
�������� ��	
�����

Context-dependent roles for lymphotoxin-β receptor signaling in cancer
development

Mónica T. Fernandes, Emmanuel Dejardin, Nuno R. dos Santos

PII: S0304-419X(16)30021-X
DOI: doi: 10.1016/j.bbcan.2016.02.005
Reference: BBACAN 88083

To appear in: BBA - Reviews on Cancer

Received date: 6 December 2015
Revised date: 3 February 2016
Accepted date: 24 February 2016

Please cite this article as: Mónica T. Fernandes, Emmanuel Dejardin, Nuno R. dos San-
tos, Context-dependent roles for lymphotoxin-β receptor signaling in cancer development,
BBA - Reviews on Cancer (2016), doi: 10.1016/j.bbcan.2016.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.bbcan.2016.02.005
http://dx.doi.org/10.1016/j.bbcan.2016.02.005


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1 

Context-dependent roles for lymphotoxin-β receptor signaling in 

cancer development 

Mónica T. Fernandesa,b, Emmanuel Dejardinc and Nuno R. dos Santosa,d,e 

a 
Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal;  

b 
PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University 

of Algarve, 8005-139 Faro, Portugal; 

c 
Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, Molecular Biology of 

Diseases, University of Liège, 4000 Liège, Belgium; 

d
 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200 Porto, Portugal; 

e
 Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200 Porto, 

Portugal. 

 

Corresponding author at: Centre for Biomedical Research (CBMR), University of Algarve, 

Campus de Gambelas, 8005-139 Faro, Portugal; Tel.: +351 289 800 900 (+7136). E-mail 

address: nrsantos@ualg.pt (N.R. dos Santos).  

 

Abstract 

 

The LTα1β2 and LIGHT TNF superfamily cytokines exert pleiotropic physiological functions 

through activation of their cognate lymphotoxin-β receptor (LTβR). Interestingly, since the 

discovery of these proteins accumulating evidence has pinpointed a role for LTβR signaling 

in carcinogenesis. Early studies have shown a potential anti-tumoral role in a subset of solid 

cancers either by triggering apoptosis in malignant cells or by eliciting an anti-tumor immune 

response. However, more recent studies provided robust evidence that LTβR signaling is 

also involved in diverse cell-intrinsic and microenvironment-dependent pro-oncogenic 

mechanisms, affecting several solid and hematological malignancies. Consequently, the 

usefulness of LTβR signaling axis blockade has been investigated as a potential therapeutic 

approach for cancer. Considering the seemingly opposite roles of LTβR signaling in diverse 

cancer types and their key implications for therapy, we here extensively review the different 

mechanisms by which LTβR activation affects carcinogenesis, focusing on the diverse 

contexts and different models assessed. 

 

Keywords: Lymphotoxin-β receptor; cell signaling; lymphotoxin; LIGHT; oncogenesis; tumor 

microenvironment. 
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1. Introduction 

 

Lymphotoxin-β receptor (LTβR) is a member of the tumor necrosis factor receptor 

superfamily (TNFRSF) identified as a key mediator controlling the development, organization 

and homeostasis of lymphoid tissues and organs [1–3]. Moreover, it was reported to play a 

role in the adaptive immune response against pathogens [1], thymic medullary epithelial cell 

differentiation and central tolerance induction [4]. Currently it is known that LTβR is involved 

in many other biological processes such as liver regeneration [5], lipid homeostasis [6], high 

endothelial venule (HEV) differentiation and function [7], and protection against 

atherosclerosis [8]. Considering the immune system functions of LTβR signaling it is not 

unexpected that its deregulation leads to autoimmune and inflammatory diseases, including 

rheumatoid arthritis [9,10], Sjögren´s syndrome [11], autoimmune pancreatitis [12], hepatitis 

[13], and colitis [14]. Importantly, LTβR signaling has also been reported to be involved in 

cancer [15,16], albeit with contrasting, context-dependent effects. These effects and the 

current understanding of the LTβR signaling role in cancer development are the main focus 

of this review. 

 

2. LTβR and its ligands: lymphotoxin and LIGHT 

 

The human LTβR gene (LTBR or TNFRSF3) is located on chromosome (Chr) 12 (Figure 

1A), in proximity to genes encoding other TNFRSF members, namely TNFR1 (TNFRSF1A) 

and CD27 (TNFRSF7) [17,18]. The LTBR full-length transcript encodes a 435-amino acid 

type I glycosylated protein consisting of three main domains: extracellular (ECD), 

transmembrane (TMD), and intracellular domain (ICD), also known as cytoplasmic domain 

(CD) (Figure 1B). Like other TNFRSF receptors, LTβR displays four cysteine-rich domains 

(CRD) in the ECD, which confer receptor specificity and affinity for the cognate ligands [17], 

but it does not contain a death domain in the cytoplasmic tail. It rather harbors here a 

proline-rich membrane proximal region [17] and two binding sites for members of the TNF 

receptor-associated factor (TRAF) family of zinc RING finger proteins [19]. Indeed, TRAF2 

[20], TRAF3 [21], TRAF4 [22] and TRAF5 [23] have been reported to associate with LTβR. 

Moreover, within the TRAF-binding domain, distinct regions mediate self-interaction, 

receptor intracellular trafficking, and the activation of downstream signaling pathways like 

those activating NF-κB and those leading to cell death [24].  

LTβR has been shown to be constitutively expressed by a wide variety of cells in 

lymphoid and visceral tissues such as epithelial and endothelial cells, follicular dendritic cells 

(FDCs), fibroblasts, and myeloid lineage cells (e.g., monocytes, dendritic cells (DCs), and 
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mast cells), but not on lymphocytes [14,18,25,26]. Since the only two known ligands for 

LTβR, lymphotoxin (LT) α1β2 heterotrimers and LIGHT/TNFSF14 homotrimers, are 

physiologically expressed in lymphocytes [27–29], this pattern of expression suggests that 

most if not all signals mediating LTβR activation are paracrine or juxtacrine in nature.  

 The genes encoding LTα, the TNF superfamily (TNFSF) member 1 (TNFSF1 or LTA) 

and LTβ, the TNFSF member 3 (TNFSF3 or LTB), reside in a tightly linked locus within the 

MHC class III region in human Chr 6, flanking the gene encoding TNFα (TNFSF2 or TNFA) 

(Figure 1A) [30–33]. The human full-length LTα mRNA encodes a 205-amino acid type II 

glycosylated protein, also known as TNFβ [33], while the full-length LTβ mRNA encodes a 

244-amino acid type II glycosylated protein [30]. In contrast to the LTβ protein, which 

comprises a short N-terminal CD, a TMD and a C-terminal ECD [30], LTα lacks a TMD 

(Figure 1B). Therefore, when expressed in the absence of LTβ, LTα forms soluble LTα3 

homotrimers stabilized primarily by interactions between hydrophobic and aromatic side 

chains [18,34,35]. When LTα is expressed together with LTβ, these proteins oligomerize 

generating cell-surface LTα1β2 heterotrimers [18,36,37]. LTα2β1 heterotrimers can also form, 

but these are a minor form detectable only in vitro and representing less than 10% of total 

LTαβ heterotrimers [37]. The LTα subunit contributes primarily to the conformation of the 

heterotrimer [35], while the LTβ subunit provides the membrane anchor for LTα1β2 and 

confers specificity for LTβR binding [17]. LTB but not LTA expression in lymphocytes is 

constitutive but both are induced by cell stimulation [30]. The reported basal levels of LTB 

mRNA in lymphoid cells may be important to interact with and transport LTα to the cell 

surface as an LTα1β2 heterotrimer (instead of LTα2β1 or even soluble LTα3). Being inducible, 

LTα production is probably the rate-limiting step in this process [30,38,39].  

The LTα- and LTβ-encoding genes display a restricted and similar pattern of 

expression, being mainly expressed in hematopoietic cells including activated T and B cells, 

natural killer (NK) cells [27,29], DCs [40] and lymphoid-tissue inducer (LTi) cells [41]. Cell-

surface LTα1β2 heterotrimers are upregulated through lymphocyte activation, but also by 

cytokine and chemokine induction. For example, LTα1β2 is induced by IL-2 on human 

peripheral blood T cells [29], and IL-4, IL-7, CCL19 and CCL21 in murine splenic T cells [42]. 

Induction of LTα1β2 expression by viral proteins in infected hepatocytes [13,43] and cervical 

epithelium [44] was also reported.  

