
Data-Intensive HPC Tasks Scheduling with SDN to
Enable HPC-as-a-Service

Saba Jamalian, Hassan Rajaei
Department of Computer Science
Bowling Green State University

Bowling Green, OH, USA
{sabaj, rajaei}@bgsu.edu

Abstract— Advances in Cloud Computing attracted scientists
to deploy their HPC applications to the cloud to benefit from the
flexibility of the platform such as scalability and on-demand
services. Nevertheless, HPC applications can face serious
challenges on the cloud that could undermine the gained benefit,
if care is not taken. This paper starts first comparing the
performance of several HPC benchmarks on a commodity cluster
and Amazon public cloud to illustrate the confronted challenges.
To mitigate the problem, we have introduced a novel approach
called ASETS, “A SDN Empowered Task Scheduling System”, to
schedule data-intensive High Performance Computing (HPC)
tasks on a Cloud environment. In this paper, we focus on the
implementation and performance analysis of ASETS and its first
algorithm called SETSA, (SDN Empowered Task Scheduling
Algorithm). ASETS uses the “bandwidth awareness” capability
of SDN to better utilize network bandwidths when assigning data
intensive tasks to virtual machines (workers) in the cloud. This
novel approach aims to improve the performance of HPC
applications on the cloud in order the platform could provide
efficient HPC-as-a-Service (HPCaaS). The paper briefly
describes the ASETS architecture and its SETSA algorithm, and
then focuses on the details of the implementation and
performance analysis of ASETS and SETSA. Preliminary results
indicate that ASETS provides substantial performance
improvement for HPCaaS as the degree of multi-tenancy in the
cloud increases. This result is significant since it indicate both the
users and the cloud service providers can benefit from ASETS.

Keywords— Cloud Computing, Task Scheduling, HPCaaS,
Software-Defined Networking

I. INTRODUCTION
Cloud Computing provides a set of unique benefits such as

resource pooling, cost efficiency, availability, and broad
network access. These features have attracted scientists and
scholars worldwide, including the community of High
Performance Computing (HPC) developers and users.
Nevertheless, moving the HPC applications to the cloud can
face several key challenges, primarily, the virtualization
overhead, multi-tenancy and network latency. The solution
tends to be the emerging trend establishing a new cloud-based
service known as HPC-as-a-Service (HPCaaS). This paper
describes the details of the challenges of using cloud resources
for HPC applications after discussing about the initial
motivations. To illustrate performance fluctuations we compare
cases where HPC applications are executed on Amazon public
cloud with the equivalent configuration on a commodity HPC
cluster. Our studies indicate that the multi-tenant environment

of the cloud causes instable link bandwidth and high latency.
This volatility can further result in a low performance for
network sensitive HPC applications as the available network
bandwidth becomes not predictable in the cloud. We argue that
the instability of the cloud network bandwidth comprise a
primary challenge of the HPC applications on the cloud. To
remedy such instability, we suggest using programmable
networking.

Software-Defined Networking (SDN) [1] as an emerging
technology in networking appears to have sufficient potentials
to address some of the challenges of HPC applications in the
cloud. The idea of SDN is to decouple the network intelligence
from the data plane into an independent layer called controller.
Therefore, the control layer will have an overview across the
network components and their dynamic configurations during
run time. This information will provide substantial benefits for
developers to build network-aware applications.

In a recent paper [2], we proposed a novel scheme
(ASETS) on task scheduling for data intensive HPC tasks that
utilize the capability of SDN to smooth the cloud networking
bandwidth. A task scheduling algorithm (SETSA: SDN
Empowered Task Scheduling Algorithm) is also proposed to
run on top of ASETS. The proposed architecture actively
monitors the network configurations during the runtime and
redirect data related to the tasks over the links with highest
instant available bandwidth capacity. This feature is extremely
important in a multi-tenant cloud environment where the
bandwidths of the links are rapidly changing. This paper argues
that as the number of tenants in the cloud increases, SETSA
would be more capable to mitigate the networking problem of
HPCaaS platform. Furthermore, this paper focuses on the
implementation and performance analysis of ASETS and
SETSA. We provide preliminary results of the system on
Amazon Cloud. While the obtained results are significant, we
trust we need more in-depth performance analysis of the
innovative system.

The rest of the paper is as follows: Section II describes the
related work and recent achievements in addressing HPCaaS.
Section III discusses the motivations of adapting HPCaaS and
describes the challenges as well through careful experiments.
Section IV briefly describes SDN. Section V overviews
ASETS and its task scheduling algorithm. Section VI details
the implementation methodologies of the system. Section VII

illustrates performance analysis and Section VIII concludes the
paper and provides future directions.

II. RELATED WORK
Works related to this research include attempts to address

the challenges of HPCaaS as well as studies of improving
performance of the HPC applications on the cloud. This section
is dedicated to describe a number of recent achievements in
this area.

