelihood equal to that of 
Celecoxib.

These experiments demonstrate that the Agent can be 
optimized using fingerprint based Jaccard similarity as 
the objective, but making copies of the query structure is 
hardly useful. A more useful example is that of generating 
structures that are moderately to the query structure. The 
Agent was therefore trained for 3000 steps, starting from 
both the canonical as well as the reduced Prior, using 
k = 0.7 and σ = 12. The Agents based on the canonical 
Prior quickly converge to their targets, while the Agents 
based on the reduced Prior converged more slowly. For 
the Agent based on the reduced Prior where k = 1, the 
fact that Celecoxib and demethylated Celecoxib are given 
similar augmented likelihoods means that the average 
similarity converges to around 0.9 rather than 1.0. For 
the Agent based on the reduced Prior where k = 0.7, the 
lower prior likelihood of compounds similar to Celecoxib 
translates to a lower augmented likelihood, which lowers 
the average similarity of the structures generated by the 
Agent.

To explore whether this reduced prior likelihood could 
be offset with a higher value of σ, an Agent starting from 
the reduced Prior was trained using σ = 15. Though tak-
ing slightly more time to converge than the Agent based 
on the canonical Prior, this Agent too could converge to 
the target similarity. The learning curves for the different 
model is shown in Fig. 6.

An illustration of how the type of structures generated 
by the Agent evolves during training is shown in Fig. 7. 
For the Agent based on the reduced Prior with k = 0.7 
and σ = 15, three structures were randomly sampled 
every 100 training steps from step 0 up to step 400. At 
first, the structures are not similar to Celecoxib. After 
200 steps, some features from Celecoxib have started to 
emerge, and after 300 steps the model generates mostly 
close analogues of Celecoxib.

We have investigated how various factors affect the 
learning behaviour of the Agent. In real drug discovery 

applications, we might be more interested in finding 
structures with modest similarity to our query mol-
ecules rather than very close analogues. For example, 
one of the structures sampled after 200 steps shown 
in Fig.  7 displays a type of scaffold hopping where the 
sulphur functional group on one of the outer aromatic 
rings has been fused to the central pyrazole. The simi-
larity to Celecoxib of this structure is 0.4, which may be 
a more interesting solution for scaffold-hopping pur-
poses. One can choose hyperparameters and similarity 
criterion tailored to the desired output. Other types of 
similarity measures such as pharmacophoric finger-
prints [42], Tversky substructure similarity [43], or 
presence/absence of certain pharmacophores could also 
be explored.

Target activity guided structure generation
The third example, perhaps the one most interesting 
and relevant for drug discovery, is to optimize the Agent 
towards generating structures with predicted biologi-
cal activity. This can be seen as a form of inverse QSAR, 
where the Agent is used to implicitly map high predicted 
probability of activity to molecular structure. DRD2 was 
chosen as the biological target. The clustering split of the 
DRD2 activity dataset as described in “The DRD2 activity 
model” section resulted in 1405, 1287, and 4526 actives 
in the test, validation, and training sets respectively. The 
average similarity to the nearest neighbour in the train-
ing set for the test set compounds was 0.53. For a random 
split of actives in sets of the same sizes this similarity 
was 0.69, indicating that the clustering had significantly 
decreased training-test set similarity which mimics the 
hit finding practice in drug discovery to identify diverse 
hits to the training set. Most of the DRD2 actives are also 
included in the ChEMBL dataset used to train the Prior. 
To explore the effect of not having the known actives 
included in the Prior, a reduced Prior was trained on a 
reduced subset of the ChEMBL training set where all 
DRD2 actives had been removed.

The optimal hyperparameters found for the SVM activ-
ity model were C = 27, γ = 2−6, resulting in a model 
whose performance is shown in Table  3. The good per-
formance in general can be explained by the apparent dif-
ference between actives and inactive compounds as seen 
during the clustering, and the better performance on the 
test set compared to the validation set could be due to 
slightly higher nearest neighbour similarity to the train-
ing actives (0.53 for test actives and 0.48 for validation 
actives).

