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Abstract— Advances in Cloud Computing attracted scientists 
to deploy their HPC applications to the cloud to benefit from the 
flexibility of the platform such as scalability and on-demand 
services. Nevertheless, HPC applications can face serious 
challenges on the cloud that could undermine the gained benefit, 
if care is not taken. This paper starts first comparing the 
performance of several HPC benchmarks on a commodity cluster 
and Amazon public cloud to illustrate the confronted challenges. 
To mitigate the problem, we have introduced a novel approach 
called ASETS, “A SDN Empowered Task Scheduling System”, to 
schedule data-intensive High Performance Computing (HPC) 
tasks on a Cloud environment. In this paper, we focus on the 
implementation and performance analysis of ASETS and its first 
algorithm called SETSA, (SDN Empowered Task Scheduling 
Algorithm). ASETS uses the “bandwidth awareness” capability 
of SDN to better utilize network bandwidths when assigning data 
intensive tasks to virtual machines (workers) in the cloud. This 
novel approach aims to improve the performance of HPC 
applications on the cloud in order the platform could provide 
efficient HPC-as-a-Service (HPCaaS). The paper briefly 
describes the ASETS architecture and its SETSA algorithm, and 
then focuses on the details of the implementation and 
performance analysis of ASETS and SETSA. Preliminary results 
indicate that ASETS provides substantial performance 
improvement for HPCaaS as the degree of multi-tenancy in the 
cloud increases. This result is significant since it indicate both the 
users and the cloud service providers can benefit from ASETS. 

Keywords— Cloud Computing, Task Scheduling, HPCaaS, 
Software-Defined Networking 

I. INTRODUCTION  
Cloud Computing provides a set of unique benefits such as 

resource pooling, cost efficiency, availability, and broad 
network access. These features have attracted scientists and 
scholars worldwide, including the community of High 
Performance Computing (HPC) developers and users. 
Nevertheless, moving the HPC applications to the cloud can 
face several key challenges, primarily, the virtualization 
overhead, multi-tenancy and network latency. The solution 
tends to be the emerging trend establishing a new cloud-based 
service known as HPC-as-a-Service (HPCaaS). This paper 
describes the details of the challenges of using cloud resources 
for HPC applications after discussing about the initial 
motivations. To illustrate performance fluctuations we compare 
cases where HPC applications are executed on Amazon public 
cloud with the equivalent configuration on a commodity HPC 
cluster. Our studies indicate that the multi-tenant environment 

of the cloud causes instable link bandwidth and high latency. 
This volatility can further result in a low performance for 
network sensitive HPC applications as the available network 
bandwidth becomes not predictable in the cloud. We argue that 
the instability of the cloud network bandwidth comprise a 
primary challenge of the HPC applications on the cloud. To 
remedy such instability, we suggest using programmable 
networking. 

Software-Defined Networking (SDN) [1] as an emerging 
technology in networking appears to have sufficient potentials 
to address some of the challenges of HPC applications in the 
cloud. The idea of SDN is to decouple the network intelligence 
from the data plane into an independent layer called controller. 
Therefore, the control layer will have an overview across the 
network components and their dynamic configurations during 
run time. This information will provide substantial benefits for 
developers to build network-aware applications.  

In a recent paper [2], we proposed a novel scheme 
(ASETS) on task scheduling for data intensive HPC tasks that 
utilize the capability of SDN to smooth the cloud networking 
bandwidth. A task scheduling algorithm (SETSA: SDN 
Empowered Task Scheduling Algorithm) is also proposed to 
run on top of ASETS. The proposed architecture actively 
monitors the network configurations during the runtime and 
redirect data related to the tasks over the links with highest 
instant available bandwidth capacity. This feature is extremely 
important in a multi-tenant cloud environment where the 
bandwidths of the links are rapidly changing. This paper argues 
that as the number of tenants in the cloud increases, SETSA 
would be more capable to mitigate the networking problem of 
HPCaaS platform. Furthermore, this paper focuses on the 
implementation and performance analysis of ASETS and 
SETSA. We provide preliminary results of the system on 
Amazon Cloud. While the obtained results are significant, we 
trust we need more in-depth performance analysis of the 
innovative system.      