Gilad et al. [3] explored the notion of HPCaaS by
identifying the ability of running HPC applications
simultaneously on a single cluster as the primary motivation.
They believed that HPCaaS needs a specific scheduling
strategy to achieve a reasonable performance, nevertheless
their idea was that this scheduling strategy is application
specific. As an example they proposed a smart scheduling
algorithm for a subset of bioscience applications. Their results
showed that the smart application specific scheduling
algorithm increased the system productivity and efficiency.

General Purpose Graphics Processing Units (GPGPUs)
provide performance improvement for scientific and HPC
applications. However, the performance of a virtual GPU on
the cloud cannot compete with its physical one. Younge et al.
[4] studied the role of GPGPUs in Cloud Computing by
providing the GPU-enabled virtual machines (VMs) and
evaluating its performance for HPC scientific applications.
Their proposed GPU-enabled VMs use “Pass-through”
technique in the hypervisor and a virtual machines will have a
direct access to GPU but through the hypervisor. A portion of
HPC applications utilize GPGPUs and this research provides a
solution for them to benefit from the Cloud.

Thamarai et al. [5] proposed a framework called Cloud
Resource Broker (CLOUDRB) for scheduling HPC
applications on the cloud. The framework follows a Particle
Swarm Optimization method for allocating resources. A
Discrete Event Simulation of the framework on Matlab
indicates that CLOUDRB minimizes makespan, cost and job
rejection ratio.

Gupta et al. [6] consider Cloud Computing as an alternative
to supercomputers for a subset of HPC applications. They
comprehensively analyzed the performance of running HPC
applications on the cloud by comparing it with a range of
platforms from a supercomputer to a commodity cluster.
Although their conclusion was that the current clouds cannot
substitute supercomputers, they can effectively complement
them. They proposed an application-aware dynamic scheduling
heuristics that could improve the performance of HPC
applications in terms of average turnaround time and
throughput.

AbdelBaky et al in [7] introduce a prototype to transform
supercomputer into a cloud that supports accessibility of HPC
resources through IaaS, PaaS and SaaS abstractions. In their
experiment, they could dynamically scale resource of a
supercomputer for a typical HPC application from 640 to
22,016 processors, spanning two systems in different
continents. The performance of the running HPC application
was neither reduced nor improved but the provided abstraction
layer was simpler and more powerful.

HPC jobs are often in form of workflows where the
sequence of tasks matters and the output of a completed task
would become the input for the next task. Traditionally, HPC
applications run on a dedicated hardware in a batch mode with
single workflow scheduling. Clouds make it possible for HPC
workflows to run simultaneously in a multi-tenant
environment. Jiang et al. [8] proposed a mechanism to schedule
simultaneous HPC workflows in a cloud oriented datacenter.
The primary idea in this workflow scheduling mechanism is to
fill the gaps between tasks. Using this method they could not
only schedule HPC workflows in the cloud, but also increase
the performance up to 18%.

Perhaps the closest related work to our study would be the
one that applies the features of Software-Defined Networking
(SDN) in addressing the challenges of HPCaaS in the cloud. To
our knowledge, ASETS is the first one exploring this area by
proposing a scheduling scheme for assigning data-intensive
HPC tasks with SDN to virtual machines in the cloud.
Nevertheless, Hadoop and Big Data applications that are
sensitive about the network can also benefit from Software-
Defined Networking capabilities. Qin et al. in a recent study
[9] proposed a bandwidth-aware scheduling with SDN (BASS)
mechanism for Hadoop jobs that can improve the performance
in terms of job tunraround time.

III. HPC AS A SERIVE (HPCAAS)
High Performance Computing applications often require

huge computational power with careful consideration of the
network. Job scheduling on supercomputers are traditionally
batch. However, recently with the advent of multi-tenant cloud
oriented data centers, HPC is facing a revolution. Moving HPC
to the cloud to provide resources, infrastructure, applications
and platforms of HPC in form of a service is called HPCaaS.
This section describes the motivations as well as the challenges
of moving HPC applications to the cloud.

A. HPCaaS Benefits
Cloud with turning the utility computing into reality have

recently gained the attention of both service providers and
users. The HPC community is no exception as the resource
pooling, availability, cost efficiency, flexibility, on demand
broadband access and several other benefits of the cloud are
attractive to them. This research identifies the followings as the
primary benefits of HPCaaS.

1) Cost Efficiency: HPCaaS makes it possible for cloud
providers to run simultanous HPC jobs on their infrastructure
to not only fill the gaps in the workflows with other jobs [8],
but also to provide customizable, scalable, and elastic virtual
clusters for users. This will result in a more efficient service
and a maximized benefit. Users as well can also reduce costs
by turning the capital expenditure to operational by renting
services instead of buying the required infrastructure. A
comprehensive study and evaluation of HPC applications on
the cloud [10] indicates the cost efficiency of the cloud for
small scale HPC applications.