 The other known LTβR ligand is encoded by the human TNFSF member 14 

(TNFSF14) or LIGHT gene and is located within an MHC paralog region on Chr 19, in close 

proximity to other TNFSF genes such as those encoding CD27L/CD70 (TNFSF7) and 

CD137L/4-1BB (TNFSF9) (Figure 1A) [45,46]. The LIGHT full-length transcript is translated 

into a 240-amino acid glycosylated type II transmembrane protein (Figure 1B) [45]. LIGHT 

monomers form homotrimers at the cell surface of activated lymphocytes [28], which can be 
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shed upon proteolytic cleavage [45]. Similarly to lymphotoxin genes, the LIGHT-encoding 

gene displays a restricted expression pattern being mainly expressed on activated 

peripheral blood T lymphocytes [28], monocytes, granulocytes and immature DCs 

[40,47,48], and also on mucosal tissue-derived CD4+ T and NK cells [49]. LIGHT was shown 

to be expressed also in thymic stromal cells such as DCs, fibroblasts, and endothelial and 

epithelial cells [26].  

 Some TNFSF members can bind the same receptor, as is the case for LTα/LTβ-

containing ligands and LIGHT. LTα3 binds TNFR1, TNFR2 [50,51], and herpes virus entry 

mediator (HVEM) [28,50], a receptor expressed by T and B cells, NK cells, DCs and 

monocytes [52]. Since the LTβR discovery, no other receptor for LTα1β2 has been found [37]. 

In contrast, LTα2β1 heterotrimers may bind not only LTβR, albeit with low affinity [17,35,37], 

but also TNFR1 and TNFR2 [17,37]. LIGHT forms only homotrimers, which can bind and 

activate LTβR and HVEM [28], and the soluble decoy receptor 3 (DcR3), which acts as a 

negative regulator [53]. Although several of these interactions were reported in vitro (e.g. 

LTα2β1 binding to TNFR1/2), their physiological relevance in vivo remains questionable.  

Even though both LTα1β2 heterotrimers and LIGHT homotrimers are often found at 

the cell membrane, in certain contexts they can be shed from the cell surface. For instance, 

LTα1β2 can be shed from human activated T cells, upon proteolysis mediated by matrix 

metalloproteinase (MMP)-8 and ADAM17/TNFα converting enzyme (TACE), to induce the 

expression of pro-inflammatory genes on synovial fibroblasts from rheumatoid arthritis 

patients [10]. LIGHT can also be actively shed from the cell surface of CD4+ T lymphocytes 

by MMPs in rheumatoid arthritis [54] but also in the context of immune cell regulation [55]. 

Although the soluble form of LIGHT binds and activates HVEM, the membrane-bound 

homotrimer shows enhanced activation of this receptor [45,56,57]. Interestingly, the 

membrane-bound form of LIGHT expressed in T lymphocytes has been shown to act as a T-

cell receptor (TCR) costimulatory signal when bound either to an agonistic antibody or to its 

receptor DcR3, a phenomenon denominated reverse signaling [58,59]. Nevertheless, the 

biological significance of these different LIGHT forms is still not fully understood especially 

regarding LTβR activation. In certain contexts LIGHT shedding may induce distal functional 

effects on LTβR activation or may serve as a mechanism of self-inactivation [45].  

 

3. LTβR activation, NF-κB signal transduction and target gene regulation 

 

The TNFRSF members are typically activated by ligand-induced trimerization or even higher 

order oligomerization through the interaction of receptor CRD domains with each monomer-

monomer interface groove [60]. As no exception to this notion, the central initiating event for 

LTβR signaling is receptor aggregation. However, unlike other TNF receptors, each LTβR 
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subunit can bind only two sites in the LTα1β2 heterotrimer, the LTα-LTβ (higher affinity) and 

LTβ-LTβ’ (lower affinity) interfaces for productive receptor activation [61]. Similarly, LIGHT 

has been shown to present only two high-affinity binding sites for LTβR [62]. Thus, the 

binding of LTα1β2 or LIGHT to LTβR brings two receptor molecules in close proximity (Figure 

1C) [61,62] and the LTβR self-interaction region in the cytoplasmic domain promotes 

receptor aggregation and consequent conformational changes [24]. These events lead to the 

sequential recruitment of cytosolic adaptor proteins to the cytoplasmic region of LTβR, 

mainly TRAF proteins. These proteins may activate or repress signaling initiation leading to 

gene transcription through different signaling pathways such as the classical and the 

alternative NF-κB pathways, the c-Jun N-terminal kinase (JNK) MAP kinase pathway, and 

other signaling pathways leading to cell death [63] (Figure 2). LTβR-dependent downstream 

signaling can also be initiated independently of ligand binding either artificially by anti-LTβR 

agonistic antibodies that induce receptor aggregation [21,64], or pathologically by receptor 

overexpression leading to self-association [19,65,66].  

Although LTβR activation has been reported to induce gene expression through 

ASK-MKK-JNK-dependent AP-1 activation [67,68] and LTβR interacts with the AP2 

adaptor/clathrin complex to mediate unknown NF-κB-independent functions [19], cell death 

induction and NF-κB activation are the most studied events downstream LTβR. Despite 

lacking a cell death domain in its cytosolic domain, LTβR has been shown to induce death of 

cancer cell lines (e.g., HT-29, WiDr, Hep3BT2, and MCF-7) and to arrest tumor growth in 

cell line-derived xenograft models [69,70]. LTβR activation was shown to lead to cell death in 

the presence of IFN-γ [69] by either caspase-dependent (apoptosis) and/or caspase-

independent (necroptosis/necrosis) mechanisms [20,71–74]. In addition, LTβR activation in 

combination with TNFR1 was proven essential to sensitize cortical thymic epithelial cells 

(cTECs) to TNFR1-mediated cell death [75,76]. The mechanism was shown to rely on NIK 

activation and on assembly of the RIP1/FADD/caspase8 death complex (Figure 2), but not 

on processing of p100 to p52, an essential step in the NF-κB alternative pathway [77]. 

Despite these findings, further research is warranted to fully understand the mechanisms of 

cell death induced by LTβR, which may depend on cell type, nature of the LTβR-activating 

stimulus and co-activation of other receptors.  

Unlike the prototypical TNF receptors, which activate the classical but not the 

alternative NF-κB pathway (i.e., TNFR1), but like other TNFRSF members (e.g., BAFFR, 

CD40, CD27, Tweak, and CD30), LTβR binding by its ligands leads to both classical and 

alternative NF-κB pathway activation [19,78]. The activation of one or the other NF-κB 

signaling pathway is spatially and temporally regulated by LTβR trafficking [19] and varying 

levels of receptor cross-linking may be required for distinct conformational changes and 

activation of different signal transduction pathways. Furthermore, the classical and the 
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alternative NF-κB signaling pathways control distinct patterns of gene expression [78] and 

are therefore differentially involved in various functions attributed to LTβR signaling (Figure 

2).  

To activate the classical NF-κB signaling pathway, LTβR engagement leads to 

TRAF2 recruitment to its CD and subsequent IKK-mediated IκBα phosphorylation and 

degradation by the proteasome [79]. These events lead to p50-RelA heterodimer activation 

[78,80]. When upregulated, TRAF3 was shown to inhibit TRAF2 recruitment to LTβR, thus 

negatively regulating NF-κB activation [79]. When LIGHT or LTα1β2 accumulates at the 

surface of LTβR-inducing cells, higher-order clusters of LTβR may form on the target cell 

that seemingly trigger dynamin-2-dependent endocytosis of the receptor [19]. During this 

process, the LTβR CD was shown to remain exposed towards the cytosol and to compete 

with NIK for the binding of its inhibitory complex composed by TRAF3/TRAF2/cIAP1/cIAP2 

[81,82]. As a consequence, the constitutive proteasomal degradation of NIK is alleviated, 

leading to NIK accumulation and activation of IKKα. These events lead to p100 processing 

to p52 and the translocation of p52/RelB dimers to the nucleus (Figure 2) [19,83]. LTβR-

mediated activation of alternative NF-κB signaling is terminated by a mechanism of negative 

feedback control relying on IKKα-dependent destabilization of NIK [84]. Thus, TRAF3 inhibits 

NF-κB signaling by being part of a complex that mediates NIK targeting to proteasome 

degradation and, thus inhibits the processing of p100 to p52 [79,85]. Regarding kinetics, 

ligand binding to LTβR can induce a rapid and transient activation of the classical NF-κB 

pathway, followed by a delayed but sustained activation of the alternative pathway [78,80]. 

The delayed activation of the alternative pathway may be at least partially due to the 

requirement for increased Nfkb2 gene transcription (encoding p100), which is mediated by 

the IKKβ-dependent classical pathway [78,80]. Alternatively, it was proposed that LTβR 

activation induces the IKKα-dependent alternative pathway alone, resulting in p100 

degradation and eventually activating RelA-containing and RelB-containing dimers [86]. 

