
Design and Implementation of GXP Make
—a Workflow System Based on Make

Kenjiro Taura, Takuya Matsuzaki, Makoto Miwa, Yoshikazu Kamoshida,
Daisaku Yokoyama, Nan Dun, Takeshi Shibata, Choi Sung Jun, and Jun’ichi Tsujii

University of Tokyo
7-1-3 Hongo Bunkyo-ku, Tokyo 113-0033, Japan

Contact Email: tau@logos.t.u-tokyo.ac.jp

Abstract—This paper describes the rational behind designing
workflow systems based on the Unix make by showing a number
of idioms useful for workflows comprising many tasks. It also
demonstrates a specific design and implementation of such a
workflow system called GXP make. GXP make supports all
the features of GNU make and extends its platforms from
single node systems to clusters, clouds, supercomputers, and
distributed systems. Interestingly, it is achieved by a very small
code base that does not modify GNU make implementation at
all. While being not ideal for performance, it achieved a useful
performance and scalability of dispatching one million tasks in
approximately 16,000 seconds (60 tasks per second, including
dependence analysis) on an 8 core Intel Nehalem node. For
real applications, recognition and classification of protein-protein
interactions from biomedical texts on a supercomputer with more
than 8,000 cores are described.

I. INTRODUCTION

Scientific workflows generally consist of many individually
developed components. The primary role of scientific work-
flow systems is to facilitate composition of such components.
A number of workflow systems have been proposed with
different focuses, but we feel they are still not as accessible
and user-friendly as they should be. More specifically, many
systems suffer from one or more of the following problems.

Setup Cost: They are often built on a heavy stack of software
layers that take a significant amount of effort to set up.
For example, many systems require a batch scheduler or
a Grid middleware that take a fair amount of installation
effort on individual compute nodes and an even larger cost
on the master node. Systems based on web services require
installing and configuring an application server.
Development Cost: They sometimes lack a workflow de-
scription language sufficiently expressive and convenient.
Some systems employ an XML-based syntax that is full
of tags enclosing small pieces of information; some lack
dynamic constructs to concisely describe many tasks instan-
tiated from a template, forcing users to manually describe all
individual tasks; some require individual components to be
wrapped (e.g. by a Java class) to conform to their component
models.
Learning Cost: Besides learning a workflow language, users
often need to learn specifics of the surrounding environment
such as batch schedulers.

Such problems are often overlooked for the ambitious project
goal of being comprehensive tools. In reality, however, users
often like to start developing their workflows in their personal
or laboratory machines with a minimum learning/physical
investment. They like to have a short turnaround time until
they get the first result and a smooth transition path to larger
systems when a need arises. Workflow systems thus need to be
accordingly designed for such criterion as a minimum installa-
tion cost especially on small systems, a small initial learning
cost, a straightforward composition of ordinary executables,
and a smooth transition path to larger environments.

This paper describes a workflow system called “GXP make,”
which takes these design goals driving principles rather than
afterthoughts. As a workflow description language, it simply
uses the Unix make, which is not only popular among pro-
grammers but also very “straight to the point,” thus easy to
start with for inexperienced users too. Moreover, GXP make
uses an existing implementation of make (GNU make) without
any modification. This achieves an almost complete compati-
bility with the current and future versions of GNU make. GXP
make is a part of a software package called GXP and it is
internally a thin layer on top of an underlying function called
“GXP shell” [1]. As its name suggests, GXP shell exposes
a shell-like remote process invocation command, making it
uniform across a range of systems (a single multicore node,
Beowulf cluster with SSH accesses, batch-scheduled clusters,
and distributed environments consisting of multiple sites).
Finally, it automatically installs itself to individual compute
nodes on demand, without assuming any shared file system
between the local node and the compute nodes. The net result
is a lightweight workflow system that, on most Unix platforms,
only takes a download to a single node for installation, little
initial learning at least for those who have some experiences
in command-line interfaces of Unix, and no additional work
to migrate to clusters with a shared file system. GXP is
written in Python, so it needs no compilation. Like the original
make, GXP make currently assumes an underlying shared file
system. This is typically not an issue within a single cluster
or a supercomputer, which usually operates one of mature
networked file systems (e.g. NFS, Lustre [2], and GPFS [3]).
With multiple clusters, we routinely experiment with SSHFS
[4] and Gfarm [5]. We are working on a user-level distributed
file system called GMount [6], again focusing on low setup

2010 Sixth IEEE International Conference on e–Science

978-0-7695-4290-4/10 $26.00 © 2010 IEEE

DOI 10.1109/eScience.2010.43

214

TABLE I
WORKFLOW SYSTEMS

workflow primary target
desc. component env.