2) Resource Utilization: Cloud providers benefit from a
multi-tenant environment where they can utilize their
resources by having simultanous HPC jobs. Moreover, users

can scale up and down their resources even during run-time
according to the application deman.

3) Maintenance and Administration: The scientific
community that contributes as the majaroty of HPC users
often have limited computer ccience background. HPCaaS
eliminates all the hassles of setting up an HPC cluster and
maintenance of a powerful supercoputer for the users.

B. HPCaaS Chellenges
Unique requirements of current HPC applications such as

demand of batch scheduling and direct access to dedicated
hardware, fast dedicated interconnects, and low latency of the
network do not match well with current cloud technology. In
order for the HPC applications to have a competitive
performance on the cloud, either the current applications or the
current cloud technology need to be revised. We conducted a
comprehensive experiment by comparing the performance of
an HPC benchmark on Amazon AWS cloud with a physical
commodity cluster to identify the following shortcomings of
HPCaaS.

1) Cloud Networking: Network bandwidth and latency play
very important roles in the performance of HPC applications
on the cloud. Scientific applications often need fast
intercommunication between parallel jobs and/or high
bandwidth to transfer large volumes of data. To evaluate how
well existing cloud technology performs in term of networking
for HPCaaS, we used iPerf networking benchmark [11] in our
experiments on Amazon EC2 c3.8xlarge instances. We ran the
benchmark in 8 number of experiments each for 15 times.

Figure 1. Network Bandwidth Performance on Public Cloud

Figure 1 shows a large variability in the performance of the
cloud network in terms of bandwidth. This instable network
bandwidth causes the HPC applications, in particular those
with high network demand, to have an unpredictable
performance. Due to the fact that the resources on the cloud are
shared among many simultaneous running applications,
sometimes the network links are extremely busy (e.g. the
minimum measured bandwidth on E3 in Figure 1) and
sometimes they are free (e.g. maximum measured bandwidth in
E1 as shown in Figure 1). This effect will result in a zigzag
behavior of the network bandwidth as illustrated in Figure 1. In
another experiment we analyzed the network latency of the
cloud and compared it with a commodity Rocks cluster. Figure

2 shows that HPCaaS can potentially suffer from high latency
of the network.

Our experiments prove that existing networking
methodologies in the cloud do not provide promising
performance for HPCaaS and the multi-tenant environment of
the cloud plays the most important role in the shortcoming of
cloud networking. This research considers multi-tenancy of the
cloud as a second challenge of HPCaaS.

Figure 2. Network Latency of Public Cloud Compared to Commodity Cluster

2) Multi-tenancy: Although multi-tenancy is one of the
motivations of adapting cloud computing technology, it is with
great contrast with the requirements of HPC applications.
Multi-tenancy enables cloud providers to share resources
among multiple tenants to maximize profit. Nevertheless, HPC
applications demand direct access to dedicated hardware using
some sort of batch scheduling.

Figure 3. Speed-up for GROMACS benchmark running on Amazon EC2

instance

We conducted an experiment by running GROMACS
benchmark [12] on a virtual instance of Amazon EC2 public
cloud. GROMACS is a real-world scientific application used in
molecular simulation. We repeated the experiment for 5 times
and Figure 3 shows the result for the achieved speed-up. The
error bars represent the standard deviation of the results and
indicate that by increasing the number of cores, the diversity
and variability of values we get in multiple experiments,
increases. In other words, by scaling up the HPC applications
on the cloud, the performance becomes more unpredictable. To
support our results, in another experiment the performance of

Matrix Multiplication benchmark is evaluated on Amazon
EC2. Figure 4 represents the efficiency achieved for the
experiments and the error bars are again the standard
deviations. These two experiments show how performance of
HPC applications on the cloud is not predictable due to the
shared resource and multi-tenant environment of the cloud.
Moreover, the cloud clearly lowers the efficiency.

Figure 4. The efficiency achieved by running Matrix Multiplication

benchmark on Amazon EC2 public cloud

There is a relatively huge gap between the average and best
performance of running GROMACS or Matrix Multiplication
benchmark on Amazon EC2. This gap is due to the fact that
several tenants are using a shared resource and the performance
of the application depends on the number of simultaneous
running applications. It is worth mentioning that other
experiments such as [10] confirm our findings and provide
evidences that the multi-tenancy of the network is the major
bottleneck and has the greatest influence in degrading the
performance of HPC applications in the cloud.