Through the activation of p50/RelA heterodimers, LTβR signaling promotes for instance the 

upregulation of proinflammatory molecules including the CCL4/macrophage inflammatory 

protein (MIP)-1β, CXCL2/MIP-2 and vascular-cell adhesion molecule 1 (VCAM-1) in mouse 

embryonic fibroblasts (MEFs) [78], and CXCL1, CXCL2, intercellular adhesion molecule 1 

(ICAM-1), VCAM-1, and E-selectin in endothelial cells [87]. Conversely, LTβR-mediated 

activation of p52/RelB heterodimers results in the production of lymphoid chemokines such 

as the CCL19/EBl1-ligand chemokine (ELC), CCL21/secondary lymphoid tissue chemokine 

(SLC), CXCL12/stromal cell-derived factor-1α (SDF-1α), CXCL13/B lymphocyte 

chemoattractant (BLC) and the cytokine B cell activation factor (BAFF), being all involved in 

lymphoid organogenesis and homeostasis [26,78].  
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4. Physiological roles of lymphotoxin signaling 

 

LTα1β2/LIGHT-induced LTβR signaling is critically involved in lymphoid organogenesis and 

maintenance of secondary lymphoid structures, in addition to its roles in regulation of innate 

and adaptive immune response, inflammation, and tissue homeostasis.  

Lymphoid organogenesis is largely associated with LTβR signaling induced by the 

LTα1β2 heterotrimer, as shown by studies blocking ligand-receptor interaction [88,89] or 

using LTβR, LTα, LTβ or LIGHT knockout mice [1–3,90]. LTβR knockout mice lack several 

secondary lymphoid organs, including peripheral and mesenteric lymph nodes (LNs), 

Peyer´s patches and gut-associated lymphoid tissues (GALT) [1]. LTα knockout mice 

generally lack peripheral and mesenteric LNs and Peyer´s patches, although mesenteric 

lymphoid aggregates were observed in a few mice [3,91]. LTβ knockout mice lack most LNs, 

but in contrast to LTα and LTβR-deficient mice conserved fully organized mesenteric LNs 

and cervical lymph node-like structures [2,92]. Mesenteric LN development was impaired by 

simultaneous LTβ and LIGHT inactivation, meaning that LIGHT can compensate for LTβ 

absence in mesenteric LN development [90]. In addition, LTα-, LTβ- and LTβR-deficient 

mice, but not LIGHT-deficient mice presented splenic structural defects. Discrepancies in the 

effects of ligand-receptor gene inactivation led to the supposition, yet to be confirmed, that 

either an alternative unknown ligand for LTβR or other nonspecific interactions could 

account for such phenotypic differences [1–3].  

In the adult, LTβR signaling was reported to be critically involved in the adaptive 

immune response against pathogens due to its intervention in processes such as DC 

homeostasis and expansion [93,94], and lymphocyte maturation and survival [95–98]. 

Furthermore, its activation is continuously required for the maintenance of the integrity and 

organization of microenvironments from secondary lymphoid organs [1,88,89]. For example, 

LTβR is important for the development and structural maintenance of fibroblastic reticular 

cells (FRCs) in LNs and spleen [99,100]. In the spleen, LTβR activation was also shown to 

be essential for FDC differentiation [101]. Accordingly, LTβR-deficient mice present 

disrupted FDC and germinal center formation and, consequently deficient B cell affinity 

maturation [1]. LTβR signaling is also important for the trafficking of lymphoid and other 

hematopoietic cells, namely the recruitment, migration and organization inside organs, and 

the migration to other tissues [4,26,42,102]. Moreover, it is involved in the regulation of acute 

inflammatory reactions and in the development of inflammation-associated ectopic lymphoid 

structures [41,103]. In the latter process, LTβR-dependent stromal cell differentiation into 

reticular networks and induction of chemokines, cytokines and adhesion molecules play a 

critical role. Finally, LTβR activation favors the recruitment of hematopoietic cells to lymphoid 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 8 

compartments by instructing the development and function of high endothelial venules 

(HEVs) [7,104]. 

Importantly, LTβR signaling leading to NIK/IKKα-dependent alternative NF-κB 

activation has been shown to be a key player for thymic medullary epithelial cell 

differentiation [105] and the maintenance of the thymic structure [4], considered essential for 

central tolerance induction. In this context, T cell development and selection, and the 

maintenance of the thymic microenvironments require reciprocal interactions between 

thymocytes and stromal cells where LTβR signaling is a critical mediator of this thymic 

crosstalk [4]. In addition, cTEC cell death mediated by LTβR and TNFR1 combined and NIK 

activation was proven essential for thymic involution in pathological conditions [75–77]. 

Although LTβR and its ligands are widely recognized as key players in immunity, 

they are also involved in many other biological processes such as liver regeneration [5,106], 

hepatic lipid metabolism [6], and adipocyte differentiation [107]. Importantly, LTβR signaling 

has also been reported to be involved not only in cell death and tumor growth inhibition, but 

also in cancer development and progression [15,16]. 

 

5. LTβR suppressor functions in solid tumors 

 

5.1. LTβR activation leading to cancer cell death 

The lymphotoxin designation was first attributed upon LTα identification as a cytokine similar 

to TNFα that presented cytolytic/cytostatic effects on target cells [108]. Indeed, LTβR 

activation was first shown to mediate cytotoxic effects in tumors, thus pointing to a potential 

anti-cancer therapy, especially because this receptor was found to be expressed in a wide 

range of tumor types [65,70,73].  

The direct anti-cell growth role of LTβR has been demonstrated in a subset of human 

epithelial cancer cell lines (e.g., HT-29, WiDr, Hep3BT2, MCF-7, and HeLa), where LTβR 

activation was shown to induce death with slow kinetics (36-72 h) either in the presence of 

IFN-γ [69,71] or through LTβR ligand-independent self-association caused by 

overexpression [66]. Furthermore, LTβR activation was reported to arrest tumor growth in 

mice xenografted with colorectal cancer cell lines and patient samples [69,70]. The 

molecular mechanism by which LTβR contributes to cancer cell line death has however 

remained elusive. 

To study LTβR-induced anti-growth effects in cancer, Hu and coworkers used a lung 

experimental metastasis model in which mouse colon carcinoma cells were injected i.v. into 

BALB/c mice and found that CD11b+ myeloid cells, NK cells, and CD8+ and CD4+ T cells 

collected from lung metastases expressed LTα1β2 and LIGHT [73]. This observation 

supported a previous report indicating that monoclonal antibody (mAb)-mediated LTβR 
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activation in established CT26 cell line-derived subcutaneous tumors led to both T cell 

infiltration, probably mediated by pro-inflammatory chemokines, and tumor necrosis [70]. 

Supporting the notion that immune cells interact with tumor cells through LTβR to suppress 

spontaneous tumor development, recombinant LTα1β2 and LIGHT proteins or an agonist 

LTβR mAb could inhibit in vitro growth of human colon carcinoma and soft tissue sarcoma 

cell lines [73]. Likewise, using a syngeneic mouse model of sarcoma metastasis to the lung 

together with adoptive transfer of tumor-specific cytotoxic T lymphocytes (CTL), Yang and 

co-workers previously showed that LTβR was a direct effector of CTL-mediated tumor 

rejection in vivo [109]. Regarding the mechanism, LTβR stimulation by an agonistic mAb 

induced caspase- and mitochondrial-dependent apoptosis and activated classical and 

alternative NF-κB pathways in human cancer cell lines [73]. Furthermore, NF-κB inhibition 

promoted CT26 colon cancer cell metastatic potential in vivo, suggesting that in this context 

LTβR-mediated apoptosis and activation of the NF-κB signaling pathway might act in concert 

to suppress tumor development [73].  

It has been suggested that LTα1β2 and LIGHT ligand expression by immune cells 

such as T cells [109], NK cells [110] or DCs [111] may engage LTβR on tumor cells and thus 

trigger antitumor cytotoxicity. Yet, tumor cell death in these studies was induced by 

recombinant ligands and/or LTβR agonistic antibodies, which may not reflect the 

physiological levels and activity of ligands expressed at the surface of immune cells. This 

caveat is underscored by results showing that LTβR activation and downstream signaling 

pathways induced in vitro by recombinant ligands or agonistic antibodies may depend on the 

duration and degree of receptor oligomerization [64]. Nevertheless, LTβR-mediated tumor 

suppression by either agonistic mAbs [69,70] or adoptively transferred tumor-specific CTLs 

[109] was put forward as a therapeutic approach to halt tumor growth and to override colon 

carcinoma and soft tissue sarcoma chemo- and radiotherapy resistance [70,73]. 

