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Abstract

In the temporal difference model of primate dopamine neurons, their phasic activity
reports a prediction error for future reward. This model is supported by a wealth of
experimental data. However, in certain circumstances, the activity of the dopamine
cells seems anomalous under the model, as they respond in particular ways to stim-
uli that are not obviously related to predictions of reward. In this paper, we address
two important sets of anomalies, those having to do with generalization and novelty.
Generalization responses are treated as the natural consequence of partial information;
novelty responses are treated by the suggestion that dopamine cells multiplex infor-
mation about reward bonuses, including exploration bonuses and shaping bonuses.
We interpret this additional role for dopamine in terms of the mechanistic attentional
and psychomotor effects of dopamine, having the computational role of guiding ex-
ploration.

Keywords: dopamine, reinforcement learning, exploration, temporal difference, general-
ization



Dopamine: Generalization and Bonuses 3

1 Introduction

Much evidence, reviewed by Schultz (1998), suggests that dopamine (DA) cells in the pri-
mate midbrain play an important role in reward and action learning. Electrophysiological
studies in both instrumental (see Schultz, 1992; 1998) and classical (Waelti, Dickinson &
Schultz, 2001) conditioning tasks support a theory that DA cells signal a global prediction
error for summed future reward in appetitive conditioning tasks (Montague et al, 1996;
Schultz et al, 1997), in the form of a temporal difference (TD) prediction error term. One
use for this term is training the predictions themselves, a standard interpretation for the
preparatory aspects of classical conditioning; another is finding the actions that maximize
reward, as in a two-factor learning theory for the interaction of classical and instrumen-
tal conditioning. Storage of the predictions involves at least the basolateral nuclei of the
amygdala (Hatfield et al, 1996; Whitelaw et al, 1996; Holland & Gallagher, 1999) and the
orbitofrontal cortex (Schoenbaum, Chiba & Gallagher, 1998; 1999; Gallagher, McMahan &
Schoenbaum, 1999; Rolls, 2000; Schultz, Tremblay & Hollerman, 2000; Tremblay & Schultz,
2000a;b; O’Doherty et al, 2001). The neural substrate for the dopaminergic control over ac-
tion is rather less clear (Houk, Adams & Barto, 1995; Montague et al, 1996; Dickinson &
Balleine, 2001; Dayan, 2002).

The computational role of dopamine in reward learning is controversial for various rea-
sons (eg Gray, Young & Joseph, 1997; Ikemoto & Panksepp, 1999; Redgrave et al, 1999).
First, stimuli that are not associated with reward prediction are known to activate the
dopamine system in a non-trivial manner, including stimuli that are novel and salient, or
that physically resemble other stimuli that do predict reward (Schultz, 1998). In both cases,
an important aspect of the dopamine response is that it sometimes consists of a short-
term increase above baseline followed by a short-term decrease below baseline. Second,
dopamine release is associated with a set of motor effects, such as species- and stimulus-
specific approach behaviors, that seem either irrelevant or detrimental to the delivery of
reward. We call these motor effects mechanistic because of their apparent independence
from prediction or action.

In this paper, we study various of these apparently anomalous activations of dopamine
cells. We interpret the short term increase and decrease in the light of generalization as
an example of partial information — the response is exactly what would be expected were
the animal to be initially incompletely certain as to whether or not the presented stimulus
was the one associated with food. We interpret the short term effects after new stimuli as
suggesting that the DA system multiplexes information about bonuses on top of informa-
tion about rewards. Bonuses are fictitious quantities added to rewards (eg Sutton, 1990;
Dayan & Sejnowski, 1996) or values (Ng, Harada & Russell, 1999) to ensure appropriate
exploration in new or changing environments.

In the next section, we describe the TD model of dopamine activity. In section 3 we discuss
generalization; in section 4 we discuss novelty responses and bonuses.
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2 Temporal Difference and Dopamine Activity

Figure 1 shows three aspects of the activity of dopamine cells, together with the associated
TD model. The electrophysiological data in figure 1A;B are based on a set of reaction-time
operant conditioning trials, in which monkeys are learning the relationship between an
auditory conditioned stimulus (the CS) and the delivery of a juice reward (the uncondi-
tioned stimulus or US). The monkeys had to keep their hands on a resting key until the
sound was played, and then they had to depress a lever in order to get juice. Figure 1A
shows the activity of a single dopamine cell in early trials, before the monkey has learned
the relationship between the CS and the reward. At this point, dopamine cells fire substan-
tially over baseline to the reward, but only weakly, if at all, to the CS. Once the relationship
is established, the cells fire to the CS (figure 1B), but not to the (now expected) reward. Fig-
ure 1C shows the result from a different experiment in which a monkey expected a reward
on the basis of a CS, but the reward was not delivered. In this case, activity of dopamine
cells goes below baseline at the time that they were formerly activated by the presentation
of reward. Note also the rather temporally precise response to the predictive stimulus.
Although these data come from operant tasks, Waelti et al (2001) showed that dopamine
cells are activated similarly in Pavlovian circumstances. Thus, we consider how dopamine
provides information about errors in prediction of reward, irrespective of actions. This
information is also useful for the operant task of choosing appropriate actions.

