
BIOINFORMATICS Vol. 00 no. 00 2011
Pages 1–8

Efficient RNA pairwise structure comparison by SETTER
method.
David Hoksza 1,2,∗ and Daniel Svozil 2,∗
1SIRET Research Group, Department of Software Engineering, FMP, Charles University in Prague,
Czech Republic
2Laboratory of Informatics and Chemistry, Institute of Chemical Technology Prague, Czech
Republic
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Understanding the architecture and function of RNA
molecules requires methods for comparing and analyzing their 3D
structures. While a structural alignment of short RNAs is achievable
in a reasonable amount of time, large structures represent much
bigger challenge. However the growth of the number of large RNAs
deposited in the PDB database calls for the development of fast and
accurate methods for analyzing their structures, as well as for rapid
similarity searches in databases.
Results: In this article a novel algorithm for an RNA structural
comparison SETTER (SEcondary sTructure-based TERtiary Structure
Similarity Algorithm) is introduced. SETTER utilizes a pairwise
comparison method based on 3D similarity of the so-called
generalized secondary structure units (GSSU). For each pair of
structures, SETTER produces a distance score and an indication of
its statistical significance. SETTER can be used both for the structural
alignments of structures that are already known to be homologous, as
well as for 3D structure similarity searches and functional annotation.
The algorithm presented is both accurate and fast and does not
impose limits on the size of aligned RNA structures.
Availability: The SETTER program, as well as all datasets, are freely
available from http://siret.cz/hoksza/projects/setter/.
Contact: hoksza@ksi.mff.cuni.cz, svozild@vscht.cz
Supplementary information: Supplementary Information is available
at Bioinformatics online.

1 INTRODUCTION
In addition to its role in the transfer of biological information, the
evidence shows that RNA molecules also play key roles in a variety
of cellular processes (Mattick and Makunin, 2006). RNA shows,
among others, an enzymatic activity in ribozymes (Scott, 2007),
it takes part in the transcription regulation (Bartel, 2004) and it is
involved in the chromatin modeling (Kelley and Kuroda, 2000).

RNA 3D structure is hierarchical (Tinoco, 1999), and can be
divided into primary, secondary, tertiary and quaternary levels.
RNA secondary structure motifs (Hendrix et al., 2005) can be
defined as double helices interconnected by various types of loop
structures and are stable independently of their 3D folds. Tertiary
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interactions (Holbrook, 2008) stabilize the overall arrangement
and packing of double helices in large RNA structures. The first
resolved RNA crystal structure was that for the yeast phenylalanine
tRNA (Kim et al., 1974). This achievement was followed by
solving structures of other naturally occurring tRNAs (Arnez
and Steitz, 1994), as well as of a variety of oligomeric RNA
model structures (Holbrook et al., 1991). With the improvements
in molecular biological methods (Kim et al., 1995) and in
crystallographic techniques (Garman, 2003) the size of solved RNA
structures has later increased dramatically. Large RNAs1 allowed
for the first detailed studies of RNA structure elements not found
in smaller molecules, such as continuous interhelical base stacking,
RNA domain structure, and helical packing.

The function of an RNA molecule is largely determined by the
3D structure that is typically more evolutionarily conserved than its
sequence (Chursov et al., 2012). Thus, methods for the comparative
RNA function annotation based on structural similarity usually
yield much better results than sequence based approaches. Though
detecting optimal structural similarity between two biomolecules
in 3 dimensions has been shown to be NP-hard (Kolodny and
Linial, 2004), the development of automatic tools capable of an
efficient and accurate RNA structural alignment has become an
important part of structural bioinformatics. The study of RNA
tertiary and quaternary structures must be facilitated by the software
that is able to work both with small and large RNA molecules.
To be computationally tractable, currently available software tools
for comparing two RNA 3D structures, such as ARTS (Dror
et al., 2005, 2006), DIAL (Ferrè et al., 2007), iPARTS (Wang
et al., 2010), SARA (Capriotti and Marti-Renom, 2008, 2009),
SARSA (Chang et al., 2008) or R3D Align (Rahrig et al., 2010)
are therefore based on heuristic approaches. ARTS (Dror et al.,
2005, 2006) detects a maximum common substructure between two
RNA 3D structures using backbone phosphate atoms. Based on
3D similarity between 1333 solved RNA structures assessed by the
ARTS algorithm a database of hierarchically classified structures
DARTS was subsequently developed (Abraham et al., 2008). ARTS
is not practical for comparison of large RNA molecules due to its
cubic time complexity. To overcome this problem the DIAL server