 

5.2. LTβR or HVEM activation leading to immune-mediated tumor rejection 

5.2.1. LIGHT-induced recruitment and activation of anti-tumoral lymphocytes 

Rather than identifying a direct effect of LTβR signaling in tumor regression, Winter and 

coworkers found that LTβR-mediated tumor regression could occur through an indirect 

pathway [112]. These authors used an experimental pulmonary metastasis model generated 

by intravenous injection of the D5 melanoma cell line (a B16 cell line subclone) in syngeneic 

mice, and found that infiltrating effector T cells, which expressed LTβR ligands, activated 

LTβR but did not induce apoptosis of D5 tumor cells in vitro. Instead, LTβR activation in D5 

melanoma cells induced the secretion of chemokines that mediate macrophage migration 

[112]. Although, direct anti-tumor effects could not be excluded, this report indicates that 

LTβR activation by LTα1β2 and/or LIGHT is involved in the induction of chemotactic 
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molecules that create a tumor microenvironment favorable for lymphocyte homing, which in 

turn may boost anti-tumor immunity and contribute to tumor suppression. Also in this 

context, Yu and colleagues disclosed a role for LTβR signaling in tumor immune rejection 

[113]. LIGHT overexpression in a fibrosarcoma cell line that was then subcutaneously 

inoculated in C3B6F1 mice induced LTβR-mediated CCL21 and MAdCAM-1 expression in 

tumor microenvironmental cells. This in turn led to CD8 naïve T cell infiltration and 

activation, leading to the rejection of the established tumor. Furthermore, direct inoculation 

of LIGHT-expressing tumor cells in established non-LIGHT-expressing primary tumors led to 

their regression. Primary tumor rejection was also achieved when LIGHT-expressing tumor 

cells were inoculated in another subcutaneous site, indicating that LIGHT can generate a 

systemic immune response against distal tumors. These data support the rationale of using 

LIGHT-expressing tumor vaccines as a therapeutic tool [113]. In this line, other researchers 

genetically engineered attenuated Salmonella to express LIGHT and used it as a targeting 

vehicle for local expression of LIGHT in tumors. This approach led to LTβR and HVEM-

dependent inhibition of both primary and metastatic tumor growth in subcutaneously injected 

syngeneic immunocompetent mice [114]. LIGHT expression induced both T and B 

lymphocyte infiltration and production of the CXCL9 chemoattractant in subcutaneous 

tumors, but it remained to be established whether these two effects were causatively linked 

[114]. LIGHT expression was also found to be frequent in patient-derived metastatic 

melanoma cells and in melanoma cell line-derived microvesicles, and to be correlated with 

T-cell infiltration [115]. In addition, another approach based on LIGHT-expressing 

adenovirus was tested for local tumor treatment. These viruses initiated priming of tumor-

specific CD8+ T cells directly in the primary tumor, followed by the exit of CTLs, which 

homed to distal tumors to elicit immune-mediated eradication of spontaneous metastases 

[116]. Several studies therefore indicate that LIGHT is a potent primer of T-cell responses 

that can counter tumor growth and that it can be used as a therapeutic tool.  

 

5.2.2. LTβR-mediated HEV differentiation and recruitment of anti-tumoral lymphocytes 

In addition to its role in chemokine production and chemoattraction, LTβR activation was 

shown to correlate with lymphocyte extravasation through HEVs and tumor infiltration, thus 

leading to tumor regression [117,118]. HEVs are specialized postcapillary vessels of 

secondary lymphoid organs, also found in chronically inflamed non-lymphoid tissues [119] 

and tumors [120]. These vessels mediate the extravasation of naïve and central memory 

lymphocytes from the peripheral blood to lymphoid tissues to initiate immune responses 

[121], and express LTβR, which is required for HEV differentiation and function [7]. In this 

context, Martinet and coworkers have recently found that in human breast cancer, higher 

numbers of LTα1β2-expressing DCs were correlated with increased HEV density and T and 
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B lymphocyte infiltration. Moreover, LTβ expression correlated with expression of 

chemokines associated with HEV-mediated lymphocyte extravasation (CCL19, CCL21 and 

CXCL13) [118]. Interestingly, these authors showed that the tumor HEV density was 

inversely correlated with breast cancer progression, from in situ ductal carcinoma to invasive 

ductal carcinoma, and found that high density of HEVs in breast tumors was correlated with 

a favorable prognosis [118]. These findings contradict the generally accepted assumption 

that tumor angiogenesis correlates with tumor progression and worse prognosis, and 

highlight the notion that different types of tumor blood vessels play distinct roles. A similar 

mechanism was also found in a mouse model of methylcholanthrene-induced fibrosarcoma, 

in which depletion of T regulatory cells (Tregs) led to HEV development, T-cell infiltration, 

LTα and LTβ upregulation and decreased tumor growth [117]. 

 In summary, LTβR can mediate anti-tumor effects by direct cytotoxicity (Figure 3A) 

but also by other indirect mechanisms, like tumor cell sensitization to chemotherapeutic 

agents and radiation [70]. Furthermore, LTβR can stimulate host-mediated anti-tumor 

immune responses either by inducing the expression of pro-inflammatory cytokines and 

chemokines that chemoattract and activate lymphocytes [70,112] (Figure 3B), or by inducing 

the differentiation of HEVs that mediate lymphocyte trafficking to both normal organs and 

tumors [7,118] (Figure 3C) .  

 

6. LTβR-mediated promotion of solid tumors 

 

In contrast to the previously discussed anti-cancer roles of LTβR, a tumor-promoting role for 

this receptor has been disclosed in a wide variety of contexts. Cancer cells from different 

origins express LTβR [65,70,73], being often this expression increasingly more prevalent 

with cancer progression and metastasis [65,73,122]. Furthermore, LTBR gene upregulation 

or structural alterations leading to LTβR constitutive activation were reported to correlate 

with carcinogenesis [65,122–124] (Figure 4A). As shown below, LTβR is thought to promote 

oncogenesis either by directly fostering survival and/or proliferation of malignant cells or by 

generating a pro-tumorigenic inflammatory microenvironment. 

 
6.1. LTBR genetic alterations leading to LTβR constitutive activation 

An early study reporting an LTβR pro-tumorigenic role identified an NH2-terminally truncated 

form of LTβR in a pancreatic ductal carcinoma cell line. This truncated receptor as well as 

the full-length LTβR protein were shown to have fibroblast transforming activity in vitro and in 

vivo, even in the absence of their cognate ligands [123]. In another study, the 12p13.3 

region, including the LTBR locus, was found to be in higher copy number in 51% and 

amplified in 7% of nasopharyngeal carcinoma (NPC) cases [122]. Additionally, LTβR protein 
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was found to be frequently overexpressed in NPC tumors. Subsequently, LTβR 

overexpression in an immortalized nasopharyngeal epithelial cell line was shown to 

contribute to ligand-independent cell proliferation. Importantly, LTβR knockdown inhibited in 

vivo tumor growth in an NPC xenograft mouse model [122]. Since LTβR stimulation 

activated NF-κB in nasopharyngeal cells [122], the same authors showed that in cases 

without evident LTBR amplification genetic alterations affecting other NF-κB signaling 

regulators (TRAF3, TRAF2, NFKBIA, and A20/TNFAIP3) were present [125]. These results 

therefore support a role for LTβR-mediated NF-κB activation in NPC development. 

The oncogenic potential of LTβR has also been reported in melanoma. Dhawan and 

co-workers have shown that LTβR expression is upregulated in human metastatic 

melanoma samples when compared to normal melanocytes and other melanoma lesions. In 

melanoma cell lines, LTβR activates the NF-κB pathway and induces cell proliferation and 

invasiveness, all in a ligand-independent manner [65]. These findings suggest that, like in 

pancreatic cancer, the elevated expression of LTβR in melanoma is by itself sufficient to 

drive cancer progression.   

 

6.2. Ligand-dependent activation of LTβR in cancer development 

Despite reports indicating that LTβR signaling can be activated in the absence of ligands, 

other studies have shown that these may play important roles in promoting cancer. Genetic 

studies in humans identified single nucleotide polymorphisms (SNPs) in the LTα gene that 

may be either cancer-protective or lead to an increased cancer risk. For example, one 

common SNP, LTA +252A>G or rs909253, was described in meta-analysis studies to be 

positively associated with cancer susceptibility to different types of cancer [126,127]. Such 

susceptibility was also found for specific cancer types, such as non-Hodgkin lymphoma 

[128,129], breast cancer [130,131] and gastric cancer [132,133]. Despite conflicting data on 

the association between LTA gene polymorphisms and risk for different types of cancer in 

different ethnic populations, and on whether the polymorphic allele is present in 

homozygosity or heterozygosity, it was reported that different LTA alleles may result in 

differential gene transcription and protein expression [134,135]. Since LTα plays a key role 

in immunity and inflammation [136], alterations in its production may affect anti-cancer 

immunity and inflammation-induced cancer. Yet, the exact mechanism by which it affects 

cancer risk in each context remains to be defined. Furthermore, the involved LTα-containing 

ligand, either LTα3 homotrimer or LTα1β2 heterotrimer, was not determined by these studies. 