The output of the DRD2 model for a given structure 
is an uncalibrated predicted probability of being active 
Pactive. This value is used to formulate the following scor-
ing function:
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The model was trained for 3000 steps using σ = 7. After 
training, the fraction of predicted actives according to 
the DRD2 model increased from 0.02 for structures 

S(A) = −1+ 2× Pactive
generated by the reduced Prior to 0.96 for structures gen-
erated by the corresponding Agent network (Table 4). To 
see how well the structure-activity-relationship learnt by 
the activity model is transferred to the type of structures 
generated by the Agent RNN, the fraction of compounds 
with an ECFP6 Jaccard similarity greater than 0.4 to any 
active in the training and test sets was calculated.

In some cases, the model recovered exact matches 
from the training and test sets (c.f. Segler et al. [13]). The 
fraction of recovered test actives recovered by the canon-
ical and reduced Prior were 1.3 and 0.3% respectively. 
The Agent derived from the canonical Prior managed 
to recover 13% test actives; the Agent derived from the 
reduced Prior recovered 7%. For the Agent derived from 
the reduced Prior, where the DRD2 actives were excluded 

0 100 200 300 400
Training steps

Celecoxib

Fig. 7 Evolution of generated structures during training Structures sampled every 100 training steps during the training of the Agent towards 
similarity to Celecoxib with k = 0.7 and σ = 15

Table 3 Performance of the DRD2 activity model

Set Training Validation Test

Accuracy 1.00 0.98 0.98

ROC-AUC 1.00 0.99 1.00

Precision 1.00 0.96 0.97

Recall 1.00 0.73 0.82
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from the Prior training set, this means that the model has 
learnt to generate “novel” structures that have been seen 
neither by the DRD2 activity model nor the Prior, and are 
experimentally confirmed actives. We can formalize this 
observation by calculating the probability of a given gen-
erated sequence belonging to the set of test actives. For 
the canonical and reduced Priors, this probability was 
0.17× 10−3 and 0.05× 10−3 respectively. Removing the 
actives from the Prior thus resulted in a threefold reduc-
tion in the probability of generating a structure from the 
set of test actives. For the Agents, the probabilities rose to 
15.0× 10−3 and 40.2× 10−3 respectively, corresponding 
to an enrichment of a factor of 250 over the Prior mod-
els. Again the consequence of removing the actives from 
the Prior was a threefold reduction in the probability of 

generating a test set active: the difference between the 
two Priors is directly mirrored by their corresponding 
Agents. Apart from generating a higher fraction of struc-
tures that are predicted to be active, both Agents also 
generate a significantly higher fraction of valid SMILES 
(Table 4). Sequences that are not valid SMILES receive a 
score of −1, which means that the scoring function natu-
rally encourages valid SMILES.

A few of the test set actives generated by the Agent 
based on the reduced Prior along with a few randomly 
selected generated structures are shown together with 
their predicted probability of activity in Fig. 8. Encourag-
ingly, the recovered test set actives vary considerably in 
their structure, which would not have been the case had 
the Agent converged to generating only a certain type of 
very similar predicted active compounds.

Removing the known actives from the training set of 
the Prior resulted in an Agent which shows a decrease 
in all metrics measuring the overlap between the known 
actives and the structures generated, compared to the 
Agent derived from the canonical Prior. Interestingly, the 
fraction of predicted actives did not change significantly. 
This indicates that the Agent derived from the reduced 
Prior has managed to find a similar chemical space to 
that of the canonical Agent, with structures that are 
equally likely to be predicted as active, but are less similar 
to the known actives. Whether or not these compounds 
are active will be dependent on the accuracy of the target 
activity model. Ideally, any predictive model to be used 
in conjunction with the generative model should cover a 