3) Virtualization Overhead: Virtualization plays a key role
in the cloud helping the cloud to have rapid elasticity, resource
pooling, and flexibility. However, virtualization and in
particular the hypervisor adds unwanted overhead by adding a
software layer and preventing applications to have direct
access to the hardware resources. This virtualization overhead
is not the same for all types of hardware. For example,
because of the hardware support, virtualization overhead for
processors is significantly less than the overhead of network
virtualization. For some hardware types such as GPUs, it is
often more efficient to pass through GPUs than to have virtual
GPUs [13].

IV. SOFTWARE-DEFINED NETWORKING (SDN)
Traditional networking provides great flexibility on the

network edge for the developers to utilize various suits of
protocols to enable the development of multi-purpose
applications. This flexibility of the network at the edge can be
considered as one of the primary reasons behind the success of
the Internet. In contrast, the network in the core level is rather
firm and inflexible. Any change or dynamic configuration is
either practically difficult or highly expensive. With the rise of
distributed applications and file systems, Big Data, Internet of
Things, etc. the network traffic has switched from a mostly

vertical pattern, to a more of a horizontal pattern [14]. In other
words, modern datacenters tend to keep most of their data
traffic within their internal distributed proximity rather than
directing the traffic to the external network. As a result, there is
enormous demand for more dynamic, flexible, and elastic
network at the core. Programmable networks appear to provide
excellent solutions compensating the inflexibility challenge of
the core network and avoid expensive physical reconfiguration.

Software-Defined Networking (SDN) is an emerging
technology that turns the notion of programmable networks
into reality for the existing networking technologies [15]. The
idea is to separate the controlling layer of the network from the
data transfer layer and turn it into a programmable and
dynamically configurable layer [16]. Figure 5 shows a
conceptual architecture of a network managed by SDN. The
network traffic is forwarded in the data plane based on the flow
tables inside the switches. Records in the flow tables are
assigned with commands issued by the SDN controller [17].
The most popular protocol for the SDN controller as of today is
OpenFlow [18]. With a separate control plane in SDN
architecture, the controller is capable of monitoring the whole
network properties and can alter the configurations according
to the users and applications demand during run-time using
RESTful APIs.

Figure 5. Conceptual Architecture in Software-Defined Networking

SDN plays an important role in cloud networking where
the network is virtualized [19]. Each tenant becomes capable
of having its private virtual network configuration and
topology. ASETS aims to utilize the capabilities of SDN in
assigning HPC tasks to virtual machines in the cloud.
Accordingly, the SETSA algorithm benefits from the
“bandwidth awareness” feature of the SDN controller to more
efficiently schedule data-intensive tasks and hence
dramatically improve the performance of the system.

V. A RECONFIGURABLE TASK SCHEDULER ON THE CLOUD
Section III described the motivations of HPCaaS as well as

its limitations and shortcomings. Our experiments identified
the networking, multi-tenancy and virtualization overhead of
the cloud as the primary challenges of HPCaaS. In a recent
publication [2], we proposed a dynamic configurable scheme
for scheduling HPC tasks on the cloud that utilizes the
capabilities of Software-Defined Networking. The scheme
called ASETS (A SDN Empowered Task Scheduling System)
aims to mitigate the multi-tenancy of the cloud for

simultaneous HPC applications on the cloud. This section
briefly describes the system and its primary scheduling
algorithm named SETSA (SDN Empowered Task Scheduling
Algorithm).

A. ASETS: A SDN-Empowered Task Scheduling System
ASETS consists of at least a queue of tasks, a task broker,

a shared file system and a SDN controller for the virtual
network. The tasks queue is populated by the HPC job
scheduler and the input data needed for each task is stored in
the file system. Workers are virtual machines that can be
launched or terminated during run-time according to the
demand. This elasticity of the system helps reducing the cost
as well as efficiently utilizing the resources. Figure 6
illustrates a conceptual overview of the architecture and
clearly shows that ASETS with the use of network
virtualization and dynamic allocation of virtual machines on
the cloud is highly scalable for HPC applications.

Figure 6. ASETS Conceptual Architecture

B. SETSA: SDN-Empowered Task Scheduling Algorithm
SETSA is the scheduling algorithm that runs in the task

scheduler module of ASETS. Using APIs, SETSA benefits
from a SDN controller that has an overview of the whole
virtual network of ASETS during run time. The SDN controller
monitors the network activities and provides the link
bandwidth values for the task scheduler. This information will
help SETSA schedule tasks with their corresponding data to
the most suitable virtual machine. Our empirical analysis
shows that as the number of simultaneous applications running
on the shared cloud infrastructure (i.e. degree of the multi-
tenancy) increases; SETSA will have a more influence in
improving the performance of HPCaaS in term of job finishing
time.