1 An arbitrary limit of 100 residues is used to define large RNAs (Holbrook,
2008).
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using a dynamic programming algorithm and running in a quadratic
time was developed (Ferrè et al., 2007). The DIAL alignment
algorithm is based on torsion and/or pseudotorsion similarity,
sequence similarity, and base pairing similarity, and it provides
access to global, local and semi-global structural alignments. An
improvement in the speed over the DIAL algorithm was later
brought by PARTS (Chang et al., 2008), an algorithm based on
the so-called structural alphabet (SA). Structural alphabet is an
emerging concept in the structural biology of proteins. A protein
structure is represented as a limited series of ”letters” each assigned
to a well-characterized conformation (de Brevern et al., 2000).
PARTS uses the vector quantization approach to derive an RNA
structural alphabet of 23 letters representing the most common
backbone conformations. The RNA structures are represented
as 1D sequences of SA letters, and these are aligned utilizing
classical methods for pairwise and multiple sequence alignments.
A new set of SA letters was derived for the improved version of
PARTS called iPARTS (Wang et al., 2010). iPARTS outperforms
its previous version PARTS, as well as (in some aspects) another
highly efficient algorithm SARA (Capriotti and Marti-Renom, 2008,
2009). In SARA, distances among selected atoms are represented
as unit vectors existing on unit spheres (Chew et al., 1999). All-
to-all unit-vector RMSD distances of consecutive unit spheres are
computed and used as scoring matrix for the dynamic programming
based global alignment. Highly accurate alignments of homologous
molecules are produced by the R3D Align approach (Rahrig
et al., 2010) which is based on local nucleotide by nucleotide
superpositions that effectively accommodate the flexibility of RNA
molecules. Local alignments are then merged to form a global
alignment by employing a maximum clique algorithm on a specially
defined ’local alignment’ graph.

In the presented paper a novel pairwise RNA comparison
method SETTER (SEcondary sTructure-based TERtiary Structure
Similarity Algorithm) is proposed. The method divides the
whole RNA structure into non-overlapping generalized secondary
structure units (GSSUs). The structural alignment is then obtained
by utilizing a distance measure based on RMSD transformations
between all possible pairs of GSSUs. The algorithm scales as
O(n2) with the size of GSSU and as O(n) with the number
of GSSUs in the structure. The segmentation to GSSUs offers
the advantage of high speeds even for the largest structures. The
algorithm can be used both for the 3D structural alignments (Fig.
1-12 in the Supplementary Information show several examples
of pairwise structural alignments), as well as for 3D structural
similarity searches and for functional annotation. High speed of
the algorithm does not compromise its accuracy as is demonstrated
by benchmarking of both structural alignment and functional
annotation against other published methods.

2 METHODS

2.1 GSSU Identification
Three important elements are recognized in the GSSU: a loop, a neck, and a
stem (see Fig. 1). A formal description of the GSSU is given by the following
definition.

DEFINITION 1. Let R be an RNA structure with a nucleotide sequence
{nti}ni=1 and let WC ⊆ R denote its subset participating in a Watson-
Crick base pair. By a generalized secondary structure unit (GSSU) G we
understand a pair of substrings of R, {nti}i2i=i1 and {ntj}j2j=j1 (i1 ≤

i2 < j1 ≤ j2, i2 = j1 − 1) of maximum lengths such that each
nucleotide ntx ∈ G:

• i1 ≤ x ≤ i2 : ntx /∈ WC or ntx is paired with nty where j1 ≤ y ≤
j2

• j1 ≤ x ≤ j2 : ntx /∈ WC or ntx is paired with nty where i1 ≤ y ≤
i2

In case of ambiguity a maximum length is assigned to the substring
occurring earlier in the sequence. Let imax and jmin be the highest/lowest
indexes of the Watson-Crick paired bases in G. We define a loop as
L = {nti}jmin−1

i=imax+1 ⊂ G, a stem as G \ L and a neck as the pair
{ntimax , ntjmin}.

Nucleotides are represented by their P atoms. Watson-Crick (WC)
hydrogen bonds are identified using 3DNA (Lu and Olson, 2008). Non-
WC pairs are not used because they often mediate RNA tertiary contacts
the presence of which does not allow an unambiguous distinction between
GSSUs.