The rest of the paper is as follows: Section II describes the 
related work and recent achievements in addressing HPCaaS. 
Section III discusses the motivations of adapting HPCaaS and 
describes the challenges as well through careful experiments. 
Section IV briefly describes SDN. Section V overviews 
ASETS and its task scheduling algorithm. Section VI details 
the implementation methodologies of the system. Section VII 



illustrates performance analysis and Section VIII concludes the 
paper and provides future directions. 

II. RELATED WORK 
Works related to this research include attempts to address 

the challenges of HPCaaS as well as studies of improving 
performance of the HPC applications on the cloud. This section 
is dedicated to describe a number of recent achievements in 
this area.  

Gilad et al. [3] explored the notion of HPCaaS by 
identifying the ability of running HPC applications 
simultaneously on a single cluster as the primary motivation. 
They believed that HPCaaS needs a specific scheduling 
strategy to achieve a reasonable performance, nevertheless 
their idea was that this scheduling strategy is application 
specific. As an example they proposed a smart scheduling 
algorithm for a subset of bioscience applications. Their results 
showed that the smart application specific scheduling 
algorithm increased the system productivity and efficiency.  

General Purpose Graphics Processing Units (GPGPUs) 
provide performance improvement for scientific and HPC 
applications. However, the performance of a virtual GPU on 
the cloud cannot compete with its physical one. Younge et al. 
[4] studied the role of GPGPUs in Cloud Computing by 
providing the GPU-enabled virtual machines (VMs) and 
evaluating its performance for HPC scientific applications. 
Their proposed GPU-enabled VMs use “Pass-through” 
technique in the hypervisor and a virtual machines will have a 
direct access to GPU but through the hypervisor. A portion of 
HPC applications utilize GPGPUs and this research provides a 
solution for them to benefit from the Cloud.  

Thamarai et al. [5] proposed a framework called Cloud 
Resource Broker (CLOUDRB) for scheduling HPC 
applications on the cloud. The framework follows a Particle 
Swarm Optimization method for allocating resources. A 
Discrete Event Simulation of the framework on Matlab 
indicates that CLOUDRB minimizes makespan, cost and job 
rejection ratio.  

Gupta et al. [6] consider Cloud Computing as an alternative 
to supercomputers for a subset of HPC applications. They 
comprehensively analyzed the performance of running HPC 
applications on the cloud by comparing it with a range of 
platforms from a supercomputer to a commodity cluster. 
Although their conclusion was that the current clouds cannot 
substitute supercomputers, they can effectively complement 
them. They proposed an application-aware dynamic scheduling 
heuristics that could improve the performance of HPC 
applications in terms of average turnaround time and 
throughput.  

AbdelBaky et al in [7] introduce a prototype to transform 
supercomputer into a cloud that supports accessibility of HPC 
resources through IaaS, PaaS and SaaS abstractions. In their 
experiment, they could dynamically scale resource of a 
supercomputer for a typical HPC application from 640 to 
22,016 processors, spanning two systems in different 
continents. The performance of the running HPC application 
was neither reduced nor improved but the provided abstraction 
layer was simpler and more powerful.  

HPC jobs are often in form of workflows where the 
sequence of tasks matters and the output of a completed task 
would become the input for the next task. Traditionally, HPC 
applications run on a dedicated hardware in a batch mode with 
single workflow scheduling. Clouds make it possible for HPC 
workflows to run simultaneously in a multi-tenant 
environment. Jiang et al. [8] proposed a mechanism to schedule 
simultaneous HPC workflows in a cloud oriented datacenter. 
The primary idea in this workflow scheduling mechanism is to 
fill the gaps between tasks. Using this method they could not 
only schedule HPC workflows in the cloud, but also increase 
the performance up to 18%. 