Figure 7 illustrates the result of our preliminary empirical
analysis of the algorithm by comparing its performance with
FIFO and Round-Robin as two popular scheduling algorithms.
The results indicate that SETSA performs best when the cloud
is under heavy utilization. As our experiments in section 3
showed, increasing the number of tenants accessing the cloud
infrastructure simultaneously makes the performance of
running HPC applications very unpredictable. This instability
is primarily caused by the fluctuations of network bandwidths.
SETSA attempts to make the task scheduling more compatible
with the alternating network bandwidths by redirecting
network traffic to more available links.

C. Discussions
1) SETSA Overhead: API calls and the communication

with the SDN controller adds some unwanted overhead to the
scheduling. Our experiments and performance analysis shows
that this unwanted overhead is tolerable when there are
enough multi-tenant applications running on the cloud.
Nevertheless, in an underutilized cloud, the overhead of
SETSA may make it a less desirable scheduling solution
compared with other light scheduling algorithms such as
FIFO.

2) SETSA Window: SETSA originally schedules one task
at a time assigning it to a single virtual machine. However, the
algorithm potentially can be parallel to improve the
performance and lower the overhead. Currently, a parallel
implementation of the algorithm (SETSAW: SETSA Window)
is in the research and development phase.

3) Cloud Over-utilization: When resources in the cloud are
over-utilized by several tenants, SETSA plays a more
important role. A recent study [20] indicates that cloud
providers may maximize benefit by oversubscribing cloud
resources to the users. Nonetheless, this oversubscription
lowers the performance of the service. Our investigation
suggests that SETSA has the potential capability to stabilize
the performance while the cloud service provider may increase
the revenue by oversubscription of the resources.

Figure 7. Empirical Analysis and Performance Comparison of SETSA with

FIFO and Round-Robin

VI. IMPLEMENTATION METHODS
This section describes our methodology to implement

ASETS on both Amazon public cloud and a private
OpenStack cloud. Depending on the infrastructure and
platforms, there are several technologies that can be used to
implement ASETS. In order to show the proof of the concept,
we deployed an OpenStack cloud integrated with
OpenDaylight [21] as the SDN enabler for the virtual network
of the cloud. OpenDaylight is a community-led and industry-
supported open source framework to accelerate adoption of
SDN and Network Functions Virtualization (NFV).

A. Private OpenStack Cloud
We deployed a RedHat RDO [22] on our Dell commodity

cluster of 6 compute nodes to have a private OpenStack cloud.
The OpenStack manages cloud networking using a module
named Neutron. In order to enable SDN on this cloud, we need

to configure Neutron to work with OpenDaylight using Open
vSwitch and Modular Layer 2 (ML2) plug-in. Open VSwitch is
multilayer virtual switch that enables SDN functionalities. And
ML2 is a plug-in for Neutron to enable OpenStack benefit from
layer 2 networking technologies. Figure 8 represents the
conceptual overview of the integration of OpenStack with
OpenDaylight to enable Software-Defined Networking for the
private cloud.

One of the primary challenges of evaluating the
performance of ASETS and SETSA on a private cloud is to
build a multi-tenant environment. SETSA improves the
performance of HPCaaS if the cloud resources are utilized
enough by simultaneous tenants. In order to emulate such an
environment for ASETS we set up several virtual cluster of 3
to 4 small scale compute nodes each running a Matrix
Multiplication benchmark. This challenge only needs to be
addressed in a private cloud setting as the Amazon public
cloud resources are already fully utilized by real working
tenants. Another shortcoming of the private OpenStack cloud
for our experiments was the small scale of the implementation.
The private cloud was built on top of a cluster of 6 compute
nodes and over a total of 64 physical cores. Although the
hardware configuration was enough to prove the concept, a
larger scale of experiments was needed to show the elasticity
and feasibility of ASETS on a real-world public cloud
environment. To address such a problem, we implemented
ASETS on Amazon AWS cloud as well.

Figure 8. OpenStack and OpenDaylight Integration on a Private Cloud

B. Public Amazon Cloud
A real-world multi-tenant and dynamic public cloud is

desired to evaluate the performance of ASETS and SETSA
more accurately. Nevertheless, public cloud providers such as
Amazon will consider a limited access in the infrastructure and
hardware layer to the users, making it very difficult for us to
deploy our SDN enabled cloud networking. Although, public
cloud providers may utilize Software-Defined Networking
capabilities for their networking infrastructures, such
capabilities are blocked for public users for several reasons,
primarily the security. To overcome this problem, we deployed
a private virtual OpenStack cloud integrated with
OpenDaylight on a virtual cluster on Amazon EC2. This will
add another layer of virtualization to the system and therefore
an unwanted overhead, yet makes it possible for us to utilize
SDN capabilities for our own private cloud on top of a multi-
tenant infrastructure to accurately evaluate performance of
ASETS.