 

6.3. LTβR pro-oncogenic roles mediated by interactions with the tumor microenvironment 

Immune cells are the main source of LTβR ligands and the interaction of these cells with 

tumor cells can either restrain, as discussed above, or promote tumor progression. Tumor 
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and/or stromal cells respond to injury, infection and tissue stress by producing cytokines and 

chemokines that attract immune cells [137]. As a result, these cells migrate to the tumor 

microenvironment where they secrete inflammatory, pro-angiogenic and pro-tumorigenic 

factors that may affect tumor progression and metastasis. Thus, depending on the tumor 

microenvironment chemokine milieu, tumor-infiltrating immune cells can stimulate the 

immune response against tumor cells or rather help these to subvert the immune response 

and promote oncogenesis. As a signaling axis involved in immune cell communication, in 

addition to its involvement in the induction of tumor-suppressive microenvironments, as 

discussed above, LTβR signaling can also contribute for the induction of pro-oncogenic, 

inflammatory microenvironments. A wide range of studies have shown that inflammation can 

promote tumorigenesis by promoting angiogenesis, release of growth and survival factors, 

invasiveness, metastasis and evasion of host defense mechanisms [138].  

 

6.3.1. LTβR-induced angiogenesis 

The importance of angiogenesis for the growth of solid tumors has since long been 

recognized. As tumor growth and metastasis require persistent new blood vessel formation, 

a developing tumor shifts from the avascular phase to the angiogenic phase, the so-called 

angiogenic switch [139]. This switch is controlled by a balance between pro- and anti-

angiogenic factors, which are secreted by the tumor cells themselves or by cells in the tumor 

microenvironment, in particular resident stromal cells and immune cells. It is known that the 

expression of pro- and anti-angiogenic factors by cancer cells can be controlled either 

directly by oncogenes, tumor suppressor genes and transcription factors or indirectly by 

extrinsic factors. Yet, the roles and the interplay among the various inflammatory cytokines 

and chemokines in the angiogenic switch are still poorly understood. 

In this context, Hehlgans and co-workers have shown that inhibition of LTβR 

signaling can block angiogenesis and tumor growth [140,141]. Using methylcholanthrene-

induced murine fibrosarcoma BFS-1 cells, these authors have shown that LTβR activation 

by LTα1β2- or LIGHT-expressing T and B lymphocytes induced the expression of the 

angiogenic mediator CXCL2 [140]. CXCL2 induction in BFS-1 cells depended on NF-κB 

activation and contributed for solid tumor growth in vivo. The described pro-tumorigenic 

effect was assumed to be due to the modulation of the tumor microenvironment through 

LTβR-mediated angiogenesis induction (Figure 4B) because LTβR inhibition blocked BFS-1 

tumor angiogenesis while direct LTβR stimulation (with an agonistic anti-LTβR monoclonal 

antibody) did not increase proliferation or survival of fibrosarcoma cells [141].  
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6.3.2. LTβR-induced chronic inflammation 

Tumors often arise in sites of chronic inflammation [142], which provide a microenvironment 

containing various mediators (e.g., cytokines, chemokines, and prostaglandins) with tumor-

promoting properties, including enhanced cell proliferation, survival, angiogenesis and 

migration. In this context, Haybaeck and co-workers have found the involvement of LTβR 

signaling in the development of virus-induced chronic hepatitis and hepatocellular carcinoma 

(HCC) [13]. In hepatic primary tissue from hepatitis B or C (HBV- or HCV)-induced chronic 

hepatitis and HCC patients, these authors found upregulation of not only LTβR and its 

ligands (LTα, LTβ and LIGHT) but also pro-inflammatory chemokines (CCL2, CCL3 and 

CXCL10). LTBR was highly expressed in liver cell populations depleted of hematopoietic 

(CD45-positive) cells, while LTA, LTB and LIGHT were expressed both in hematopoietic and 

non-hematopoietic HCV-induced hepatitis and HCC liver cell fractions. Furthermore, 

expression of LTBR, LTA, LTB, LIGHT and inflammatory chemokines in a human 

hepatocyte cell line Huh-7.5 was shown to be directly linked to the presence of HCV 

infection. In transgenic mice expressing high levels of LTα and LTβ in a liver-specific 

manner, LTβR signaling induced chronic hepatitis characterized by inflammation, T and B 

lymphocytic infiltrates and hepatocyte apoptosis. Further experiments demonstrated that T 

and B cells, which express LTβR ligands, and LTβR-mediated canonical NF-κB signaling 

activation in hepatocytes were both required for LTβR-induced chronic hepatitis and HCC 

development [13]. These findings indicate that persistent lymphocyte-derived LTα1β2 and 

LTβR-induced NF-κB activation are tumor-promoting, and that rather than having direct 

oncogenic properties, LTβR signaling reshapes and generates an inflammatory, oncogenic 

hepatic microenvironment (Figure 4C). Interestingly, it was recently reported that short-term 

LTβR stimulation led to degradation of HBV-derived covalently closed circular DNA 

(cccDNA) in infected hepatocytes [143]. This anti-HBV effect was shown to be mediated by 

LTβR-induced APOBEC3B deaminase expression and indicates that LTβR agonists could 

be incorporated in anti-HBV combined therapeutic regimens [143]. Importantly, these data 

suggest that in contrast to the HCC-causing inflammation-related persistent LTβR 

stimulation, transient stimulation may actually prevent HBV-induced HCC. 

 Supporting the aforementioned studies on hepatitis and HCC [13], Simonin et al. 

(2013) have shown in a recent report that LTβ expression can be induced by the HCV NS5B 

polymerase in a human hepatoma cell line. Using transgenic mice with hepatocyte-targeted 

expression of the entire ORF of the genotype 1b HCV, Simonin and co-workers have also 

shown that LTβ hepatocyte expression in HCV transgenic liver tumors was associated with 

NF-κB activation, chemokine synthesis and intra-tumoral recruitment of macrophages and T 

and B lymphocytes [43]. In addition to these studies on viral-induced HCC, LTβR was shown 

to be also involved in the pathogenesis of non-viral HCC. Using a mouse model of long-term 
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choline-deficient high-fat diet, Wolf et al. (2014) identified CD8+ T cells and NKT cells 

recruited to the liver as key players in the development of steatosis and HCC. These cells 

were shown to interact with hepatocytes leading to their activation and to the release of 

soluble factors such as LIGHT and lymphotoxin. In addition, LTβR and classical NF-κB 

signaling were shown to be activated in hepatocytes, thus facilitating liver tumorigenesis 

[144]. More recently, LTβR signaling was found to participate in oncogene-driven HCC 

progression [145]. In an HCC mouse model initiated by constitutively active Akt (in 

combination with mutated β-catenin or Notch1), LTβ and LTβR expression were found to be 

upregulated in liver tumors. More importantly, blockade of LTβR signaling reduced tumor 

progression and prolonged mouse survival [145]. Together, these reports demonstrate that 

independently of the causing agent, LTβR persistent signaling in the context of chronic 

inflammation promotes HCC progression, and may be a potential therapeutic target. 

Cancer therapy-induced cell death can also elicit an inflammatory response that may 

contribute to therapeutic resistance. This is the case of castration-resistant metastatic 

prostate carcinoma, the emergence of which constitutes a major complication limiting the 

success of androgen ablation therapy and underlying most prostate cancer-associated 

mortality. Using two animal models, the SV40 large T antigen-driven transgenic 

adenocarcinoma mouse prostate (TRAMP) cancer model and the mouse androgen-

dependent CaP prostate cancer cell line subcutaneously allografted in castrated FVB mice, 

Ammirante et al. (2010) unveiled a mechanism underlying the emergence of castration-

resistant prostate cancer. These researchers found that following androgen ablation 

therapies, the death of androgen-deprived primary cancer cells induced an inflammatory 

response with concomitant production of CXCL13 and other inflammatory chemokines, and 

recruitment of leukocytes, mostly B cells, into the regressing tumor. IKKβ activation in B 

cells, presumably by inflammatory cytokines, induced the expression of surface LTα1β2 in 

these cells. These LTα1β2-expressing B cells led to LTβR activation and IKKα nuclear 

translocation in prostate cancer cells to promote androgen-independent growth and survival 

[146].  

A more recent study has shown that the endogenous “danger signal” HMGB1 protein 

was induced during prostate tumor progression in TRAMP mice, and that it was required for 

the infiltration and activation of T cells (but not B cells) within the tumor [147]. Prostate 

tumor-infiltrating T cells were shown to express LTα1β2 and, through LTβR activation in 

stromal cells, to promote the recruitment of tumor macrophages, presumably by inducing 

CCL2 expression. More importantly, LTβR signaling was shown to facilitate progression from 

hyperplasia to invasive prostate carcinoma [147]. Considering these findings with those 

obtained by Ammirante et al. (2010), it can be concluded that LTβR signaling may contribute 

to several phases of prostate oncogenesis, through different molecular mechanisms 
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(CXCL13 or CCL2 production) and involving different cellular players (T or B lymphocytes), 

and may therefore be of therapeutic value.  

 

6.3.3. Induction of a pro-tumorigenic niche supported by LTβR-expressing stromal cells 

LTβR signaling has been implicated in other epithelial cancers, as for example ovarian 

cancer [148]. Lau and co-workers detected LTA and LTB overexpression in ovarian cancer 

cells and demonstrated that LTα1β2-expressing human ovarian primary cancer cells induce 

LTβR-expressing cancer-associated fibroblasts (CAFs) to express chemokines through NF-

κB signaling. One of the chemokines identified as being induced in CAFs was CXCL11, 

which was able to promote proliferation and migration of CXCR3-expressing ovarian cancer 

cells [148]. Thus, in this setting cancer cells generate a pro-tumorigenic microenvironment 

through increased lymphotoxin expression and LTβR activation in stromal cells. 