Perhaps the closest related work to our study would be the 
one that applies the features of Software-Defined Networking 
(SDN) in addressing the challenges of HPCaaS in the cloud. To 
our knowledge, ASETS is the first one exploring this area by 
proposing a scheduling scheme for assigning data-intensive 
HPC tasks with SDN to virtual machines in the cloud. 
Nevertheless, Hadoop and Big Data applications that are 
sensitive about the network can also benefit from Software-
Defined Networking capabilities. Qin et al. in a recent study 
[9] proposed a bandwidth-aware scheduling with SDN (BASS) 
mechanism for Hadoop jobs that can improve the performance 
in terms of job tunraround time. 

III. HPC AS A SERIVE (HPCAAS) 
High Performance Computing applications often require 

huge computational power with careful consideration of the 
network. Job scheduling on supercomputers are traditionally 
batch. However, recently with the advent of multi-tenant cloud 
oriented data centers, HPC is facing a revolution. Moving HPC 
to the cloud to provide resources, infrastructure, applications 
and platforms of HPC in form of a service is called HPCaaS. 
This section describes the motivations as well as the challenges 
of moving HPC applications to the cloud. 

A. HPCaaS Benefits 
Cloud with turning the utility computing into reality have 

recently gained the attention of both service providers and 
users. The HPC community is no exception as the resource 
pooling, availability, cost efficiency, flexibility, on demand 
broadband access and several other benefits of the cloud are 
attractive to them. This research identifies the followings as the 
primary benefits of HPCaaS. 

1) Cost Efficiency: HPCaaS makes it possible for cloud 
providers to run simultanous HPC jobs on their infrastructure 
to not only fill the gaps in the workflows with other jobs [8], 
but also to provide customizable, scalable, and elastic virtual 
clusters for users. This will result in a more efficient service 
and a maximized benefit. Users as well can also reduce costs 
by turning the capital expenditure to operational by renting 
services instead of buying the required infrastructure. A 
comprehensive study and evaluation of HPC applications on 
the cloud [10] indicates the cost efficiency of the cloud for 
small scale HPC applications. 

2) Resource Utilization: Cloud providers benefit from a 
multi-tenant environment where they can utilize their 
resources by having simultanous HPC jobs. Moreover, users 



can scale up and down their resources even during run-time 
according to the application deman. 

3) Maintenance and Administration: The scientific 
community that contributes as the majaroty of HPC users 
often have limited computer ccience background. HPCaaS 
eliminates all the hassles of setting up an HPC cluster and 
maintenance of a powerful supercoputer for the users. 

B. HPCaaS Chellenges 
Unique requirements of current HPC applications such as 

demand of batch scheduling and direct access to dedicated 
hardware, fast dedicated interconnects, and low latency of the 
network do not match well with current cloud technology. In 
order for the HPC applications to have a competitive 
performance on the cloud, either the current applications or the 
current cloud technology need to be revised. We conducted a 
comprehensive experiment by comparing the performance of 
an HPC benchmark on Amazon AWS cloud with a physical 
commodity cluster to identify the following shortcomings of 
HPCaaS. 

1) Cloud Networking: Network bandwidth and latency play 
very important roles in the performance of HPC applications 
on the cloud. Scientific applications often need fast 
intercommunication between parallel jobs and/or high 
bandwidth to transfer large volumes of data. To evaluate how 
well existing cloud technology performs in term of networking 
for HPCaaS, we used iPerf networking benchmark [11] in our 
experiments on Amazon EC2 c3.8xlarge instances. We ran the 
benchmark in 8 number of experiments each for 15 times. 

 
Figure 1. Network Bandwidth Performance on Public Cloud 

Figure 1 shows a large variability in the performance of the 
cloud network in terms of bandwidth. This instable network 
bandwidth causes the HPC applications, in particular those 
with high network demand, to have an unpredictable 
performance. Due to the fact that the resources on the cloud are 
shared among many simultaneous running applications, 
sometimes the network links are extremely busy (e.g. the 
minimum measured bandwidth on E3 in Figure 1) and 
sometimes they are free (e.g. maximum measured bandwidth in 
E1 as shown in Figure 1). This effect will result in a zigzag 
behavior of the network bandwidth as illustrated in Figure 1. In 
another experiment we analyzed the network latency of the 
cloud and compared it with a commodity Rocks cluster. Figure 

2 shows that HPCaaS can potentially suffer from high latency 
of the network. 