The pattern of neural responses in the upper plots of figure 1 is matched by the three lines
in the lower part of the figure, which show the prediction error δ(t) in a TD model under
equivalent circumstances. In the model, assuming that there is only one CS, predictions
v(t) are made at time t during a trial using information about the state of the trial (or more
generally the state of the environment) at time t. A simple assumption is that

v(t) =
∑

s≤t

w(t−s)u(s) (1)

where u(s) = 1 if the conditioned stimulus is presented at time s in the trial, and 0 other-
wise, and w(t−s) is the weight associated with the stimulus having been presented t−s
timesteps before. In writing equation 1, we have made the tacit assumption that there
is a different state of the trial for every timestep since the stimulus was presented. This
assumption amounts to the use of a serial compound conditioned stimulus, ie a differ-
ent stimulus for every timestep (Kehoe, 1977); more realistic models of interval timing
(see Church, 1984; Gibbon, Malpani, Dale & Gallistel, 1997) have also been suggested (eg
Grossberg & Schmajuk, 1989). If multiple stimuli are presented, so the state is defined by
the simultaneous presence of multiple cues, then, as in the Rescorla-Wagner (1972) rule
(though not necessarily the data, see, eg, Pearce et al, 1999), the net prediction v(t) is the
sum of the predictions made by each stimulus. In the temporal difference model, the value
v(t) is supposed to predict the sum future rewards within a trial

v(t) ∼
∑

s≥t

r(s) . (2)
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where r(s) is the value of the reward immediately provided at timestep s. The use of a
sum over discrete time steps rather than an integral over continuous time steps is mainly
for convenience (see Doya, 1999 for a fully continuous version). Below, we divide time
into fine steps, each nominally of 50ms, which seems roughly the temporal resolution of
the dopaminergic activity. As in one form of a Bellman equation (see Bertsekas & Tsitsiklis,
1996; Sutton & Barto, 1998), equation 2 gives rise to the consistency condition

v(t) ∼ r(t) + v(t+ 1) , (3)

which states that the sum future reward from time t is the sum of the immediate reward
and the future reward from time t + 1. Thence the temporal difference prediction error,
which is the inconsistency between left and right hand sides of equation 3, is

δ(t) = r(t) + v(t+ 1)− v(t) . (4)

This prediction error can be used to train the weights using the delta-like rule:

∆w(t−s) = ǫδ(t)u(s) , (5)

where the u(s) picks out the timestep at which the stimulus was presented and ǫ is a learn-
ing rate parameter. If there is stochasticity either in the amount or timing of reward, then
equations 2 and 3 should involve averages. Strictly speaking, equation 5 is called the TD(0)
learning rule; there are variants (Sutton, 1988) involving eligibility traces for stimuli (Hull,
1943) which lead to faster learning, at least under some circumstances. The substantial
theory underlying temporal difference learning (see Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 1998) indicates circumstances under which the learning rule in equation 5 leads to
the predictions v(t) becoming correct on average.

Figure 2 shows the model’s construction of the δ(t) shown in the lower traces of figure 1.
The two sets of traces show successively the stimulus, u, the reward r, the prediction v,
the temporal difference of the predictions ∆v=v(t+ 1)−v(t), and the temporal difference
prediction error δ, which is the sum of r and ∆v. Here, we consider the simple Pavlovian
case that a stimulus is shown around time t0=1 in a trial, the reward is provided during a
small time interval around time 2, and the sum total amount of reward presented is about
2 units. Before learning (left plots), w(s) = 0 and so v(t) = 0 for all t, and so δ(t) = r(t).
Once learning is complete (right plots), v(t)=0 until the stimulus is shown. Then v(t)=2,
the total sum of the reward expected in the future of the trial. Finally, as the reward is
delivered, around time t = 2, v(t) slowly decreases to 0, since less reward is expected in
the future once some has already been provided. Turning this back into a prediction error
signal leads to δ(t) being 2 at t = 1, and then being 0 throughout the remainder of the
trial. There is no prediction error at the time of the reward, since the reward is expected.
If the reward is not delivered, then δ(t) follows the temporal difference signal ∆v. This
shows the same peak at t = 1, but then is negative at the time the reward should have
been delivered, since the delivery of reward is no longer masking this negativity. This
TD prediction error model of the activity of dopamine cells has been validated in quite a
wide variety of circumstances (see Schultz, 1998), including a recent study of Pavlovian
blocking (Waelti, Dickinson & Schultz, 2001). Note that these responses, as with those
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shown later, are those only of a fraction of the relevant cells, albeit often most of the fraction
that respond at all to any of the cues. In general, models have yet to account for the full
variability that exists in the data.