Table 4 Comparison of  properties for  structures gener-
ated by  the canonical Prior, the reduced Prior, and  corre-
sponding Agents

a DRD2 actives witheld from the training of the Prior

Model Prior Agent Priora Agenta

Fraction valid SMILES 0.94 0.99 0.94 0.99

Fraction predicted actives 0.03 0.97 0.02 0.96

Fraction similar to train active 0.02 0.79 0.02 0.75

Fraction similar to test active 0.01 0.46 0.01 0.38

Fraction of test actives recovered 
(×10

−3)
13.5 126 2.85 72.6

Probability of generating a test set 
active (×10

−3)
0.17 40.2 0.05 15.0

Recovered test actives
Pactive 0.95 0.95 0.73 0.66

Randomly selected
Pactive 1.00 0.99 0.98 1.00

Fig. 8 Structures designed by the Agent to target DRD2. Molecules generated by the Agent based on the reduced Prior. On the top are four of the 
test set actives that were recovered, and below are four randomly selected structures. The structures are annotated with the predicted probability of 
being active
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broad chemical space within its domain of applicability, 
since it initially has to assess representative structures of 
the dataset used to build the Prior [13].

Figure 9 shows a comparison of the conditional prob-
ability distributions for the reduced Prior and its cor-
responding Agent when a molecule from the set of test 
actives is generated. It can be seen that the changes are 
not drastic with most of the trends learnt by the Prior 
being carried over to the Agent. However, a big change 
in the probability distribution even only at one step can 
have a large impact on the likelihood of the sequence and 
could significantly alter the type of structures generated.

Conclusion
To summarize, we believe that an RNN operating on 
the SMILES representation of molecules is a promising 
method for molecular de novo design. It is a data-driven 
generative model that does not rely on pre-defined build-
ing blocks and rules, which makes it clearly differentiated 
from traditional methods. In this study we extend upon 
previous work [13–15, 17] by introducing a reinforce-
ment learning method which can be used to tune the 
RNN to generate structures with certain desirable prop-
erties through augmented episodic likelihood.

The model was tested on the task of generating sulphur 
free molecules as a proof of principle, and the method 
using augmented episodic likelihood was compared with 
traditional policy gradient methods. The results indicate 
that the Agent can find solutions reflecting the underly-
ing probability distribution of the Prior, representing a 
significant improvement over both traditional REIN-
FORCE [30] algorithms as well as previously reported 
methods [17]. To evaluate if the model could be used 
to generate analogues to a query structure, the Agent 
was trained to generate structures similar to the drug 
Celecoxib. Even when all analogues of Celecoxib were 
removed from the Prior, the Agent could still locate the 

intended region of chemical space which was not part of 
the Prior. Further more, when trained towards generat-
ing predicted actives against the dopamine receptor type 
2 (DRD2), the Agent generates structures of which more 
than 95% are predicted to be active, and could recover 
test set actives even in the case where they were not 
included in either the activity model nor the Prior. Our 
results indicate that the method could be a useful tool for 
drug discovery.

It is clear that the qualities of the Prior are reflected 
in the corresponding Agents it produces. An exhaustive 
study which explores how parameters such as training set 
size, model size, regularization [44, 45], and training time 
would influence the quality and variety of structures gen-
erated by the Prior would be interesting. Another inter-
esting avenue for future research might be that of token 
embeddings [46]. The method was found to be robust 
with respect to the hyperparameters σ and the learning 
rate.

All of the aforementioned examples used single param-
eter based scoring functions. In a typical drug discov-
ery project, multiple parameters such as target activity, 
DMPK profile, synthetic accessibility etc. all need to be 
taken into account simultaneously. Applying this type of 
multi-parametric scoring functions to the model is an 
area requiring further research.
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DMPK: drug metabolism and pharmacokinetics; DRD2: dopamine receptor D2; 
QSAR: quantitive structure activity relationship; RNN: recurrent neural network; 
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RL: reinforcement Learning; Log: natural logarithm; BPTT: back-propagation 
through time; A: sequence of tokens constituting a SMILES; Prior: an RNN 
trained on SMILES from ChEMBL used as a starting point for the Agent; Agent: 
an RNN derived from a Prior, trained using reinforcement learning; J: Jaccard 
index; ECFP6: Extended Molecular Fingerprints with diameter 6; SVM: support 
vector machine; FCFP4: Extended Molecular Fingerprints with diameter 4 and 
feature invariants.
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