Our experiments prove that existing networking 
methodologies in the cloud do not provide promising 
performance for HPCaaS and the multi-tenant environment of 
the cloud plays the most important role in the shortcoming of 
cloud networking. This research considers multi-tenancy of the 
cloud as a second challenge of HPCaaS. 

 
Figure 2. Network Latency of Public Cloud Compared to Commodity Cluster 

2) Multi-tenancy: Although multi-tenancy is one of the 
motivations of adapting cloud computing technology, it is with 
great contrast with the requirements of HPC applications. 
Multi-tenancy enables cloud providers to share resources 
among multiple tenants to maximize profit. Nevertheless, HPC 
applications demand direct access to dedicated hardware using 
some sort of batch scheduling. 

 
Figure 3. Speed-up for GROMACS benchmark running on Amazon EC2 

instance 

We conducted an experiment by running GROMACS 
benchmark [12] on a virtual instance of Amazon EC2 public 
cloud. GROMACS is a real-world scientific application used in 
molecular simulation. We repeated the experiment for 5 times 
and Figure 3 shows the result for the achieved speed-up. The 
error bars represent the standard deviation of the results and 
indicate that by increasing the number of cores, the diversity 
and variability of values we get in multiple experiments, 
increases. In other words, by scaling up the HPC applications 
on the cloud, the performance becomes more unpredictable. To 
support our results, in another experiment the performance of 



Matrix Multiplication benchmark is evaluated on Amazon 
EC2. Figure 4 represents the efficiency achieved for the 
experiments and the error bars are again the standard 
deviations. These two experiments show how performance of 
HPC applications on the cloud is not predictable due to the 
shared resource and multi-tenant environment of the cloud. 
Moreover, the cloud clearly lowers the efficiency. 

 
Figure 4. The efficiency achieved by running Matrix Multiplication 

benchmark on Amazon EC2 public cloud 

There is a relatively huge gap between the average and best 
performance of running GROMACS or Matrix Multiplication 
benchmark on Amazon EC2. This gap is due to the fact that 
several tenants are using a shared resource and the performance 
of the application depends on the number of simultaneous 
running applications. It is worth mentioning that other 
experiments such as [10] confirm our findings and provide 
evidences that the multi-tenancy of the network is the major 
bottleneck and has the greatest influence in degrading the 
performance of HPC applications in the cloud. 

3) Virtualization Overhead: Virtualization plays a key role 
in the cloud helping the cloud to have rapid elasticity, resource 
pooling, and flexibility. However, virtualization and in 
particular the hypervisor adds unwanted overhead by adding a 
software layer and preventing applications to have direct 
access to the hardware resources. This virtualization overhead 
is not the same for all types of hardware. For example, 
because of the hardware support, virtualization overhead for 
processors is significantly less than the overhead of network 
virtualization. For some hardware types such as GPUs, it is 
often more efficient to pass through GPUs than to have virtual 
GPUs [13]. 

IV. SOFTWARE-DEFINED NETWORKING (SDN) 
Traditional networking provides great flexibility on the 

network edge for the developers to utilize various suits of 
protocols to enable the development of multi-purpose 
applications. This flexibility of the network at the edge can be 
considered as one of the primary reasons behind the success of 
the Internet. In contrast, the network in the core level is rather 
firm and inflexible. Any change or dynamic configuration is 
either practically difficult or highly expensive. With the rise of 
distributed applications and file systems, Big Data, Internet of 
Things, etc. the network traffic has switched from a mostly 

vertical pattern, to a more of a horizontal pattern [14]. In other 
words, modern datacenters tend to keep most of their data 
traffic within their internal distributed proximity rather than 
directing the traffic to the external network. As a result, there is 
enormous demand for more dynamic, flexible, and elastic 
network at the core. Programmable networks appear to provide 
excellent solutions compensating the inflexibility challenge of 
the core network and avoid expensive physical reconfiguration.  