To identify all GSSUs the process iteratively applies two following steps.
The RNA structure is processed in a sequence order, and in the first step
nucleotides are stored on a stack. This process stops by encountering a
nucleotide nti WC bonded with a nucleotide ntj already in the stack.
Then, in the second step, a new GSSU G starts to be formed from the pair
{nti, ntj} (i.e., the neck) and from all nucleotides found between nti and
ntj (i.e., the loop). These residues are then removed from the stack. Finally,
the stem is formed from all residues encountered either before the residue
WC bonded to the residue not stored on the stack or before the residue WC
bonded with the residue that was pushed on the stack before the previous
GSSU was generated. By repeating these two steps, the algorithm iteratively
searches for GSSUs, and it stops when the end of the sequence is reached.
All residues remaining on the stack (if any) then form the last GSSU. Note
that even a structure without a single Watson-Crick pair has a GSSU which
is identical with the structure itself. A detailed description of the process of
generating GSSUs from the Fig. 1, as well as the pseudocode algorithm are
given in sections 2 and 3 in the Supplementary Information.
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Fig. 1. Three GSSUs extracted from an RNA structure. The sequence starts
at the 5’ end. The borders between individual GSSUs are indicated by dashed
lines and the numbers show the order of the GSSU generation.

2.2 Comparing Two GSSUs
GSSU pairwise comparison lies in the heart of the method. Each GSSU
is represented by an ordered set of 3D coordinates of P atoms annotated
with bonding and nucleotide/atom type information. A common way to
assess similarity between two sets of points is to define a pairing between
them. The sets are then superposed by finding translation and rotation
of one of them over the other minimizing the mutual distances of the
respective paired points. Usually, the root mean square deviation (RMSD)
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Fig. 2. The alignment of the GSSU from the tRNA domain of the transfer-
messenger RNA (PDB code 1P6V) with the GSSU from the glutamine
tRNA (PDB code 1EXD). The final structural alignment is defined by three
nucleotide pairs forming a triplet (the lines 1, 2, and 3). To find the optimal
superposition for the given neck pairs (lines 1 and 2), the position of the
middle pair is varied (line 3).

is used as the distance measure, and two structures can be superposed
given a pairing (alignment) in polynomial time (Kabsch, 1976). However,
finding the optimal alignment is an NP-hard problem (Kolodny and Linial,
2004). The optimal solution can be found by exhaustive search, which is
computationally not feasible. This problem can be resolved by identifying
suboptimal alignments that will likely participate in the optimal alignment.
This is the principle idea behind SETTER’s structure comparison process.
SETTER generates a set of short alignments which quality is evaluated
by the Kabsch (Kabsch, 1976) RMSD algorithm. Working with relatively
short alignments allows to superpose even the largest RNA structures in a
reasonable amount of time.

To superpose two GSSUs means to match their loops which implies
matching their necks (see Fig. 1). To define the superposition in 3D space
unambiguously at least three pairs of points are needed. A set of these points
is called a triplet, and the alignment is formed by matching triplets between
two given structures. SETTER aligns necks first, and then the final pair in
the triplet is identified by aligning each possible pair of loops’ nucleotides.
For example, if two GSSUs with loops consisting of n and m nucleotides
are to be aligned, n×m alignments are generated (see Fig. 2).

For each alignment, the rotation matrix and the translation vector defining
optimal superposition of two triplets is calculated. Though these are optimal
for the given triplet pair only, they are used to superpose whole GSSUs. This
possible inaccuracy is the trade-off for an efficiency.

After the superposition, for each nucleotide in GSSU A its nearest
neighbor in GSSU B is found, and their distance is added to the distance of
two GSSUs referred to as S-distance. Finally, the S-distance is normalized.
The whole process is formalized by Eq. 1.

NNζ(x,G) =
{

min1≤i≤|G|{d(x,Gi)} × ζ if t(x) = t(Gimin )
min1≤i≤|G|{d(x,Gi)} otherwise

γ(GA,GB) =
1

2

( |GA|∑
i=1

{
1 if NN1(GAi,GB) ≤ ε
0 otherwise

+

|GB|∑
i=1

{
1 if NN1(GA,GBi) ≤ ε
0 otherwise

)

δ(GA,GB) = min
t∈T

{1

2

( |GA|∑
i=1

NNζ(GAi, τ(GB, t))

+

|GB|∑
i=1

NNζ(GA, τ(GBi, t))
)}

S(GA,GB) =
δ(GA,GB)

min {|GA|,|GB|} × (1 +
||GA|−|GB||

min {|GA|,|GB|} )

γ(GA, τ(GB, topt))
(1)

where GA and GB represent two GSSUs to be compared, Gi stands for
the i-th nucleotide in the sequence of G, and |G| for its length. NN(x,G)
is the Euclidean distance from the nucleotide x to its nearest neighbor in G.
If x and its nearest neighbor share the same nucleotide type (the function
t(x) in the formula) the distance is modified by a factor ζ. It takes values
from the interval 0 < ζ ≤ 1, the lower its value the more matching
identical nucleotides are rewarded. δ computes the raw distance - T is
the set of transpositions resulting from the candidate triplet alignments and
τ(G, t) transposes GSSU G using the transposition t. The S-distance is then
normalized by the function γ counting a number of nearest neighbors within
the distance ε after the optimal transposition topt.