 

6.3.4. Immune evasion mediated by LTβR 

Another way by which LTβR signaling is involved in cancer promotion is by dampening the 

host adaptive immune response to cancer. Because LTα1β2-LTβR signaling plays a role in 

immune self-tolerance due to its key role in medullary thymic epithelial cell development and 

function [4], blocking this signaling axis may rescue tumor-reactive effector T cells from 

thymic clonal deletion and thus counter cancer development [149]. To test this hypothesis, 

Zhou et al. (2009) used the TRAMP animal model co-expressing a TCR specific for SV40 

large T antigen. Targeted mutation of the Lta gene was found to impair thymic negative 

selection of tumor-reactive T cells, resulting in decreased prostate cancer incidence and in 

milder malignant phenotype. Confirming the impact of LTβR signaling in prostate 

oncogenesis, short-term LTβR blockade in TRAMP mice rescued T cells from clonal 

deletion, reduced the progression of primary prostate cancer and prevented metastasis 

[150]. This study thus suggests that LTβR signaling may constitute a non-antigen-based 

strategy of immune cancer prevention potentially useful for patients with high genetic risk for 

prostate cancer. Another report has highlighted an alternative role for LTβR in tumor 

immunoevasion. Kim and co-workers showed that the human papillomavirus 16 (HPV16) E6 

oncogene induced LTα, LTβ and LTβR expression in cervical cancer cell lines [44]. More 

importantly, LTβR signaling led to MHC class I downregulation in these cells and to 

resistance to cytotoxic T lymphocyte-mediated lytic activity [44]. Whether such mechanism 

of cancer cell evasion from the host immune system takes place in vivo and results in tumor 

progression remains to be determined. 
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7. LTβR role in hematological malignancies 

 

Several reports indicate that hematological malignancies are fostered by LTβR signaling, 

either intrinsically to cancer cells or indirectly through microenvironmental cells. Studies 

aiming to identify genetic abnormalities underlying multiple myeloma pathogenesis identified 

alterations (e.g., deletions, amplifications, and point mutations) in several NF-κB regulators, 

in about 15% of patient samples and 30-40% of cell lines [124,151]. Such alterations 

included LTBR amplification in one patient sample and one cell line [124]. Despite the low 

frequency of abnormalities in LTBR and other functionally related genes, these studies 

indicated that constitutive activation of the LTβR-activated noncanonical NF-κB pathway 

promotes multiple myeloma oncogenesis [124]. 

LTα1β2-LTβR signaling has also been shown to mediate paracrine or juxtacrine 

tumor-stroma interactions leading to microenvironment modulation and establishment of 

chemoattractive tumor-permissive niches in secondary lymphoid organs (Figure 4D). Rehm 

and co-workers identified the homeostatic chemokine receptor CCR7 as a determinant 

factor in dictating the location and survival of B-cell lymphoma cells within secondary 

lymphoid organs [152]. Using the Eμ-Myc transgenic mouse model of aggressive human B-

cell lymphoma, these researchers found that CCR7 controls lymphoma cell dissemination to 

LNs and to the splenic T-cell zone where, through LTα1β2 expression, cancer cells stimulate 

LTβR in gp38+ FRCs. This molecular crosstalk results in the expansion of stromal FRC 

networks and release of chemoattractant homeostatic chemokines (e.g., the CCR7 ligands, 

CCL19 and CCL21) and trophic factors (e.g., IHH/indian hedgehog) that confer a survival 

advantage to lymphoma cells [152]. More recently, these authors used the murine Eμ-Tcl1 

model of B-cell chronic lymphocytic leukemia to show that the CXCL13-CXCR5 signaling 

axis mediates leukemic B cell access to a stromal compartment enriched with FDCs in 

splenic B cell follicles [153]. Here, leukemic B cells and FDCs engage in a reciprocal 

crosstalk in which LTα1β2-expressing leukemic cells activate LTβR and thus stimulate the 

differentiation of FDC networks and the production of CXCL13, CCL21, and other pro-

proliferative and pro-survival growth factors [153]. In both studies, the inhibition of LTβR-

mediated interactions between malignant and microenvironmental cells impaired disease 

progression and was therefore pointed as a possible strategy to complement standard 

cytotoxic therapies [152,153]. Recently, high expression of LTα and LTβ-encoding genes 

was identified in human primary T-cell acute lymphoblastic leukemia expressing TAL or LMO 

oncogenes (TAL/LMO molecular subtype) [154]. Highlighting the relevance of these findings, 

LTβR activation in thymic stromal cells was shown to promote T-cell leukemogenesis in a 

mouse model of T-cell acute leukemia/lymphoma [154]. Leukemic cells from these mice 

were shown to express high levels of LTα and LTβ, from an early stage, and importantly, 
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both early appearance of malignant cells and mouse survival were delayed in the absence of 

stromal LTβR. Since stromal cells dependent on RelB expression were shown be involved in 

mouse leukemogenesis [155], these studies support the notion that LTβR activation in 

stromal cells promotes T-cell leukemogenesis through NF-κB activation.  

 

 

8. Signaling pathways mediating LTβR activity in cancer 

 
As highlighted in the above sections, the classical or alternative NF-κB pathways appear to 

be the main mediators of most cellular events stemming from LTβR signaling that contribute 

to its pro- and anti-oncogenic effects. However, a number of reports suggest that this is not 

always the case. In fact, some anti-oncogenic effects of LTβR signaling leading to cancer 

cell death were reported to be mediated by other downstream components such as the 

reactive oxygen species-induced apoptosis signal-regulating kinase (ASK1) [72] and 

caspases (e.g., caspase 3 and 8) [66,71,73]. On the other hand, only few pro-tumorigenic 

effects of LTβR signaling were found to result from activation of mediators other than NF-κB. 

Ammirante et al. (2010) reported that LTβR activation in prostate carcinoma cells by 

lymphotoxin expressed on B cells infiltrating regressing tumors after castration was required 

for IKKα translocation to the nucleus and STAT3 activation, nevertheless a collaboration with 

another unidentified critical cytokine/receptor activating STAT3 was predicted [146]. 

Although JNK has been shown to be activated by LTβR (Figure 2) and to be implicated in 

cancer, in promoting or suppressing it [156], no report has so far addressed whether this 

kinase is involved in cancer-related LTβR activity. 

 

 

9. Signaling pathways with context-dependent outcomes in carcinogenesis 

 

Taken together, the aforementioned reports demonstrate the dual role of LTα1β2/LIGHT-

LTβR signaling axis in cancer development. These proteins are not unique in that, other 

signaling proteins, such as tumor necrosis factor alpha (TNFα), transforming growth factor 

beta (TGFβ), NOTCH1 and NF-κB, share this context-dependent role in oncogenesis. 

 In accordance with its designation, TNF has been shown to induce apoptosis or 

necrosis in a variety of cancer cell types. TNF was shown to kill directly cancer cells [157], 

but its anti-oncogenic effects seem to involve mainly damage to the tumor vasculature 

through endothelial cell apoptosis [158,159] and the stimulation of anti-tumoral immune 

responses [160–162]. In contrast to these findings, higher levels of TNFα were detected in 

the serum of cancer patients and in pre-neoplastic and tumor tissues, being associated with 
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tumor progression [163–165]. Accordingly, in many studies, TNF was reported to prompt a 

broad range of pro-carcinogenic signaling mechanisms leading to tumor initiation and 

promotion (often in the context of chronic inflammation) including survival, proliferation, 

angiogenesis, invasion, and metastatic dissemination of cancer cells [166–170]. These 

contradictory roles in carcinogenesis seem to be associated with different tumor types and 

cellular contexts, and can be partly explained by levels of TNF production, chronic low doses 

leading to cancer development and progression and acute high doses leading to tumor 

regression [171]. 

 TGFβ signaling is known to play dual roles in cancer [172–174]. In early stages of 

carcinogenesis, TGFβ mediates tumor-suppressing effects through cell-autonomous 

mechanisms, including suppression of cell proliferation and induction of apoptosis [173,175]. 