In an instrumental conditioning context such as an abstract maze task, animals are as-
sumed to choose between different possible actions to maximize their sum future return.
This is usually challenging, since rewards might be delayed for long periods. However,
the temporal difference prediction error signal can also be used to control action choice.
The basic idea, which is a form of a standard engineering algorithm called policy iteration
(Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998), starts from the fact that the learned val-
ues of states estimate the sum of all the delayed rewards starting from those states. Thus,
states with high value are good destinations, even if the act of getting to them does not
itself lead to substantial reward.

More concretely, a policy is a systematic, though possibly stochastic, way of choosing ac-
tions. Consider a case in which the policy is indeed stochastic, but the other aspects of
the problem, notably the delivery of reward, are deterministic. Then, applying the TD
rule will result in learning the average values of the states in the maze, until 〈δ(t)〉 = 0,
averaging over randomness in the policy. If an action is executed at a state and δ(t) > 0,
then this implies that the action may be better than average, since the value of taking the
action (the sum of the reward r(t) associated with the action and the value, v(t+ 1), of the
next state achieved by the action) is bigger than the average value v(t) of the current state.
Conversely, if δ(t)<0 then the action may be worse than average. This temporal difference
prediction error signal thus provides immediate criticism for actions (such as turning left
or right in the maze) even if the rewards will only be provided at much later times (such
as at the goal). Of course, as the animal changes its policy, the values change too. For
instance, the goal in a maze might only be 10 steps away from the start given the correct
strategy, but on average 200 steps from the start given a uniform probability of choosing
any action at any location.

One action control strategy (Montague et al, 1995) involves choosing a random action (ie a
random movement direction), which is performed continually until δ(t) is negative. Then
a different, random, action is selected and is itself performed continually until δ(t) is neg-
ative, whence the process repeats. Montague et al called this learned klinokinesis after the
chemotactic strategy of bacteria. A more general strategy, called the actor-critic (Barto, Sut-
ton & Anderson, 1983) uses δ(t) to train a system for selecting actions, favoring those that
lead to positive values over those that lead to negative values. This step is analogous to
one part of policy improvement; it must be followed by a step of policy evaluation, which
is the application of equation 5 to learn the values v(t) associated with the new choice of
actions. In practice, values and policies are usually updated in tandem. In learning sys-
tems such as the actor-critic, there is an inevitable trade-off between exploitation of existing
knowledge about how to get rewards, and exploration for new and good actions that lead
to even greater rewards. In studying novelty responses, we consider models of bonuses,
which are fictitious rewards that are designed to encourage appropriate exploration.
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3 Generalization and Uncertainty

Figure 3 shows two aspects of the behavior of dopamine cells that are not obviously in
accord with the temporal difference model. These come from two related tasks (Schultz
& Romo, 1990) in which there are two boxes in front of a monkey, one of which always
contains food (door+) and one of which never contains food (door-). On a trial, the
monkey keeps its hand on a resting key until one of the doors opens (usually accompanied
by both visual and auditory cues). If door+ opens, the monkey has to move its hand
into the associated box to get a food reward. If door- opens, then the monkey has to
keep its hand on the resting key until the next trial. Figure 3A shows the response of a
single dopamine neuron in just this task. Figure 3B shows the responses in an augmented
version of the task in which there are cue lights (called instruction lights) near to the doors,
indicating which door will open. Here, cue+ is associated with door+ and cue- with
door-. To complicate matters, in this case there is also a randomly variable interval (2− 3
seconds) between the illumination of the cue light and the opening of the door.

Comparing figure 3A to figure 1B, we see that the response to door+ is as we might expect,
showing a phasic activation to the delivery of a stimulus that predicts a forthcoming re-
ward. However, the response to door- is not expected under the TD model. Why should
dopamine cells be activated by a cue that is known not to be followed by a reward? Some-
thing similar is evident in the bottom row of figure 3B, only now to cue-, the reliable
predictor that there is to be no reward. Schultz and his collaborators have called these
generalization responses (see Schultz, 1998).