Figure 9 shows the conceptual architecture of our
implementation of ASETS on Amazon public cloud. Amazon

infrastructure provides a multi-tenant environment for us where
we set up a private virtual OpenStack cloud with Software-
Defined Networking enabled by OpenDaylight.

Amazon AWS provide cloud based services such as
Amazon SQS (i.e. a queuing system) and powerful APIs
besides typical virtual machines that make cloud-based
developments a lot easier. In our implementation of ASETS
on Amazon AWS, we utilized Amazon SQS for the tasks
queue. Moreover, the Amazon EC2 Java APIs enable us to
dynamically launch and terminate virtual machines on the
cloud. Utilizing this capability, in order to make ASETS scale
up and down according to the number of incoming tasks, we
developed a module that actively monitors the size of the tasks
queue. If the number of tasks in the queue exceeds a threshold,
ASETS automatically launches new virtual machines to scale
up. On the other hand if a virtual machine remains idle for a
specific period of time, ASETS will terminate the virtual
machine to save cost.

Figure 9. ASETS Conceptual Architecture on Amazon AWS

VII. EXPERIMENTS RESULTS AND ANALYSIS
We conducted the comprehensive performance analysis of

ASETS and SETSA from three different perspectives;
measuring the overhead of SETSA, performance evaluation of
the system on a private cloud, and performance evaluation on
Amazon public cloud. Our experiments indicate promising
results for ASETS and its primary scheduling algorithm,
SETSA. The proof of the concept implementation clearly
indicates that ASETS is highly scalable and SETSA improves
the performance of HPCaaS when the degree of multi-tenancy
goes up.

A. Measuring Overhead of SETSA
Unlike regular scheduling algorithms like FIFO or

RoundRobin, SETSA needs more calculations as it uses SDN
APIs to monitor network bandwidths and make decisions
accordingly. The extra calculations and process adds unwanted
overhead that may influence the performance of the system. In
order to measure the overhead of the system we compared the
performance of ASETS when running SETSA with the time it
is running a simple FIFO scheduling algorithm. The
experiment was conducted on a private OpenStack cloud on a
commodity cluster of six compute nodes running six virtual
machines with zero multi-tenancy and repeated for 10 times.
Data sizes and task granularities were randomly chosen for
each repeat of the experiment.

Figure 10 compares the performance of SETSA in 10
numbers of executions with FIFO in a private cloud with no
multi-tenancy. When there is not any simultaneous
applications running on the cloud, network bandwidths remain
stable and SETSA schedules HPC tasks the same as FIFO.
The experiment shows that the undesired overhead of SETSA
running on ASETS in such a case is approximately 5%.
Further studies and experiments will indicate that this
overhead is reasonably low and worthwhile.

Figure 10. Comparing the Performance of SETSA with FIFO in Multiple

Experiments

B. ASETS on Private OpenStack Cloud
Our empirical analysis of SETSA, previously, indicated that

as the degree of multi-tenancy increases, SETSA performs
better by mitigating the overhead of the multi-tenancy and
improves the performance of HPCaaS. In order to evaluate
SETSA in action, we artificially created a multi-tenant
environment on our private OpenStack cloud by launching
simultaneous virtual clusters. Each virtual cluster has 3 virtual
machines and runs a Matrix Multiplication algorithm. Number
of the virtual clusters running on our cloud indicates the degree
of multi-tenancy.

Figure 11. Performance of SETSA on Private OpenStack Cloud Based on the

Degree of Multi-tenancy

Figure 11 confirms our empirical analysis. When the
degree of multi-tenancy is low, SETSA performs almost the
same as FIFO. However, as the number of simultaneous
applications running on the cloud goes up, SETSA tends to
mitigate the fluctuating available network bandwidths of the

cloud and therefore increase the performance of HPCaaS in
term of job finishing time. This performance improvement on
a private OpenStack cloud running on a commodity cluster of
6 compute nodes is measured to be 18%. Nevertheless, in
order to show how SETSA can improve performance in a real-
world commercial HPCaaS environment, experiments in a
larger scale are required. Therefore, we evaluated our
implementation of ASETS running SETSA on Amazon public
cloud.

C. ASETS on Amazon Piblic Cloud
Amazon AWS enables us to evaluate ASETS on a larger

scale and on an inherently multi-tenant environment.
Nevertheless, since access to the hardware and networking
infrastructure of Amazon cloud is limited, we need to deploy
our implementation of the cloud integrated with an SDN
controller. Although this will result in an extra virtualization
overhead, we will be able to evaluate the scalability of ASETS
and SETSA.

In our experiment, we define the scale of the system by the
number of virtual machines launched as the workers. SETSA
is expected to perform better as the scale of the system goes
up. Results confirm our assumption. Figure 12 shows how
SETSA improves the performance of HPCaaS on public
amazon cloud significantly up to 67%. As we scale up the
system, number of network links and available bandwidths
increase, letting SETSA to have a larger variety of choices to
redirect data.