Since hydrogen bonds are identified using simple geometric criteria, their
detection may sometimes be incorrect. This leads to the shift of the neck
position within the GSSU. SETTER simulates the neck shift by aligning
also the residues next to (under) the necks. These tweakings are necessary
for accurate GSSU comparison, however they slightly increase the running
time of SETTER.

Though in most cases the GSSU consists of a stem and a loop, it is not
a strict rule. Two particular situations can occur — the GSSU has no loop
or RNA does not have a single WC hydrogen bond at all. In the case of the
GSSU without the loop the third nucleotide of the triplet is selected from the
stem such that the S-distance is minimized. When dealing with the GSSU
with no WC hydrogen bond, several triplets covering the whole structure are
formed and used as a basis for the alignment. Such a simplified comparison
may not lead to the best possible result, and SETTER was not developed for
these cases. However, the probability of encountering such defective GSSUs
in large RNA structures is very small (indeed, no such GSSU is found either
in 16S rRNA or in 23S rRNA).

2.3 Comparing More Than Two GSSUs
If structures contain more than one GSSU the following three-step multiple
GSSU comparison process is implemented (see Fig. 3):

1. All-to-all pairwise GSSU comparisons are performed.

2. Few best GSSU pairs (with low S-distances) are used as seeds for the
alignment of the rest of the GSSUs.

3. The structures’ GSSUs are aligned, their S-distances are aggregated
into the S-distance, and the alignment with the lowest S-distance is
identified.

If comparing structuresRA andRB , each GSSU fromRA is compared
to each GSSU from RB , but only top κ pairs with the minimum distance
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is processed further. For each of the κ selected pairs {GAi ,GBj } the
value of S is set to S(GAi ,GBj ). In the second step, S-distances of the
neighboring GSSU pairs are iteratively added to the S-distance. For the
GSSU pair {GAi+1,GBj+1} the value of S(GAi+1,GBj+1) and the penalty for
the rotation needed to transform the structures from the state corresponding
to S(GAi ,GBj ) to the state corresponding to S(GAi+1,GBj+1) are added to
S. This process goes from {i + 1, j + 1} until either i + 1 or j + 1
reaches the number of GSSUs inRA orRB . Similarly, the other ends of the
structures need to be aligned and so the process is repeated for {i−1, j−1}.
However, the case when GSSUs in the RNA structure are oriented in the
opposite direction must also be considered, and another κ alignments must
be performed aligning i − 1 residues with j + 1 residues (not shown in
Fig. 3).

The rotation between two GSSUs imposes a penalty to the S. This
penalty is calculated as a distance between the rotation matrices defining
two consequent GSSU superpositions (see Fig. 3c). However, the penalty
for translation is not included explicitly. The translation is limited only to the
pair of GSSUs just being aligned, and such a translation is already implicitly
present in the S-distance (see section 2.2 and Fig. 2).

Currently, there is no provision for a situation in which one structure
is missing a GSSU that is present in the other structure. This potential
limitation may have an undesirable effect on the alignment, however, it can
not be improved without increase in computational demands.

2.4 Early Termination
The nearest neighbor search, which is a part of the S-distance computation,
hasO(n2) time complexity with respect to the GSSU’s length n. In addition,
the search is performed for each of the candidate alignments decreasing the
efficiency of SETTER. To increase the algorithm’s speed a simple early
termination condition is thus implemented. Alignments that are not likely
to be the part of the optimal superposition are identified, and for these the
nearest neighbor search is skipped. Such alignments will very likely have
the triplet S-distance higher than the lowest GSSU distance obtained up
to that time. Specifically, triplet-based S-distance will probably be lower
than ”real” S-distance. If the triplet T A ⊂ GA is aligned with the triplet
T B ⊂ GB with S(GA,GB) = χ being the best result so far, the comparison
computation can be terminated if S(T A, T B) × 1/λ > χ. Since the early
termination is a heuristic (S(T A, T B) < S(GA,GB) does not have to
be valid), the early termination condition is strengthened by introducing
the parameter λ ≥ 1. By varying the λ parameter, the trade-off between
accuracy and speed can be set. The higher the λ is, the less often early
termination occurs, and the more accurate and slower the algorithm is.
The effect of the λ parameter on the quality of the functional annotation
is demonstrated in section 4 of the Supplementary Information.