Note first that this activity is probably not associated with an expectation of future reward.
For one thing, there is no depression at the time the reward would normally be delivered
(as in figure 1). For another, in the blocking study of Waelti et al (2001), similar responses
were observed to stimuli not predictive of reward, and an explicit condition was run in
which a reward was unexpectedly delivered. This reward led to the same sort of activ-
ity that is evident before learning in figure 1, suggesting that the reward was indeed not
expected.

Closer study of the bottom rows of figures 3A and B shows a feature that Schultz & Romo
(1990), and also subsequent studies, have frequently noted for generalization responses.
The phasic activations to door- and cue- appear to last for a shorter time and be lower
than to door+ and cue+ and are accompanied by a phasic depression below baseline activ-
ity levels, which lasts for something around 100ms. Different cells show this to different
degrees but, for instance, Schultz & Romo (1990) report that it is between two and three
times more prevalent for the door- than the door+ responses.

Figure 4 shows our models of these responses. These are based on the idea of partial
observability, which will we later interpret as a refinement of generalization. We suggest
that the initial information from the world is ambiguous as to whether the stimulus is
actually positive (ie door+ or cue+) or negative (ie door- or cue-). This puts the animal
briefly into a state of uncertainty (labeled door+/- and cue+/-) that is resolved based on
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further processing of input information that is already available, or the collection of further
information, for instance from an attentional shift. Note that physical saccades are usually
too slow to account for these timescales. Following resolution of the uncertainty, there are
two possible states, one which leads to the reward (called +), and other which does not
(called -). TD treats the intermediate and resolved states just like all other states, and so
learns a value for them which is the average of the values following those states. Consider
the example above of figure 1 in which a sum total reward of 2 was provided around t = 2.
If the uncertainty when the stimulus is first provided is total (so the probabilities of + and
- are equal). Then, the value of the intermediate state is 1, and the values of + and - are 2
and 0, respectively.

Figure 5A shows the output of the TD model of figure 4A in the equivalents of the door+
and door- condition. As in the data of figure 3, the model response to door- shows pha-
sic activation followed by phasic depression. The depression comes because the prediction
goes from 1 to 0 when the uncertainty is resolved, and so the temporal difference of the
predictions ∆v becomes negative. In the absence of rectification of below-baseline activity
in the model, the depression is more evident in the model than in the actual data. Com-
pared with figure 2, the response to door+ in figure 5A is lower and longer. This comes
from the time taken for the resolution of the uncertainty. The timescale of the activation
in the door+ condition and the activation-depression in the door- condition is set by the
timescale of the model and the time for the resolution of the ambiguity. Here we made the
simplest assumption that the resolution happens completely within one (extra) timestep.

Comparing the responses in figure 3B with those in figure 3A, we see that those at the time
of cue+ and cue- are quite similar to those associated with door+ and door-. Further,
in the case of cue-, there is almost no change in the activity when door- actually opens.
In fact, the existence of the tiny dip in the response at the time of door-, which is also just
about apparent in the data, disappears after more extensive training. However, the second
main difference from the straightforward temporal difference model that is shown by this
experiment is that there is a significant increase in the activity when door+ opens. Under
conventional TD, this activity might be expected to be predicted away, since the monkey
can predict that it is going to get a reward based just on seeing cue+. Contrary to this
expectation, figure 5B shows the output of the temporal difference model of the activity in
this experiment. Just as in the data, there is extra activity at the time of door+. The reason
for the activity at this time is that there is a random interval between cue+ and door+.
By contrast, in the experiment in figure 1, by the time the monkey’s behavior is automatic,
there exists a relatively constant time between stimulus and reward. In the case of figure 3,
based on cue+, the monkey can predict that it is to receive a reward, but it cannot predict
when that reward will arrive. That is, there does not exist a setting of weights in experiment
1 that makes an exactly correct prediction of the time of the delivery of the reward, since
that time is varying over the trials. By contrast, door+ is a temporally reliable predictor
of the delivery of reward. The consequence of this is that the prediction is ultimately
associated with both cue+ and door+.

Consistent with this explanation, Schultz, Apicella & Ljungberg (1993) performed an ex-
periment related to the one of figure 3B. In the condition they called the ‘instructed spatial
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task’, there was always a fixed interval between a cue and a trigger instruction that indi-
cated that a movement was now required. In this case, the only activity in the dopamine
cells was at the time of the cue, a fact replicated by the temporal difference model since the
cue is a temporally reliable predictor of the delivery of reward. They had another condi-
tion (called the ‘spatial delayed response task’) more like the one of figure 3B, and saw a
similar pattern of response to that shown there.