Software-Defined Networking (SDN) is an emerging 
technology that turns the notion of programmable networks 
into reality for the existing networking technologies [15]. The 
idea is to separate the controlling layer of the network from the 
data transfer layer and turn it into a programmable and 
dynamically configurable layer [16]. Figure 5 shows a 
conceptual architecture of a network managed by SDN. The 
network traffic is forwarded in the data plane based on the flow 
tables inside the switches. Records in the flow tables are 
assigned with commands issued by the SDN controller [17]. 
The most popular protocol for the SDN controller as of today is 
OpenFlow [18]. With a separate control plane in SDN 
architecture, the controller is capable of monitoring the whole 
network properties and can alter the configurations according 
to the users and applications demand during run-time using 
RESTful APIs. 

 
Figure 5. Conceptual Architecture in Software-Defined Networking 

SDN plays an important role in cloud networking where 
the network is virtualized [19]. Each tenant becomes capable 
of having its private virtual network configuration and 
topology. ASETS aims to utilize the capabilities of SDN in 
assigning HPC tasks to virtual machines in the cloud. 
Accordingly, the SETSA algorithm benefits from the 
“bandwidth awareness” feature of the SDN controller to more 
efficiently schedule data-intensive tasks and hence 
dramatically improve the performance of the system. 

V. A RECONFIGURABLE TASK SCHEDULER ON THE CLOUD 
Section III described the motivations of HPCaaS as well as 

its limitations and shortcomings. Our experiments identified 
the networking, multi-tenancy and virtualization overhead of 
the cloud as the primary challenges of HPCaaS. In a recent 
publication [2], we proposed a dynamic configurable scheme 
for scheduling HPC tasks on the cloud that utilizes the 
capabilities of Software-Defined Networking. The scheme 
called ASETS (A SDN Empowered Task Scheduling System) 
aims to mitigate the multi-tenancy of the cloud for 



simultaneous HPC applications on the cloud. This section 
briefly describes the system and its primary scheduling 
algorithm named SETSA (SDN Empowered Task Scheduling 
Algorithm). 

A. ASETS: A SDN-Empowered Task Scheduling System 
ASETS consists of at least a queue of tasks, a task broker, 

a shared file system and a SDN controller for the virtual 
network. The tasks queue is populated by the HPC job 
scheduler and the input data needed for each task is stored in 
the file system. Workers are virtual machines that can be 
launched or terminated during run-time according to the 
demand. This elasticity of the system helps reducing the cost 
as well as efficiently utilizing the resources. Figure 6 
illustrates a conceptual overview of the architecture and 
clearly shows that ASETS with the use of network 
virtualization and dynamic allocation of virtual machines on 
the cloud is highly scalable for HPC applications. 

 

 
Figure 6. ASETS Conceptual Architecture 

B. SETSA: SDN-Empowered Task Scheduling Algorithm 
SETSA is the scheduling algorithm that runs in the task 

scheduler module of ASETS. Using APIs, SETSA benefits 
from a SDN controller that has an overview of the whole 
virtual network of ASETS during run time. The SDN controller 
monitors the network activities and provides the link 
bandwidth values for the task scheduler. This information will 
help SETSA schedule tasks with their corresponding data to 
the most suitable virtual machine. Our empirical analysis 
shows that as the number of simultaneous applications running 
on the shared cloud infrastructure (i.e. degree of the multi-
tenancy) increases; SETSA will have a more influence in 
improving the performance of HPCaaS in term of job finishing 
time. 

Figure 7 illustrates the result of our preliminary empirical 
analysis of the algorithm by comparing its performance with 
FIFO and Round-Robin as two popular scheduling algorithms. 
The results indicate that SETSA performs best when the cloud 
is under heavy utilization. As our experiments in section 3 
showed, increasing the number of tenants accessing the cloud 
infrastructure simultaneously makes the performance of 
running HPC applications very unpredictable. This instability 
is primarily caused by the fluctuations of network bandwidths. 
SETSA attempts to make the task scheduling more compatible 
with the alternating network bandwidths by redirecting 
network traffic to more available links. 