For each alignment SETTER outputs the list of residues forming
individual GSSUs, S-distance characterizing the overall quality of the
alignment, p-value quantifying the statistical significance of the alignment,
list of aligned GSSUs, rotation and translation matrices, 3D coordinates of
each residue after the superposition, triplet pair of the best scoring GSSU
pair, and list of residues with their respective nearest neighbors and the
corresponding distances.

2.5 Structural Alignment Accuracy
The assessment of the quality of structural alignments is not an easy task
because it is not possible to define what a perfect 3D-to-3D alignment
is (Brown et al., 2009). The commonly used measures such as e.g. the root-
mean-square deviation (RMSD) require the knowledge of which residues
are aligned against which ones. However, because SETTER is not based on
a sequence alignment algorithm such information is missing. Therefore, the
list of aligned residues was generated utilizing a simple geometric approach.
Two residuesA andB are considered to be aligned ifA is the closest residue
toB and, at the same time,B is the closest residue toA. Such a definition is,
in our opinion, suitable for an evaluation of the quality of the superposition
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Fig. 3. A multiple GSSU structural comparison works in four steps. The
figure represents a situation where only the optimal GSSU pair is considered
(κ = 1), and the direction of the alignment is given by the order of
GSSUs. a) A schematic representation of two RNA structures RA and
RB with 5 and 4 GSSUs, respectively. The most similar GSSUs pair
is {GA3 ,GB2 } (shown in rectangle). Structures RA and RB are aligned
based on the rotation and translation of this pair. The superposition needed
to optimally align GA4 and GB3 was obtained during the all-to-all GSSU
pairwise comparison stage, and the rotation angle needed to get from the
state {GA3 ,GB2 } to {GA4 , GB3 } (first down arrow in the figure) is thus known.
The current state is changed to {GA4 , GB3 }, and the process is repeated for the
pair {GA5 , GB4 } (second down arrow in the figure). Similarly, the algorithm
must also process in the opposite direction from the position of GA2 and GB1
(up arrow in the figure). b) The rotation angles ξi from the previous step are
used in the penalty function π() which represents a weight function for the
GSSU distances. To get the final S-distance, the sum of weighted GSSU
S-distances is normalized by a the ratio of non-aligned GSSUs over the
maximum number of non-aligned GSSUs. The parameter β was empirically
set to 6.

and can be used for an approximate comparison with others alignment-based
methods.

In the present work the quality of the structural alignments was assessed
by utilizing the following measures: the RMSD, the percentage of structural
identity (PSI), the percentage of sequence identity (PID) (Capriotti and
Marti-Renom, 2008, 2009) and the number of nucleotides aligned and
the number of exact base matches (Rahrig et al., 2010). RMSD captures
the general 3D shape of RNA, but it can be misleading as the errors
are spread over the whole molecule. PSI is defined as a percentage of
superimposed residues within 4.0 Å with respect to the length of the
shorter of the two structures. PID is the percentage of aligned nucleotides
of the same type with respect to the length of the shorter of the two
structures. Number of nucleotides aligned and number of exact base matches
give similar information as PSI and PID. We note that these measures
do not account for the specificity of RNA base-pairing and base-stacking
interactions. Therefore, some new metrics particularly suitable to RNA
structure comparison have been developed (Parisien et al., 2009). However,
these are not utilized in the present study as they would not allow to compare
SETTER results with other approaches.
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2.6 Statistical Significance of The Structural Alignment
The quality of the structural alignment can be assessed by means of statistical
hypothesis testing. The key idea is to create a set of randomly generated
structures, to align them and to fit the distribution of their S-distances. For
the given S-distance its p-value can then be calculated. The alignment is
a good one if its S-distance is good compared to the distribution of S-
distances. This is reflected by its low p-value; the smaller the p-value,
the more statistically significant the S-distance is. To show how well
data follow the fitted distribution a visual inspection of quantile-quantile
plots (QQ-plots) can be used, or the fit can be tested by two-sample
Kolmogorov-Smirnov test.
S-distance follows the log-normal distribution (see section 5 in the

Supplementary Information) which probability density function ρ(x) is
given as

ρ(x) =
1

x
√
2πσ2

e
− ln x−µ

2σ2

where parameters µ and σ are the mean and standard deviation, respectively,
of the variable’s natural logarithm that is, by definition, normally distributed.
On a non-logarithmized scale µ is called a location parameter and σ a
scale parameter. These parameters must be determined, and once they are
known, they can be used to derive the statistical significance of the particular
alignment given as its p-value. p-value corresponds to the probabilityP (x ≤
X) that the variable X takes a value lower or equal to x