4 Novelty Responses

Another main difference between the temporal difference model of the activity of dopamine
cells and their actual behavior has to do with novelty. Salient, novel, stimuli are reported
to activate dopamine cells for between a few and many trials. One example of this may
be the small response at the time of the stimulus in the top line of figure 1A. Here, there
is a slight increase in the response locked to the stimulus, with no subsequent decrement
below baseline. In this case, the activity could just be the early stages of learning the pre-
diction associated with the stimulus, as subsequently seen more fully in figure 1B and C.
However, such novelty responses are seen more generally to stimuli that are not predic-
tive of reward. In this case, they decrease over trials, but quite slowly for very salient
stimuli (Schultz, 1998). Figure 6A shows a more dramatic example from an experiment
in which novel auditory stimuli were played to a cat while the activity of dopamine cells
was recorded (Horvitz, Stewart & Jacobs, 1997). Here, just as in the case of generaliza-
tion for door- and cue-, the activation in response to the stimulus is rapidly followed by
depression below baseline. This response, as with others to very salient stimuli, is quite
persistent, lasting for many trials.

Novelty bonuses

In the theoretical reinforcement learning literature, there are two main theoretical ap-
proaches to novelty responses. In one set of theories, novelty acts like a surrogate reward,
ie something that is itself sought out. This surrogate reward distorts the landscape of pre-
dictions and actions, as states predictive of future novelty come to be treated as if they are
rewarding. There is some evidence that animals do indeed treat novelty as rewarding (eg
Reed, Mitchell & Nokes, 1996). It is also computationally reasonable in an instrumental
conditioning context, at least in moderation, since it allows animals to plan to visit novel
states a number of times so that they can explore the consequences of different actions at
those states.

In temporal difference terms, this sort of novelty response, which we call a novelty bonus,
comes from replacing the true environmental reward r(t) at time t with

r(t) → r(t) + n(u(t), T )
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where u(t) is the state at time t and n(u(t), T ) is the novelty of this state in trial T . Here we
imagine that the mechanism that provides n(u(t), T ) uses information about the novelty
of the stimuli associated with state u(t), and makes the novelty signal decrease over trials
T as the stimuli associated with the state become familiar. The effect of the novelty bonus
on the temporal difference prediction error is then

δ(t) = r(t) + n(u(t), T ) + v(t+ 1)− v(t) (6)

The upper plots in figure 7 show the effect of including such a novelty bonus, in a case
in which just the first timestep of a new stimulus in any given trial is awarded a novelty
signal which decays hyperbolically to 0 as the stimulus becomes more familiar. Here, a
novel stimulus is presented for 25 trials without there being any reward consequences. The
effect is just a positive transient which decreases over time, a putative model of the effect
shown in the top row of figure 1A. Learning has no effect on this, since the stimulus cannot
predict away a novelty signal that lasts only a single timestep. The lower plots in figure 7
show that it is possible to get a small phasic depression through learning, (though less
dramatic than that in figure 6), if the novelty signal is applied for the first two timesteps
of a stimulus (for instance if the novelty signal is calculated relatively slowly). In this
case, the initial effect is just a positive signal (leftmost graph), the effect of TD learning
gives it a negative transient after a few trials (second plot), and then, as the novelty signal
decays to 0, the effect goes away (third plot). The righthand plots show how δ(t) behaves
across trials for the first two timesteps. If there was no learning, then there would be no
negative transient. The growth and decay of the phasic depression of the dopamine signal
is determined by both the speed at which the novelty signal decays and the dynamics of
learning.

Shaping bonuses

Since novelty bonuses distort the reward function, they can have a deleterious effect on
instrumental behavior if they do not decrease to 0 adequately quickly. Ng, Harada &
Russell (1999) suggested a second theory for a form of novelty responses that they called
shaping bonuses. Shaping bonuses are guaranteed not to distort optimal policies, although
they can still change the exploratory behavior of agents. Shaping bonuses are derived from
a potential function φ(u) of the state u, so that the estimated value v(t) at time t is replaced
by

v(t) = v(t) + φ(t) . (7)

Here, φ(t) = φ(u(t)) is the value of the potential function associated with the state at time
t and is assumed to be set high for states associated with novel stimuli and that there-
fore deserve exploration. Also, v(t) is the conventional plastic estimate of the prediction
associated with the same state (as in equation 1). If we substitute this into the temporal
difference prediction error of equation 4, we get

δ(t) = r(t) + φ(u(t+ 1))− φ(u(t)) + v(t+ 1)− v(t) (8)
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The difference from the novelty bonus of equation 6 is that the shaping bonus enters into
δ(t) via the difference between the potential functions for one state and the previous state. If
the shaping bonuses are fixed, they can also be seen as coming from the initializing values
v(u) given to the states. In fact, it is standard practice in reinforcement learning, for which
there exists a formal basis (Brafman & Tennenholtz, 2001), to use optimistic initial values
for states in order to encourage exploration.