C. Discussions 
1) SETSA Overhead: API calls and the communication 

with the SDN controller adds some unwanted overhead to the 
scheduling. Our experiments and performance analysis shows 
that this unwanted overhead is tolerable when there are 
enough multi-tenant applications running on the cloud. 
Nevertheless, in an underutilized cloud, the overhead of 
SETSA may make it a less desirable scheduling solution 
compared with other light scheduling algorithms such as 
FIFO.  

2)  SETSA Window: SETSA originally schedules one task 
at a time assigning it to a single virtual machine. However, the 
algorithm potentially can be parallel to improve the 
performance and lower the overhead. Currently, a parallel 
implementation of the algorithm (SETSAW: SETSA Window) 
is in the research and development phase. 

3) Cloud Over-utilization: When resources in the cloud are 
over-utilized by several tenants, SETSA plays a more 
important role. A recent study [20] indicates that cloud 
providers may maximize benefit by oversubscribing cloud 
resources to the users. Nonetheless, this oversubscription 
lowers the performance of the service. Our investigation 
suggests that SETSA has the potential capability to stabilize 
the performance while the cloud service provider may increase 
the revenue by oversubscription of the resources. 

 

 
Figure 7. Empirical Analysis and Performance Comparison of SETSA with 

FIFO and Round-Robin 

VI. IMPLEMENTATION METHODS 
This section describes our methodology to implement 

ASETS on both Amazon public cloud and a private 
OpenStack cloud. Depending on the infrastructure and 
platforms, there are several technologies that can be used to 
implement ASETS. In order to show the proof of the concept, 
we deployed an OpenStack cloud integrated with 
OpenDaylight [21] as the SDN enabler for the virtual network 
of the cloud. OpenDaylight is a community-led and industry-
supported open source framework to accelerate adoption of 
SDN and Network Functions Virtualization (NFV). 

A. Private OpenStack Cloud 
We deployed a RedHat RDO [22] on our Dell commodity 

cluster of 6 compute nodes to have a private OpenStack cloud. 
The OpenStack manages cloud networking using a module 
named Neutron. In order to enable SDN on this cloud, we need 



to configure Neutron to work with OpenDaylight using Open 
vSwitch and Modular Layer 2 (ML2) plug-in. Open VSwitch is 
multilayer virtual switch that enables SDN functionalities. And 
ML2 is a plug-in for Neutron to enable OpenStack benefit from 
layer 2 networking technologies. Figure 8 represents the 
conceptual overview of the integration of OpenStack with 
OpenDaylight to enable Software-Defined Networking for the 
private cloud.  

One of the primary challenges of evaluating the 
performance of ASETS and SETSA on a private cloud is to 
build a multi-tenant environment. SETSA improves the 
performance of HPCaaS if the cloud resources are utilized 
enough by simultaneous tenants. In order to emulate such an 
environment for ASETS we set up several virtual cluster of 3 
to 4 small scale compute nodes each running a Matrix 
Multiplication benchmark. This challenge only needs to be 
addressed in a private cloud setting as the Amazon public 
cloud resources are already fully utilized by real working 
tenants. Another shortcoming of the private OpenStack cloud 
for our experiments was the small scale of the implementation. 
The private cloud was built on top of a cluster of 6 compute 
nodes and over a total of 64 physical cores. Although the 
hardware configuration was enough to prove the concept, a 
larger scale of experiments was needed to show the elasticity 
and feasibility of ASETS on a real-world public cloud 
environment. To address such a problem, we implemented 
ASETS on Amazon AWS cloud as well. 
 