P (X ≤ x) =
1

2
+

1

2
erf
(
ln(X)− µ
√
2σ2

)
where erf(x) is the error function defined as

erf(x) =
2

π
+

∫ x

0
e−t

2
dt

For the determination of µ and σ parameters a set of reasonably unrelated
structures was prepared. Such a set should cover the whole range of
alignments starting from the exceptionally good ones going up to the very
bad ones. The unrelatedness of the structures was based on their sequence
similarity. The used threshold of 80% sequence similarity guarantees the
uniform coverage of the alignments in terms of their quality. Because the
µ and σ parameters depend on the length of the shorter structure N in the
alignment they must be determined for different lengths separately. For each
length a dataset containing 50,000 structure pairs was generated by randomly
cutting the regions of the given length from structures longer than N . The
data sets of lengths 5, 10, 15, 20, . . . 300 residues were prepared. The S-
distance was determined for each alignment in the given data set, and the
parameters µ and σ of the log-normal distribution were found by a maximum
likelihood fitting. All statistical calculations were performed using the R
system version 2.13.1 (R Development Core Team, 2011) with the package
MASS (version 7.3-14).

2.7 Functional Annotation Accuracy
The quality of the functional annotation was assessed by SETTER’s ability
to correctly assign the SCOR functional classification to the query RNA
structure utilizing three datasets from the SCOR database (Tamura et al.,
2004). The FSCOR dataset contains all RNA chains with more than three
nucleotides with a unique functional classification, the R-FSCOR dataset is
a structurally dissimilar subset of the FSCOR, and the T-FSCOR dataset
contains structures from the FSCOR set not present in the R-FSCOR
set (Capriotti and Marti-Renom, 2008). Two RNA structures can be either
functionally identical (referred to as the exact classification, they have
the same deepest SCOR classification) or functionally similar (referred to
as the similar classification, they do not agree at the deepest level but
share classification at the parent level). Particularly, two experiments were
performed — a leave-one-out test on the FSCOR dataset and a test assigning
functions to structures from the T-FSCOR with the R-FSCOR serving as
the database set. The accuracy of a functional annotation was assessed

by utilizing two different measures: a classification accuracy (ACC), and
an area under the ROC curve (AUC). ACC is calculated as a percentage
of correctly classified structures. To obtain the ROC curve the alignments
of all pairs of RNA structures were sorted by their p-values. A p-value
threshold is the varied between minimum and maximum of the sorted
p-values. For the fixed threshold, all pairs of aligned structures which p-
values are above the threshold are assumed positive. Moreover, the pairs are
counted as true positives (TP ) if they belong to the same family (i.e. they
are structurally similar) and false positives (FP ) otherwise (i.e. they are
structurally dissimilar). If P (positives) is the number of structurally similar
pairs in the whole result set and N (negatives) is the number of structurally
dissimilar pairs, then FP

N
is called a false positive ratio (FPR) and TP

P
a true positive ratio (TPR). The point on the ROC curve corresponding to
the fixed threshold is produced by plotting its TPR (y-axis) against FPR
(x-axis). The area under the ROC curve (AUC), a threshold independent
measure, is considered a robust indicator of a classifier quality (Fawcett,
2006). An AUC of 1.0 indicates a perfect classifier and an AUC of 0.5
corresponds to a random classification. High AUC means that correct
classifications are present mostly at the top of aligned structures sorted by
their p-values. We also notice that it is difficult to obtain high values of
both ACC and AUC simultaneously (see section 6 in the Supplementary
Information), and both measures should thus be reported.

3 RESULTS AND DISCUSSION
3.1 Assessment of The Structural Alignment Quality
SETTER structural alignments were compared with SARA by
calculating PSI values for the all-to-all comparisons using the
FSCOR dataset. The results are summarized in the Fig. 4 showing
that SETTER yields less alignments with very low PSI (up to 20%),
and SARA returns slightly more alignments with PSI > 90%. In
terms of remaining PSI levels, both methods perform similarly.

0.4%
1.2%

4.5%

9.3%

14.3%

14.7%

16.9%

15.6%
13.6%

9.5%

SETTER

0.9%
1.7%

7.8%

8.9%

14%

14%

14.3%

14.6%
13.5%

10.3%

SARA

0 <= PSI < 0.1

0.1 <= PSI < 0.2

0.2 <= PSI < 0.3

0.3 <= PSI < 0.4

0.4 <= PSI < 0.5

0.5 <= PSI < 0.6

0.6 <= PSI < 0.7

0.7 <= PSI < 0.8

0.8 <= PSI < 0.9

0.9 <= PSI < 1

Fig. 4. PSI (percentage of structural identity) values produced by SARA and
SETTER approaches for the all-to-all alignments using the FSCOR dataset.