Ng et al (1999) provide a formal proof of this non-distorting property of shaping bonuses.
However, an intuition for this result comes from considering the sum of the un-shaped
prediction errors over a whole trial

∑

t≥0

δ(t) = v(tend)− v(0) +
∑

t≥0

r(t)

where tend is the time at the end of the trial. Assuming that v(tend)= 0 and v(0) = 0, ie that
the monkey confines its reward predictions to within a trial, we can see that any additional
influences on δ(t) whose sum effect over the course of a whole trial is 0, preserve the sum
of future rewards. This is the key quantity that optimal control methods seek to maximize.
Responses such as that in figure 6 with activation and depression may well indeed have
no net effect on the sum of the prediction errors.

The upper plots in figure 8 show the effect of shaping bonuses on the temporal difference
prediction error. Here, the potential function is set to the value 1 for the first two timesteps
of a stimulus in a trial, and 0 otherwise. The most significant difference between this sort
of shaping bonus and the novelty bonus of equation 6 is that the former exhibits a negative
transient even in the very first trial, whereas, for the latter, it is a learned effect. Although
the data in figure 6 show the transient depression, the development over early trials is not
clear. If the learning rate is non-zero, then shaping bonuses are exactly predicted away
over the course of normal learning, since v(t) comes exactly to compensate for φ(t). Thus,
even though the same bonus is provided on trial 25 as trial 1, the temporal difference
prediction error becomes 0 since the shaping bonus is predicted away. The dynamics of the
decay shown in the last two plots is controlled by the learning rate for temporal difference
learning. The lower plots show what happens if learning is switched off at the time the
shaping bonus is provided – this would be the case if the system responsible for computing
the bonus takes its effect before the inputs associated with the stimulus are plastic. In this
case, the shaping bonus is preserved.

It may be that as stimuli become less novel, the shaping bonuses associated with them are
reduced to 0. In this case the components of the plastic values v(t) that compensate for
the shaping bonuses will track φ(u(t)) as it decreases. However, the theoretical guarantee
offered by Ng et al (1999) that shaping bonuses will not distort action learning may not
survive such decreases.
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5 Discussion

We have suggested a set of interpretations for the activity of the DA system to complement
that of reporting prediction error for reward. First, we considered activating and depress-
ing generalization responses, arguing that they come from short term ambiguity about the
predictive stimuli presented. Second, we considered novelty responses, showing that they
are exactly what would be expected were the dopamine cells to be reporting a prediction
error for reward in a sophisticated reinforcement learning setting in which an explicit link
is made to exploratory behavior.

We accounted for activating and depressing generalization responses by suggesting that
the initial information available about a predictive cue is ambiguous, but that this ambi-
guity is resolved by extra information, that could come as a result of an act of the monkey
(such as a shift of attention), or from the result of on-going neural processing. The lat-
ter is somewhat analogous to the finding that uncertainty about the direction of motion
coming from the aperture problem is resolved over the course of tens of milliseconds in
the activity of MT cells (Pack & Born, 2001). Ambiguity is a form of generalization, in
that the aspects of the stimulus that are distinctive between door+ and door- or cue+
and cue- are initially ignored. We have considered the case in which all the dopamine
cells receive the same sensory information. Since there is some substantial variation in the
behavior of the dopamine cells, it would be interesting to consider a population of cells
that receive predictions based on different sensory inputs, some more or less ambiguous
about the cues and even about time. It is possible that some cells in the population would
be activated only by door+ and cue+, ie would be instantly unambiguous, whereas oth-
ers would never tell the difference between the + and - conditions. This might require
some extra assumptions about the learning rates associated with different aspects of the
representation of the stimuli. We certainly cannot yet fully account for all the multifarious
dopamine cell responses.

Generalization responses emerge naturally from a conventional temporal difference frame-
work, provided that ambiguity is taken into account. Novelty responses require extending
the framework. We showed that two aspects of the data could be accounted for by two
different extensions, namely novelty and shaping bonuses. Novelty bonuses distort the
structure of the rewards, and so can distort things like the policies that optimize long term
rewards. By contrast, shaping bonuses do not distort the optimal policies and they can
be exactly learned away. This means that the dopamine system can multiplex information
about novelty and prediction errors for future reward without damaging interference. This
extra information is directly available to target structures, such as the prefrontal cortex and
the striatum.