Figure 12. The performance of SETSA on Amazon Public Cloud

VIII. CONCLUSION AND FUTURE WORK
The paper comprehensively analyzed performance of the

proposed task scheduling scheme for HPCaaS; ASETS (A
SDN Empowered Task Scheduling System), alongside with its
primary scheduling algorithm; SETSA (SDN Empowered Task
Scheduling Algorithm). ASETS benefit from a Software-
Defined Networking capabilities by leveraging a SDN
controller in the architecture. SETSA utilizes the SDN
controller to actively monitor the available network bandwidths
in order to redirect data over the most suitable link. Our studies
and experiments identified three primary challenges for
HPCaas; cloud networking, cloud multi-tenancy, and the
virtualization overhead. SETSA aims to improve the
performance of scheduling data-intensive HPC tasks on the
cloud in term of job finishing time by better utilizing the

network. Analyzing the performance of SETSA on two
implementations of ASETS on a private OpenStack cloud and
Amazon public cloud indicates that SETSA is capable of
improving the performance of HPCaaS significantly up to
67%.

ASETS is a configurable, dynamic and scalable architecture
capable of adapting other scheduling techniques for HPCaaS
that may utilize Software-Defined Networking features as well.
While SETSA showed a significant performance improvement
for data-intensive HPC tasks, research and developments for
other scheduling algorithms to utilize SDN capabilities are
ongoing. Moreover, future works include the implementation
and performance analysis of SETSA Window (SETSAW)
which is a parallel version of SETSA as well. SETSAW aims
to reduce the overhead of SETSA by assigning multiple tasks
to workers (virtual machines) at a same time.

Furthermore, SETSA potentially is capable of considering
the cost of virtual machines as well. Adding the cost model
enables the scheduler to decide about the target virtual
machines such that the ratio of performance/cost could be
maximized. Also, while ASETS has a shared file system,
another area of possible future studies includes expanding the
idea to distributed file system architectures as well.

ACKNOWLEDGEMENT
The research was partially supported by David and Amy

Fulton Endowed Professorship in Computer Science at
Bowling Green State University.

REFERENCES

[1] Nick McKeown , "Software-defined networking," in INFOCOM
keynote talk 17, no. 2 , 2009.

[2] Saba Jamalian, Hassan Rajaei, "ASETS: A SDN Empowered Task
Scheduling System for HPCaaS on the Cloud," in 2nd IEEE
International Workshop on Software Defined Systems (SDS 2015) in
conjunction with IEEE International Conference on Cloud Engineering
(IC2E 2015), Tempe, AZ, USA, 2015.

[3] Shainer, G.; Tong Liu; Layton, J.; Mora, J., "Scheduling strategies for
HPC as a service (HPCaaS)," in IEEE International Conference on
Cluster Computing and Workshops, 2009. CLUSTER '09. , 2009.

[4] Andrew J. Younge, John Paul Walters, Stephen Crago, Geoffrey C.
Fox, "Evaluating GPU Passthrough in Xen for HighPerformance Cloud
Computing," in IEEE 28th International Parallel & Distributed
Processing Symposium Workshops, 2014.

[5] Thamarai Selvi Somasundaram, Kannan Govindarajan, "CLOUDRB: A
framework for scheduling and managing High-Performance Computing
(HPC) applications in science cloud," Future Generation Computer
Systems, vol. 34, pp. 47-65, 2014.

[6] Gupta, A. ; Faraboschi, P. ; Gioachin, F. ; Kale, L.V. ; Kaufmann, R. ;
Lee, B.-S. ; March, V. ; Milojicic, D. ; Suen, C.H. , "Evaluating and
Improving the Performance and Scheduling of HPC Applications in
Cloud," IEEE Transactions on Cloud Computing, no. 99, 2014.

[7] AbdelBaky, M.; Parashar, M.; Hyunjoo Kim; Jordan, K.E.; Sachdeva,
V.; Sexton, J.; Jamjoom, H.; Zon-Yin Shae; Pencheva, G.; Tavakoli, R.;
Wheeler, M.F.,, "Enabling High-Performance Computing as a Service,"
Computer, vol. 45, no. 10, pp. 72-80, 2012.

[8] He-Jhan Jiang,Kuo-Chan Huang,Hsi-Ya Chang,Di-Syuan Gu,Po-Jen
Shih, "Scheduling Concurrent Workflows in HPC Cloud through
Exploiting Schedule Gaps," Algorithms and Architectures for Parallel
Processing, vol. 7016, pp. 282-293, 2011.