In addition, SETTER was compared with R3D Align, ARTS,
SARA and DIAL by calculating various measures reflecting the
quality of the alignment of two 16S rRNA structures and of
the alignment of the sarcin/ricin domain from 28S rRNA with
the central part of the 5S rRNA. The results summarized in
section 7 in the Supplementary Information also demonstrate that
SETTER produces alignments of the quality comparable with
other automated approaches considering its approximate nature in
obtaining the list of aligned residues (see section 2.5). The ability of
SETTER to produce good structural alignments is demonstrated on
the visualizations of the superpositions of several 23S rRNA, 16S
rRNA, 5S rRNA, tRNA and other RNA structures (see section 1 in
the Supplementary Information).
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Fig. 5. Length dependence of log-normal parameters.

3.2 Assessment of The Functional Annotation Quality
3.2.1 Statistical Parameters Evaluation QQ-plots show that data
follow the fitted log-normal distribution very closely except for the
region of high S-distances (see section 5 in the Supplementary
Information). However, poor fitting in this region will not seriously
influence the results of database searching, as we are generally not
interested in highly dissimilar structures. The quality of the fit was
further confirmed by Kolmogorov-Smirnov test that provided p-
values close to zero for all sequence lengths. The location and scale
parameters (µ and σ) of the log-normal distribution depend on the
length N of the shorter structure in the alignment (Capriotti and
Marti-Renom, 2008). The location parameter µ can be fitted by the
following curve (see Fig. 5):

µ = a×
√
N +

b

N
(2)

where a = 0.1729 and b = 14.3753. Similarly, the scale
parameter was fitted (see Fig. 5) by

σ = a× 1√
N

+ b× ln(N)2 (3)

where a = 7.3325 and b = 0.0136. The relations (2) and
(3) provide a simple way to calculate µ and σ parameters for any
sequence length N .

3.2.2 Effectiveness Comparison The capabilities of SETTER for
a functional annotation of new RNA structures were compared with
SARA and iPARTS approaches using the published AUC (SARA,
iPARTS) and ACC (SARA only) values on the FSCOR and T/R-
FSCOR datasets. Following settings were used in SETTER: ζ =
0.2, β = 2, ε = 6 Å κ = 3, and λ = 1 (see sections 2.2, 2.3 and
2.4 for details).

The results are summarized in Table 1. The percentage of
classified structures for the given p-value threshold is called a
coverage, and two sets of results with different coverage are

presented for SETTER. STRpV=1 corresponds to the classification
where the structures are sorted according to their p-values but
no threshold is applied (coverage equals to 100%). At this
coverage SETTER is compared with iPARTS which does not
employ any filtering. Results in Table 1 show, that SETTER
outperforms iPARTS in AUC for exact classification both in FSCOR
and T/R-FSCOR datasets, and performs comparably for similar
classification.

SARA was evaluated (Capriotti and Marti-Renom, 2009) at the
coverage of 58.7%. To achieve this coverage in SETTER the p-
value threshold of 0.013 was used. At this coverage SETTER
performs better than SARA in terms of AUC both for the FSCOR
and T/R-FSCOR datasets (see Table 1). In addition, SETTER can
also be compared with SARA in terms of ACC. SETTER’s ACC is
comparable to that of SARA in the similar classification both for the
FSCOR and T/R-FSCOR datasets, and in the exact classification for
the FSCOR dataset. However, it is much higher (by 13.7%) for the
exact classification for the T/R-FSCOR dataset.

Thus, it can be concluded that SETTER performs better than
iPARTS and SARA in terms of AUC and is comparable with SARA
in terms of ACC.

Table 1. ACC and AUC comparison of SETTER, iPARTS and SARA on
the FSCOR and T/R-FSCOR datasets. The values are given in % and are
reported for exact/similar classification. iPARTS should be compared to
SETTER with the p-value threshold of 1.0 (i.e. no filtering applied), and
SARA should be compared to SETTER with the p-value threshold of 0.013.
For iPARTS, ACC was not reported and necessary tests can not be performed
using the iPARTS web interface. ROC curves from which AUC value were
calculated are shown in section 8 of the Supplementary Information.