Other evidence confirms the role of dopamine in processing novelty (for a review, see
Ikemoto & Panksepp, 1999). For instance, dopamine is implicated in specifically novelty-
induced motor activity (Hooks & Kalivas, 1994); there are suggestions that individual dif-
ferences in the dopamine system of humans links novelty seeking to susceptibility to drug
addiction (Bardo, Donohew & Harrington, 1996); and there is an active, if currently some-
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what inconclusive, debate about the role of a specific (D4) dopamine receptor gene and
novelty seeking in humans (eg Ekelund, Lichtermann, Jaervelin & Peltonen, 1999; Pater-
son, Sunohara & Kennedy, 1999). Concretely, the release of dopamine in the striatum of
rats is associated with at least some aspects of attentional orienting to stimuli (Han, McMa-
han, Holland & Gallagher, 1997; Ward & Brown, 1996). Thus, the release of dopamine from
the phasic activation above baseline might be associated with behaviors that allow novel
stimuli or states to be approached and explored. These behaviors might continue despite
the subsequent depression below baseline of the dopamine system seen in figure 6, for
instance. This continuation would be important to organize a temporally extended set of
exploratory actions – orienting is one of the shortest of these. The attentional aspect of
the theory is broadly in line with Redgrave et al’s (1999) proposal for the role of phasic
dopamine responses, although these authors consider this component as an alternative
rather than an addition to a prediction error signal.

We regard these effects associated with dopamine as being mechanistic, in the sense that
they are hard-wired habits and not learned. In the case of partial observability, as for gen-
eralization responses, dopamine release due to the uncertain prediction of reward could
directly cause further investigation, and therefore resolution of the uncertainty. When
mechanistic and conditioned behaviors conflict, the former seem to dominate, as in the
well-known descriptions of the failures of instrumental conditioning (Breland & Breland,
1961).

Apart from exploratory behaviors, the phasic activation of the dopamine system might
have other neural effects. For instance, following studies by Williams & Goldman-Rakic
(1995), Cohen, Braver & O’Reilly (1998) and Braver, Barch & Cohen (1999) suggested that
the release of dopamine might gate stimulus information into prefrontal working memory.
The novelty response of the dopamine system could thus allow a new stimulus to be stored
in working memory until its consequences for future reward have been evaluated.

We considered novelty and shaping bonuses. There is another type of bonus that is of-
ten considered in theoretical reinforcement learning, namely an ongoing exploration bonus
(Sutton, 1990; Dayan & Sejnowski, 1996) which is used to ensure continued exploration.
Sutton (1990) suggested adding to the estimated value of each state, a number proportional
to the length of time since it was last visited. This ultimately makes it irresistible to go and
visit states that have not been visited for a long time. Sutton (1990) actually showed that,
in his task, the best behavior came from using exploration bonuses in a Q-learning system.
Q-learning (Watkins, 1989) is a theoretically somewhat better motivated version of the
actor-critic model; however, its use of state-action values rather than state values as in the
critic, makes it harder to map onto the neural substrate. Dayan & Sejnowski (1996) derived
a Sutton-like exploration bonus as an adaptive consequence of a model of environmental
change. There is no evidence for a continuing exploration bonus in the dopamine data,
perhaps not surprisingly, since the tasks undertaken by the monkey offer little possibility
for any persistent trade-off between exploration and exploitation.

The most major remaining conflict between the data on the response of the dopamine sys-
tem and the temporal difference model has to do with the involvement of dopamine in
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reporting punishment or aversion. Neurophysiological recording studies are somewhat
equivocal on this (Mirenowicz & Schultz, 1996; Guarraci & Kapp, 1999), although there is
certainly no evidence for the sort of phasic responses to unexpected rewards or reward-
predicting stimuli such as those seen in figure 1A;B. However, a number of experiments
using techniques other than neurophysiological recordings of the dopamine cells has sug-
gested that dopamine is released under aversive as well as appetitive conditions (see, for
example, Salamone, 1994). We (Daw, Kakade & Dayan, 2002) are exploring opponent pro-
cess models (Solomon & Corbit, 1974; Grossberg & Schmajuk, 1987) involving an putative
opponent interaction between dopamine and the dorsal raphe serotonin system, in the
computational context of average-case reinforcement learning (Daw & Touretzky, 2000).
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Figure Captions