Supporting this tumor suppressive role of TGFβ signaling, genetic and epigenetic alterations 

attenuating or inactivating TGFβ receptors and downstream signaling components were 

reported in diverse types of cancer (reviewed in [175]). TGFβ was also shown to suppress 

oncogenesis indirectly by preventing the molecular crosstalk between TGFβ receptor-

expressing stromal cells and cancer cells [176]. On the other hand, TGFβ can also promote 

tumor cell growth, invasiveness and metastasis in advanced tumors. Throughout tumor 

progression cancer cells dampen the growth-inhibitory TGFβ response, while its production 

increases in the tumor microenvironment [177]. As a consequence, by mechanisms such as 

increased chemokine expression and inflammation, immune response evasion, sustained 

angiogenesis, and epithelial-mesenchymal transitions (EMT) TGFβ leads to enhanced 

invasiveness and metastasis [177–180]. Therefore, the role played by TGFβ signaling likely 

depends on cancer type and cellular context. However, unlike LTβR signaling, TGFβ tumor-

suppressing or -promoting effects appear to rely on the stage of tumor development. 

 Notch signaling was also reported to mediate contradictory effects on oncogenesis. 

Activating mutations were identified in NOTCH1 and NOTCH2 genes in hematological 

malignancies (T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle 

cell lymphoma, and marginal cell lymphoma) and in breast adenocarcinoma [181–186]. 

Although the mechanisms are not fully understood, Myc induction seems to be a common 

downstream target in these different tumor contexts [187]. More recently, evidence was 

gathered indicating that NOTCH1 and NOTCH2 can also act as a tumor-suppressor gene in 

malignancies where inactivating mutations were detected. These included squamous cell 

carcinomas from skin, head and neck and lung [188–190] and chronic myelomonocytic 

leukemia [191]. In addition, NOTCH1 protein expression was found to mediate acute 

myeloid leukemia growth arrest and apoptosis [192,193]. The mechanisms remain to be 

identified but likely involve the resulting impaired activation of targets mediating pro-
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differentiation and anti-growth effects, and the promotion of an inflammatory state caused by 

Notch loss-of-function [187,194].  

Interestingly, the main signaling pathway downstream LTβR activation, that leading 

to NF-κB activation, has also been recognized to have opposing effects in cancer 

development. Although mutations affecting NF-κB and inhibitors of IκB kinase β (IKK) are 

rarely found in human cancer, NF-κB subunits are frequently activated, resulting from either 

the induction of upstream pathways or loss of negative feedback mechanisms. Regardless 

of the causes of NF-κB aberrant activation, these transcription factors play prominent tumor-

promoting roles, intrinsic, by rendering cancer cells resistant to apoptosis and/or highly 

proliferative, and extrinsic, by stimulating neoangiogenesis and inducing pro-invasive/pro-

metastatic inflammatory microenvironments [195]. Contrasting with a large body evidence 

supporting their pro-oncogenic action, some reports have revealed an unexpected tumor 

suppressor role for NF-κB proteins in essentially two types of scenario. First, NF-κB exhibits 

tumor suppressor activity when acting in concert with well-characterized tumor suppressors, 

like p53 and ARF. These tumor suppressors bind NF-κB subunits to repress the potentially 

tumorigenic genes normally induced by NF-κB activation, most likely in an early stage of 

cancer development before cancer cells undergo loss of the implicated tumor-suppressor 

genes [196,197]. Second, in contexts where pro-survival signals derive from other 

oncogenes, NF-κB activation may enhance cytotoxic drug-mediated senescence in tumors, 

thereby exerting a tumor suppressor function [198,199]. Therefore, the NF-κB role in 

carcinogenesis is highly dependent on the tumor stage, tumor type, and presence of specific 

genetic alterations. 

 

 

10. Conclusions 

 

Since the discovery of the lymphotoxin signaling system, several researchers have 

investigated its role in cancer, including solid and hematological malignancies. As discussed 

in this review, early studies have uncovered a potential anti-tumoral role in several cancer 

types (Table 1). LTα1β2- and/or LIGHT-induced activation of LTβR in a subset of solid 

cancers was reported to promote direct cytotoxic effects (Figure 3A) and/or indirect effects 

involving alterations in the tumor microenvironment (e.g., induction of chemokine expression 

and development of HEV), which lead to increased anti-tumoral immune response (Figure 

3B,C). These reports disclosed a role for acute LTβR activation in anti-cancer immunity and 

so this was suggested as a potential therapeutic approach. Conversely, during the last 

decade, several studies provided firm evidence that LTβR signaling can promote both solid 

and hematological malignancy carcinogenesis. In some instances pro-oncogenic LTβR 
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signaling is intrinsic to cancer cells, in others it acts in tumor-promoting microenvironmental 

cells (Table 2). In the first setting, LTβR signaling can be activated either independently of 

ligand binding due to LTBR gene amplification or other molecular events leading to LTβR 

overexpression (Figure 4A), or by increased expression of LTα1β2 and/or LIGHT in the 

microenvironment (Figure 4B and C). In the latter situation, LTβR signaling in cancer cells 

leads to the secretion of factors (e.g., homeostatic chemokines and cytokines) that stimulate 

angiogenesis (Figure 4B) and/or attract infiltrating tumor-promoting immune cells (Figure 4C) 

thus stimulating cancer progression. Finally, in the setting where LTα1β2-expressing cancer 

cells activate LTβR in stromal cells, the latter can secrete chemokines or potentially other 

factors that favor cancer progression (Figure 4D). The role of infiltrating immune cells is 

rather complex, since in some contexts these can impair tumor progression through 

induction of host-mediated immunological responses as discussed above, while in other 

contexts they support tumor development by upregulating pro-inflammatory cytokines and by 

modulating the microenvironment. The balance between tumor-suppressing and tumor-

promoting immune cell activity most likely depends on tumor stage, on the nature of 

recruited cells and on the type of factors produced by the tumor microenvironment. 

 Altogether, the reports previously cited have disclosed several factors influencing the 

pro- or anti-oncogenic activities of LTβR signaling. Several variables such as the tumor type, 

the progression stage, the cancer-intrinsic genetic and epigenetic alterations, the status of 

activated signaling pathways, the microenvironmental factors, and the experimental model 

used may ultimately determine if the overall effect of LTβR activation is pro- or anti-

tumorigenic. Moreover, the mechanisms by which LTβR may foster or counter tumor 

progression are not completely understood. Nevertheless, the classical and alternative NF-

κB signaling pathways are both activated by LTβR in all scenarios, which corroborates the 

dual role of NF-κB signaling observed in different cancer contexts [195].  

 Another important issue to consider when studying LTβR role in carcinogenesis is 

the mechanism of activation. It may be constitutively activated due to overexpression and 

self-oligomerization, or it may be activated only in the presence of its ligands. In the latter 

case, heterotypic interactions with cells present in the tumor microenvironment are usually 

involved. Furthermore, it is important to determine which LTβR ligand is involved, if LTα1β2, 

LIGHT, or both. Importantly, how ligand-induced activation of LTβR is achieved (e.g., 

membrane-bound or soluble ligand) or experimentally mimicked (e.g., lymphoid cells 

expressing the ligand, recombinant soluble ligand, or soluble or immobilized agonistic LTβR 

antibody) should be carefully considered, since they may lead to different cellular outcomes. 

For instance, it was reported that the degree of receptor clustering and the varying lifetime of 

the oligomerized states may lead to diverse cellular responses following receptor activation 

[21,64,69]. Moreover, during the course of LTβR stimulation, which may be short or 
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prolonged, different NF-κB complexes are activated and may result in the expression of 

different sets of target genes [78,80].  

 Considering the described LTβR pro-oncogenic functions and the notion that this 

receptor is most often activated by ligand binding, blockade of LTβR signaling and 

interruption of crosstalk between tumor and microenvironmental cells has been proposed as 

a therapeutic approach [200]. Because of the dual functions of LTβR in cancer development 

and progression, it is imperative to learn more about the mechanisms and contexts in which 

LTβR may exert pro-oncogenic effects, and thus pave the way for the development of 

rational and more effective cancer therapies. 
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Figure Legends 

 

Figure 1. LTβR, lymphotoxin and LIGHT proteins and genes. A) Genomic localization 

and exon-intron structure of LTBR, LTA, LTB, and TNFSF14/LIGHT human genes. Boxes 

represent exons, blue being coding and grey non-coding regions. B) Schematic 

representation of the LTβR, LTα, LTβ, and LIGHT protein primary structure. Numbers 

represent amino acid position. CRD, cysteine-rich domain; ECD, extracellular domain; ICD, 

intracellular domain; RBD, receptor-binding domain; SP, signal peptide; TMD, 

transmembrane domain; TRAF, TRAF protein-binding domains. C) Schematic 

representation of interaction between LTβR and its two main ligands, LTα1β2 heterotrimers 

(left) and LIGHT homotrimers (right). Blue shapes represent LTβR CRDs interacting with the 

groove formed each by 2 ligand subunits. Pink shapes represent TRAF binding domains. 