[9] Peng Qin, Bin Dai, Benxiong Huang, Guan Xu, "Bandwidth-Aware
Scheduling with SDN in Hadoop: A New Trend for Big Data,"
arXiv:1403.2800v1, 2014.

[10] Gupta, Abhishek, Laxmikant V. Kale, Filippo Gioachin, Verdi March,
C. Suen, B. Lee, Paolo Faraboschi, Richard Kaufmann, and Dejan
Milojicic, "The who, what, why and how of high performance
computing applications in the cloud," in Proceedings of the 5th IEEE
International Conference on Cloud Computing Technology and
Science, 2013.

[11] Tirumala, Ajay, Feng Qin, Jon Dugan, Jim Ferguson, Kevin Gibbs,
"Iperf: The TCP/UDP bandwidth measurement tool," [Online].
Available: http://dast.nlanr.net/Projects(2005).

[12] Lindahl, Erik, Berk Hess, and David Van Der Spoel, "GROMACS 3.0:
a package for molecular simulation and trajectory analysis," Molecular
modeling annual, vol. 7, no. 8, pp. 306-317, 2001.

[13] Wei-Shen Ou, Chao-Tung Yang, Yu-Tso Liu, Ching-Hsien Hsu, Hsien-
Yi Wang, "On implementation of GPU virtualization using PCI pass-
through," in Proceedings of the 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science,
CLOUDCOM '12, 2012.

[14] Jim Theodoras, "The Huge Internet Change You Probably Missed," 6
November 2014. [Online]. Available:
http://www.informationweek.com/cloud/infrastructure-as-a-service/the-
huge-internet-change-you-probably-missed/a/d-id/1317190. [Accessed
14 February 2015].

[15] Nunes, B.A.A.; Mendonca, M.; Xuan-Nam Nguyen; Obraczka, K.;
Turletti, T., "A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks," IEEE Communications
Surveys & Tutorials, vol. 16, no. 3, pp. 1617 - 1634, 2014.

[16] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy,
Ali Ghodsi, Scott Shenker, "Software-defined internet architecture:
decoupling architecture from infrastructure," in 11th ACM Workshop on
Hot Topics in Networks (HotNets-XI). ACM, New York, NY, USA,
2012.

[17] William Stallings, "Software-Defined Networks and OpenFlow," The
Internet Protocol Journal, March 2013.

[18] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner,
"OpenFlow: enabling innovation in campus networks," ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-
74, 2008.

[19] Azodolmolky, S.; Wieder, P.; Yahyapour, R., "Cloud computing
networking: challenges and opportunities for innovations," IEEE
Communications Magazine, vol. 51, no. 7, pp. 54-62, July 2013.

[20] Rachel Householder, Scott Arnold, Robert Green, "On Cloud-based
Oversubscription," International Journal of Engineering Trends and
Technology (IJETT) , vol. 8, no. 8, 2014.

[21] "OpenDaylight," [Online]. Available: http://www.opendaylight.org/.
[Accessed February 2015].

[22] "RedHat RDO," [Online]. Available: https://openstack.redhat.com/.
[Accessed February 2015].

	I. Introduction
	II. Related Work
	III. HPC as a Serive (HPCaaS)
	A. HPCaaS Benefits
	1) Cost Efficiency: HPCaaS makes it possible for cloud providers to run simultanous HPC jobs on their infrastructure to not only fill the gaps in the workflows with other jobs [8], but also to provide customizable, scalable, and elastic virtual clusters for users. This will result in a more efficient service and a maximized benefit. Users as well can also reduce costs by turning the capital expenditure to operational by renting services instead of buying the required infrastructure. A comprehensive study and evaluation of HPC applications on the cloud [10] indicates the cost efficiency of the cloud for small scale HPC applications.
	2) Resource Utilization: Cloud providers benefit from a multi-tenant environment where they can utilize their resources by having simultanous HPC jobs. Moreover, users can scale up and down their resources even during run-time according to the application deman.
	3) Maintenance and Administration: The scientific community that contributes as the majaroty of HPC users often have limited computer ccience background. HPCaaS eliminates all the hassles of setting up an HPC cluster and maintenance of a powerful supercoputer for the users.

	B. HPCaaS Chellenges

	IV. Software-Defined Networking (SDN)
	V. A Reconfigurable Task Scheduler on the Cloud
	A. ASETS: A SDN-Empowered Task Scheduling System
	B. SETSA: SDN-Empowered Task Scheduling Algorithm
	C. Discussions

	VI. Implementation Methods
	A. Private OpenStack Cloud
	B. Public Amazon Cloud

	VII. Experiments Results and Analysis
	A. Measuring Overhead of SETSA
	B. ASETS on Private OpenStack Cloud
	C. ASETS on Amazon Piblic Cloud

	VIII. Conclusion and future work
	Acknowledgement
	References[1] Nick McKeown , "Soft