 
Figure 8. OpenStack and OpenDaylight Integration on a Private Cloud 

B. Public Amazon Cloud 
A real-world multi-tenant and dynamic public cloud is 

desired to evaluate the performance of ASETS and SETSA 
more accurately. Nevertheless, public cloud providers such as 
Amazon will consider a limited access in the infrastructure and 
hardware layer to the users, making it very difficult for us to 
deploy our SDN enabled cloud networking. Although, public 
cloud providers may utilize Software-Defined Networking 
capabilities for their networking infrastructures, such 
capabilities are blocked for public users for several reasons, 
primarily the security. To overcome this problem, we deployed 
a private virtual OpenStack cloud integrated with 
OpenDaylight on a virtual cluster on Amazon EC2. This will 
add another layer of virtualization to the system and therefore 
an unwanted overhead, yet makes it possible for us to utilize 
SDN capabilities for our own private cloud on top of a multi-
tenant infrastructure to accurately evaluate performance of 
ASETS. 

Figure 9 shows the conceptual architecture of our 
implementation of ASETS on Amazon public cloud. Amazon 

infrastructure provides a multi-tenant environment for us where 
we set up a private virtual OpenStack cloud with Software-
Defined Networking enabled by OpenDaylight. 

Amazon AWS provide cloud based services such as 
Amazon SQS (i.e. a queuing system) and powerful APIs 
besides typical virtual machines that make cloud-based 
developments a lot easier. In our implementation of ASETS 
on Amazon AWS, we utilized Amazon SQS for the tasks 
queue. Moreover, the Amazon EC2 Java APIs enable us to 
dynamically launch and terminate virtual machines on the 
cloud. Utilizing this capability, in order to make ASETS scale 
up and down according to the number of incoming tasks, we 
developed a module that actively monitors the size of the tasks 
queue. If the number of tasks in the queue exceeds a threshold, 
ASETS automatically launches new virtual machines to scale 
up. On the other hand if a virtual machine remains idle for a 
specific period of time, ASETS will terminate the virtual 
machine to save cost. 

 

 
Figure 9. ASETS Conceptual Architecture on Amazon AWS 

VII. EXPERIMENTS RESULTS AND ANALYSIS 
We conducted the comprehensive performance analysis of 

ASETS and SETSA from three different perspectives; 
measuring the overhead of SETSA, performance evaluation of 
the system on a private cloud, and performance evaluation on 
Amazon public cloud. Our experiments indicate promising 
results for ASETS and its primary scheduling algorithm, 
SETSA. The proof of the concept implementation clearly 
indicates that ASETS is highly scalable and SETSA improves 
the performance of HPCaaS when the degree of multi-tenancy 
goes up. 

A. Measuring Overhead of SETSA 
Unlike regular scheduling algorithms like FIFO or 

RoundRobin, SETSA needs more calculations as it uses SDN 
APIs to monitor network bandwidths and make decisions 
accordingly. The extra calculations and process adds unwanted 
overhead that may influence the performance of the system. In 
order to measure the overhead of the system we compared the 
performance of ASETS when running SETSA with the time it 
is running a simple FIFO scheduling algorithm. The 
experiment was conducted on a private OpenStack cloud on a 
commodity cluster of six compute nodes running six virtual 
machines with zero multi-tenancy and repeated for 10 times. 
Data sizes and task granularities were randomly chosen for 
each repeat of the experiment. 



Figure 10 compares the performance of SETSA in 10 
numbers of executions with FIFO in a private cloud with no 
multi-tenancy. When there is not any simultaneous 
applications running on the cloud, network bandwidths remain 
stable and SETSA schedules HPC tasks the same as FIFO. 
The experiment shows that the undesired overhead of SETSA 
running on ASETS in such a case is approximately 5%. 
Further studies and experiments will indicate that this 
overhead is reasonably low and worthwhile. 
 

 

 
Figure 10. Comparing the Performance of SETSA with FIFO in Multiple 

Experiments 

B. ASETS on Private OpenStack Cloud 
Our empirical analysis of SETSA, previously, indicated that 

as the degree of multi-tenancy increases, SETSA performs 
better by mitigating the overhead of the multi-tenancy and 
improves the performance of HPCaaS. In order to evaluate 
SETSA in action, we artificially created a multi-tenant 
environment on our private OpenStack cloud by launching 
simultaneous virtual clusters. Each virtual cluster has 3 virtual 
machines and runs a Matrix Multiplication algorithm. Number 
of the virtual clusters running on our cloud indicates the degree 
of multi-tenancy.  