FSCOR T/R-FSCOR
AUC ACC AUC ACC

iPARTS 72/92 ? 77/90 ?
STRpV=1.0 82/91 61.8/72.8 87/89 67.4/71.8
SARA 61/83 81.4/95.3 58/85 78.0/94.5
STRpV=0.013 71/87 80.5/95.1 83/91 91.7/95.0

3.3 Speed Comparison
SETTER’s nearest neighbor identification procedure scales as
O(n2) with the size of the GSSU (not with the size of structure!),
and employment of the heuristic speed optimization with λ = 1
further reduces the number of O(n2) computations. The speed of
SETTER was compared to that of iPARTS and SARA measuring
the runtimes of all-to-all comparisons on four datasets containing
RNA structures of various sizes (Table 2). The runtime of SETTER
was measured on Linux machine with 4 Intel(R) Xeon(R) CPUs
E7540, 2GHz (the algorithm is not parallelized thus only one core
per comparison was utilized) and 132 GB of RAM (however, the
average memory size needed to store the representations of all RNA
structures from the FSCOR set was less than 3.3 MB) running Red
Hat Linux. The comparison was based on measuring the runtimes
utilizing iPARTS and SARA server versions which limit the size of
aligned structures (1,900 residues for iPARTS and 1,000 residues
for SARA) from the performance reasons. Such a comparison can
thus be only qualitative, however, the variations between SETTER
and SARA/iPARTS are substantial (see Table 2) and can not be
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attributed to a different hardware setup only. SETTER clearly
outperforms both SARA and iPARTS methods and is much better
suited for the alignment of even the largest RNA structures.

Table 2. Runtime comparison of iPARTS, SARA and SETTER for
datasets of RNA structures of various size. The D1 set contains tRNA
structures 1EHZ:A, 1H3E:B, 1I9V:A, 2TRA:A and 1YFG:A (average length
76 nucleotides), D2 set contains ribozyme P4-P6 domain 1GID:A, 1HR2:A
and 1L8V:A (average length 157 nucleotides), D3 contains domain V of 23S
rRNA 1FFZ:A and 1FG0:A (average length 496 nucleotides), D4 contains
16S rRNA 1J5E:A and 2AVY:A (average length 1522 nucleotides), and D5
contains the currently largest RNA structures in PDB – yeast 25S rRNA
3O58:1 and 3O5H:1 (average length 3396 nucleotides). The runtimes of
SARA and iPARTS were obtained from their server versions. A comparison
with SARA is difficult, because for three of five data sets the server times
out and returns no results.

data set iPARTS SARA SETTER
D1 1.1 s 1.7 s 0.3 s
D2 2.6 s 9.2 s 2.4 s
D3 17.0 s ? 3.6 s
D4 2.8 min ? 21.3 s
D5 ? ? 79.8 s

4 CONCLUSIONS
• The SETTER method divides the RNA structure into non-

overlapping structural elements called generalized secondary
structure units (GSSUs). The structural alignment is then based
on the pairwise comparison utilizing 3D similarity of the
GSSUs.

• SETTER was not developed for aligning RNA molecules not
containing any secondary structure. However, such cases are
very rare, no such a structure is present either in the FSCOR
dataset or in large 16S or 23S rRNAs.

• The SETTER algorithm scales as O(n2) with the size of
GSSU, and as O(n) with the number of GSSUs in the
structure. This scaling gives SETTER its unprecedented speed
as the average size of GSSU remains constant irrespective
of the size of the structure. However, it has been noted that
due to the complexity of RNA 3D alignment the quadratic
time algorithms (or better) can not be expected to be highly
accurate (Ferrè et al., 2007). Therefore, the main utility
of the SETTER can be in identifying potential alignment
regions which can further be processed by more accurate but
computationally intensive methods such as R3D Align (Rahrig
et al., 2010).

• SETTER can be used both for pairwise structural alignment, as
well as for functional annotation of a new RNA structure.

• The quality of the structural alignment was assessed by
the comparison with R3D Align, ARTS, SARA and DIAL
approaches. The results demonstrate that SETTER produces
structural alignments of comparable quality.

• The functional assignment was benchmarked against iPARTS
and SARA utilizing the classification accuracy (ACC) and

the area under the ROC curve (AUC) measures for three
datasets from the SCOR database. SETTER performs better
than iPARTS and SARA in terms of AUC and is comparable
with SARA in terms of ACC.

• SETTER method is capable of aligning even the largest RNA
structures deposited in the PDB database in a reasonable
amount of time (e.g., two structures of the 25S rRNA each
having 3396 nucleotides and represented by 89 GSSUs are
aligned in 1 minute and 20 seconds), and represents thus an
important addition to the portfolio of automatic RNA structural
analysis tools.
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