 

Figure 2. LTβR-mediated signal transduction pathways leading to target gene 

expression and cell death. Activation of LTβR signaling by LIGHT or LTα1β2 can induce 

specific target gene expression and cell death. NF-κB classical pathway induction leads 

sequentially to activation of the IKK complex, IKK-mediated IκBα phosphorylation and 

subsequent degradation, nuclear translocation of RelA/p50 heterodimers, and induction of 

pro-inflammatory cytokine, chemokine, and adhesion molecule expression. On the other 

hand, the alternative NF-κB pathway relies on NIK and IKKα-dependent processing of p100 

into p52, leading to the translocation of RelB/p52 heterodimers to the nucleus where they 

activate the expression of genes mainly involved in lymphoid organogenesis and 

homeostasis. LTβR-induced activation of NIK is also involved in TNFR1-mediated RIP1-

dependent apoptosis. Furthermore, LTβR activation induces cell death by other ill- 

characterized mechanisms involving reactive oxygen species (ROS) production, ASK-1, and 

either caspase-independent or caspase-dependent apoptosis. LTβR was also shown to 

activate JNK leading to AP-1-induced gene expression in addition to cell death. 

 

Figure 3. LTβR anti-oncogenic roles. Activation of LTβR signaling leads to anti-oncogenic 

effects due to three main mechanisms. A) Death of LTβR-expressing cancer cells likely 

induced by immune cells expressing LTα1β2 and/or LIGHT. B) Recruitment of anti-cancer 

LTα1β2- and/or LIGHT-expressing immune cells mediated by LTβR-expressing cancer or 

stromal cell chemokine production [112,113]. C) Increased anti-tumor immune response 

linked to high endothelial venule neogenesis triggered by LTβR stimulation of endothelial 

cells by LTα1β2-expressing DCs [118]. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 36 

Figure 4. LTβR pro-oncogenic roles. Activation of LTβR signaling favors oncogenesis due 

to four main mechanisms. A) Genetic alterations in the LTBR gene leading either to its 

overexpression or the expression of alternative forms, result in ligand-independent LTβR 

activation, which supports cancer cell proliferation and/or survival [65,122–124]. B) LTα1β2- 

and LIGHT-expressing lymphocytes induce pro-angiogenic factors in LTβR-expressing 

cancer cells and induce angiogenesis [140,141]. C) LTα1β2- and LIGHT-expressing 

lymphocytes induce chemokines in LTβR-expressing cancer cells, thus fostering a pro-

oncogenic inflammatory microenvironment [13,43,146,147]. D) LTα1β2-expressing cancer 

cells induce production of chemokines and pro-survival factors in LTβR-expressing tumor 

stromal cells, thus triggering cancer cell migration and favoring tumor progression [148,152–

154]. See Figure 3 for symbol legend.  
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Figure 3 
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Figure 4 
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Table 1. LTβR-induced anti-oncogenic effects in different cellular contexts. 

Cancer type 

Cell types expressing LTβR or its ligands 

Biological context 

 

 

Cellular effects Ref. LTαβ LIGHT LTβR 

Epithelial 
cancers 

 

n.d. n.d.  

 

Human 
carcinoma cell 
lines (HT-29, 

WiDr, MDA-MB-
468, HT-3, 

HeLa, Hep3BT2) 

In vitro cell culture Direct cell growth 
inhibition by apoptosis 

induction 

 

[66, 
69, 70, 
71, 73] 

Colon 
carcinoma 

Tumor-
infiltrating 
immune 

cells 

Tumor-
infiltrating 
immune 

cells 

Human cell lines 
(HT-29, WiDr) 
and primary 

samples 

Immunodeficient mouse 
subcutaneous 

xenografts 

Tumor growth 
inhibition and 

increased 
chemosensitivity 

[69, 
70] 

 
 

Murine cell line 
CT26 

Syngeneic mouse 
allografts 

Tumor necrosis, 
growth inhibition and T 
lymphocyte infiltration  

[70, 
73] 

 

Soft tissue 
sarcoma 

Immune 
cells 

Immune 
cells  

Sarcoma cells Mouse experimental 
pulmonary metastasis 

derived from the CMS4 
cell line 

Tumor growth 
inhibition 

[73, 
109] 

 

Melanoma Infiltrating 
effector T 

cells 

Infiltrating 
effector T 

cells 

Melanoma cells Mouse experimental 
pulmonary metastasis 
derived from the D5 

subclone of B16 cell line 

Secretion of 
chemokines that 

mediate macrophage 
homing, and tumor 

regression 

[112] 

 

Fibrosarcoma 

 

 

n.d. Fibrosarcom
a cells 

(over-
expression) 

Stromal cells in 
the tumor micro-

environment  

Murine subcutaneous 
tumors derived from 

inoculated Ag104 
fibrosarcoma cell line 

Forced expression of 
LIGHT induces 

chemokines and 
adhesion molecules in 

microenvironmental 
cells, which attract 

CD8 T cells leading to 
tumor infiltration and 

regression 

[113] 

 

n.i.  n.d. n.d. Methylcholanthrene-
induced murine 
spontaneous 
fibrosarcoma 

HEV development 
followed by immune 

cell extravasation and 
tumor regression 

[117] 

 

Breast cancer DCs 

(mainly) 

n.i. HEVs Primary human breast 
tumors 

Increased HEV 
density with 

subsequent immune 
cell extravasation and 

tumor regression 

[118] 

 

n.i., expressing cells not identified; n.d., not determined; DCs, dendritic cells; HEVs, high endothelial venules. 
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Table 2. LTβR-induced pro-oncogenic effects in different cellular contexts. 

Cancer type 

Cell types expressing LTβR or its ligands 
 

 

Biological Context Cellular effects Ref. LTαβ LIGHT LTβR 
       

Solid Cancers 

Naso-
pharyngeal 
carcinoma 

- - Carcinoma 
cells 

Nude mouse 
subcutaneous 

xenografts 

LTβR amplification 
leading to 

overexpression and 
tumor growth 

[122] 

 

Pancreatic 
ductal 

carcinoma 

- - Carcinoma 
cells 

Nude mouse 
subcutaneous 

xenografts 

LTβR transforming 
activity 

[123] 

 

Melanoma - - Melanoma 
cells 

In vitro cell culture Autonomous growth of 
melanoma cells 

[65] 

 

Fibrosarcoma T, B 
lymphocytes 

n.i. Fibrosarcoma 
cells 

Syngeneic mouse 
intradermal allografts 

Induction of 
angiogenesis and 

tumor growth 

[140, 
141] 

 

Liver cancer 

 

T and B 
lymphocytes 

(mainly) 

Hepatocytes 
(HBV/HCV-

infected) 

T and B 
lymphocytes  

 

 

 

Hepatocytes  

(mainly) 

FL-N/35 transgenic 
mouse  

Transgenic mouse with 
liver-specific, high-level 

expression of LTαβ  

 

Virus-induced chronic 
hepatitis and HCC 

[13, 
43] 

 

CD8
+
 and 

NKT 
lymphocytes 

CD8
+
 and 

NKT 
lymphocytes 

Hepatocytes Long-term choline-
deficient high-fat diet 

mouse model 

Diet-induced 
nonalcoholic 

steatohepatitis and 
HCC 

[144] 

 

Prostate 
carcinoma 

 

 

B 
lymphocytes  

n.d. Murine cell 
line myc-CaP 

Syngeneic mouse 
subcutaneous allografts 

Emergence of 
castration-resistant 

carcinoma  

[146] 

 

T 
lymphocytes 

- Carcinoma 
cells 

TRAMP model Progression from pre-
neoplasia to 
carcinoma 

[147] 

 

Cervical 
carcinoma 

Cervical 
cancer cells 

(HPV-
infected) 

n.d. Cervical 
cancer cells 

In vitro cell culture Immune escape [44] 

 

Ovarian 
carcinoma 

Ovarian 
cancer cells 

n.d. CAFs In vitro co-culture Promotion of a pro-
carcinogenic niche 

[148] 

       

Hematological cancers 

Multiple 
myeloma 

- - MM cells Human myeloma cell 
lines and primary 

samples 

LTβR amplification 
activating NF-κB and 

myelomagenesis 

[124] 

 

B-cell 
lymphoma 

Malignant B 
cells 

n.d. FRCs Eμ-Myc transgenic 
mouse model  

Promotion of a pro-
carcinogenic niche 

[152] 

B-CLL Malignant B 
cells 

n.d. FDCs Eμ-Tcl1 transgenic 
mouse model 

Promotion of a pro-
carcinogenic niche 

[153] 

T-ALL/LBL Malignant T 
cells 

n.d. Thymic 
stromal cells 

TEL-JAK2 transgenic 
mouse model  

Promotion of a pro-
carcinogenic niche 

[154] 

-, not expressed; n.i., expressing cells not identified; n.d., not determined; B-CLL, B-cell chronic lymphocytic leukemia; CAFs, 
cancer-associated fibroblasts; FDCs, follicular dendritic cells; FRCs, fibroblastic reticular cells; HCC, hepatocellular carcinoma; 
HBV/HCV, hepatitis virus B/C; HPV, human papilloma virus; T-ALL, T-cell acute lymphoblastic leukemia; LBL, lymphoblastic 
lymphoma; TRAMP, transgenic adenocarcinoma of the mouse prostate. 