 
Figure 11. Performance of SETSA on Private OpenStack Cloud Based on the 

Degree of Multi-tenancy 

Figure 11 confirms our empirical analysis. When the 
degree of multi-tenancy is low, SETSA performs almost the 
same as FIFO. However, as the number of simultaneous 
applications running on the cloud goes up, SETSA tends to 
mitigate the fluctuating available network bandwidths of the 

cloud and therefore increase the performance of HPCaaS in 
term of job finishing time. This performance improvement on 
a private OpenStack cloud running on a commodity cluster of 
6 compute nodes is measured to be 18%. Nevertheless, in 
order to show how SETSA can improve performance in a real-
world commercial HPCaaS environment, experiments in a 
larger scale are required. Therefore, we evaluated our 
implementation of ASETS running SETSA on Amazon public 
cloud. 

C. ASETS on Amazon Piblic Cloud 
Amazon AWS enables us to evaluate ASETS on a larger 

scale and on an inherently multi-tenant environment. 
Nevertheless, since access to the hardware and networking 
infrastructure of Amazon cloud is limited, we need to deploy 
our implementation of the cloud integrated with an SDN 
controller. Although this will result in an extra virtualization 
overhead, we will be able to evaluate the scalability of ASETS 
and SETSA.   

In our experiment, we define the scale of the system by the 
number of virtual machines launched as the workers. SETSA 
is expected to perform better as the scale of the system goes 
up. Results confirm our assumption. Figure 12 shows how 
SETSA improves the performance of HPCaaS on public 
amazon cloud significantly up to 67%. As we scale up the 
system, number of network links and available bandwidths 
increase, letting SETSA to have a larger variety of choices to 
redirect data.  
 

 
Figure 12.  The performance of SETSA on Amazon Public Cloud 

VIII. CONCLUSION AND FUTURE WORK 
The paper comprehensively analyzed performance of the 

proposed task scheduling scheme for HPCaaS; ASETS (A 
SDN Empowered Task Scheduling System), alongside with its 
primary scheduling algorithm; SETSA (SDN Empowered Task 
Scheduling Algorithm). ASETS benefit from a Software-
Defined Networking capabilities by leveraging a SDN 
controller in the architecture. SETSA utilizes the SDN 
controller to actively monitor the available network bandwidths 
in order to redirect data over the most suitable link. Our studies 
and experiments identified three primary challenges for 
HPCaas; cloud networking, cloud multi-tenancy, and the 
virtualization overhead. SETSA aims to improve the 
performance of scheduling data-intensive HPC tasks on the 
cloud in term of job finishing time by better utilizing the 



network. Analyzing the performance of SETSA on two 
implementations of ASETS on a private OpenStack cloud and 
Amazon public cloud indicates that SETSA is capable of 
improving the performance of HPCaaS significantly up to 
67%.  

ASETS is a configurable, dynamic and scalable architecture 
capable of adapting other scheduling techniques for HPCaaS 
that may utilize Software-Defined Networking features as well. 
While SETSA showed a significant performance improvement 
for data-intensive HPC tasks, research and developments for 
other scheduling algorithms to utilize SDN capabilities are 
ongoing. Moreover, future works include the implementation 
and performance analysis of SETSA Window (SETSAW) 
which is a parallel version of SETSA as well. SETSAW aims 
to reduce the overhead of SETSA by assigning multiple tasks 
to workers (virtual machines) at a same time.  

Furthermore, SETSA potentially is capable of considering 
the cost of virtual machines as well. Adding the cost model 
enables the scheduler to decide about the target virtual 
machines such that the ratio of performance/cost could be 
maximized. Also, while ASETS has a shared file system, 
another area of possible future studies includes expanding the 
idea to distributed file system architectures as well. 
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