Figure 1: Activity of DA cells (upper), and temporal difference prediction error model
thereof (lower). The maximal firing rate is a function of the bin size used in the original
data. A) In early learning trials, a single dopamine cell responds to the delivery of the
reward, but is barely excited by the delivery of the predictive stimulus. This is matched by
the temporal difference prediction error δ(t), which follows the reward signal r(t). B) In
later learning trials, a dopamine cell responds to the delivery of the stimulus, but not the re-
ward. This is again matched by δ(t) – there is no response at the time of the reward because
the animal can predict the occurrence of the reward based on the stimulus. In the lower
traces of A;B, it is assumed that there is a fixed interval between stimulus and reward, so,
unlike the upper traces, the model dopamine activity is not separately triggered on these
two events. C) In a different experiment, with otherwise similar activity, a dopamine cell is
again activated by the predictive stimulus, but when the reward is unexpectedly not deliv-
ered, activity dips below baseline around the time the reward was expected. In this case,
since r(t)= 0, the temporal difference error signal δ(t) follows ∆v = v(t+1)−v(t), which
has the same characteristic. A;B adapted from Mirenowicz & Schultz (1994); C adapted
from Schultz, Dayan & Montague (1997) — note the difference in the timescale of C. The
absolute magnitudes of the firing rates in this plot and the other plots of neural activity
are rendered a little arbitrary by the different resolutions with which time is binned in the
different plots, but the patterns of responding are consistent.

Figure 2: Construction of the temporal difference prediction error signal δ in the model
of figure 1. Left and right plots show the various key signals, including u(t), marking the
presentation of the stimulus, r(t), the immediate reward, v(t), the prediction of summed
future reward, ∆v(t + 1) = v(t + 1) − v(t), the time difference of this prediction, and
δ(t) = r(t) + ∆v(t + 1), the temporal difference error signal. Left plots show the traces
before learning; right plots show the same signals after learning. The difference lies in the
prediction signal v(t), which, at the end of learning, rises to matches the integral of r(t)
when the stimulus is presented, only then to decline as the reward is being provided. Its
temporal difference ∆v(t + 1) exactly negates the activity r(t) associated with the reward
at the time of the reward. The lower plots are aligned with t + 1 rather than t since δ(t)
depends on v(t+ 1). Adapted from Dayan & Abbott (2001).

Figure 3: Generalization responses. A) Responses of a dopamine cell in an experiment in
which there are two doors, one (door+), behind which there is always food, and the other
(door-), behind which there is never food. These traces show just the response around
the time of the door opening (signaled by a collection of auditory and visual cues). The
response to door+ is stronger than that to door-; the latter is followed by a depression
below baseline. B) In this case, a light (cue+ or cue-) signals which door is to open,
and there is a random interval between 2 and 3 seconds before the associated door opens.
Phasic activation and depression is associated with cue-, as for door- in (A), but there is
activation to both cue+ and door+. Adapted from Schultz & Romo (1990).

Figure 4: Model for generalization responses. A) In the model of figure 3A, the initial in-
formation about door+ or door- is ambiguous (leading to the state labeled door+/-. The
ambiguity is resolved in favor of one or other door, leading either to reward (R) or nothing
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(·). B) The same ambiguity now applies to the initial cue (giving rise to the ambiguous
state cue+/-. Now the uncertainty at the time of the door opening is resolved; however,
there is a variable delay (squiggly line) between the cue and the door opening.

Figure 5: Dopamine responses for the temporal difference model of figure 4, to be com-
pared with figure 3. A) δ(t) for the case without a prior cue. Here the states +/- and +

and - are explicitly labeled. B) δ(t) for the case with a prior cue. Here, the responses at the
time of door+ and door- are aligned with the opening of the door before averaging (as
was also done in the data of figure 3B).

Figure 6: Novelty response with phasic activation and depression. This shows a histogram
of the activity of a single dopamine cell in cat VTA in response to repetitions of an initially
novel tone. This neuron shows a clear pattern of activation and depression in response to
the stimulus. Adapted from Horvitz, Steward & Jacobs (1997).

Figure 7: Activity of model dopamine cells given novelty bonuses. The plots show differ-
ent aspects of the TD error δ as a function of time t within a trial (first three plots in each
row) or as a function of number T of trials (last two). Upper) A novelty signal was applied
for just the first timesteps of the stimulus and decayed hyperbolically with trial number
as 1/T . Lower) A novelty signal was applied for the first two timesteps of the stimulus
and now decayed exponentially as e−.3T to demonstrate that the precise form of decay is
irrelevant. Trial numbers and times are shown in the plots. The learning rate was ǫ = 0.3.

Figure 8: Activity of the dopamine system given shaping bonuses (the figure has the same
format as figure 7). Upper) The plots show different aspects of the temporal difference
prediction error δ as a function of time t within a trial (first three plots) or as a function of
number T of trials (last two) for the first two significant timesteps during a trial. Here, the
shaping bonus comes from a φ(t) = 0 for the first two timesteps a stimulus is presented
within a trial, and 0 thereafter, irrespective of trial number. The learning rate was ǫ = 0.3.
Lower) The same plots for ǫ = 0.
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