GXP make make executable HPC
Swift[8] SwiftScript executable HPC
Dryad[9] C++ executable HPC
Xcrypt[10] Perl dialect executable HPC
Hadoop[11] N/A (fixed) Java class HPC
Taverna[12] GUI Web service WWW
Triana[13] GUI Java class LCS
Kepler[14] GUI Java class LCS
Pwrake[15] Rake executable HPC
makeflow[16] make-like executable LCS
SGE qmake[17] make executable HPC
DAGMan[18] static DAG executable LCS
Pegasus[19] static DAG executable LCS

cost. Using a system call interceptor such as Parrot [7] could
be another interesting approach.

This paper makes the following contributions.
• It demonstrates the suitability of make as a workflow

language. It specifically shows there are many features
not so commonly known but quite useful to describe large
workflows with many tasks.

• It shows how to extend function of GNU make, which
originally supports parallel execution within a single
node, with parallel execution across nodes.

• It analyzes performance and scalability limits of the
resulting system.

• It describes a case study of a real natural language
processing application.

II. RELATED WORK

Workflow systems have different target scenarios and design
emphases, but their basic function is common; they maintain a
DAG of ‘tasks’ and execute those whose dependencies are met.
They are categorized by at least the following three aspects.
Table I gives a brief summary.

1) DAG description interfaces or languages, i.e., how users
express tasks and communication thereof.

2) Component models, i.e., how users create a component
instantiated to tasks. They may be regular executables,
Java classes, or Web services.

3) Main target environments, e.g., High Performance Com-
puting environments (HPC), Loosely Coupled Systems
(LCS), World Wide Web (WWW), etc. While there are
no strict boundaries between these environments, HPC
generally refers to a cluster or a supercomputer often
sharing a single file system and LCS a collection of
resources distributed in a campus wide scale.

Our work is in spirit closest to Swift scripting language
[8] and its dispatcher Falkon [20]. They focus on massively
parallel computation out of regular executables and their high
performance execution in HPC environments. Swift is a script-
ing language specifically designed for describing workflows. A
similar approach is to embed a DAG description library into an
existing programming language, as demonstrated by Dryad [9]

and Xcrypt [10]. Dryad is a C++ library to compose DAGs and
Xcrypt a perl extension. Like Dryad and Xcrypt, we leverage
an existing syntax and tool (make) to minimize learning
barriers. Neither did we implement a parser/interpreter of make
but only implemented a dispatcher.

MapReduce[21] was shown to be a powerful framework that
can expresses many algorithms by customizing just a few ele-
mentary components (namely, map, reduce, and a few others).
As a model of computation, MapReduce can be viewed as a
special type of workflows following a fixed template (i.e. m
map tasks each connected to r reduce tasks). Not surprisingly,
make is expressive enough to encode MapReduce, as shown
in Section III. To be fair, the focus of MapReduce is on high
performance execution of data-intensive computation rather
than rapid and flexible compositions of existing executables.

Taverna [12], Triana [13], and Kepler [14] have many
common characteristics. They all provide GUI for composing
workflows with boxes and connectors. They have underly-
ing languages based on XML, but they are very tedious to
read/write. Components are primarily either web services or
Java classes adhering to specific conventions. Either case,
integrating a normal command as a component is not as
straightforward as just using it from make. Due to its emphasis
on integrating remote web services, implementation is not
geared toward high throughput and many-task computing.
They invoke either a SOAP-based RPC or a Grid job sub-
mission for each task.

Parallel and distributed make is an old idea [22], [23],
[24], and it is recently used as the basis of workflow systems
[16], [15]. Sun Grid Engine [17] also supports a parallel
make in clusters (qmake). GNU make actually has an old
undocumented configuration option, turned off by default, for
distributed make based on a library called Custom. Among
them, SGE qmake [17] and makeflow [16] are the closest to
GXP make. For comparison, SGE qmake only supports SGE
and since it dispatches individual jobs via SGE, its throughput
is limited by that of SGE, which is a few jobs per second.
Makeflow is a job description language similar to make but
lacks features useful for describing large workflows. They
include pattern rules and wildcards, which we show are very
important in Section III.

III. DESCRIBING WORKFLOWS WITH MAKE

A. Make Basics and Simple Examples

An input file of make, commonly called a makefile, de-
scribes workflows with a set of rules. A rule specifies a target
file, files it depends on called prerequisites, and a command
(or a series thereof) to create the target from its prerequisites.
In essence, a makefile describes dependencies between files
and actions to resolve them. Given a set of rules described
in a makefile, files that should be created, and the current
file system state (i.e. existence and timestamp of files), make
calculates commands to invoke and their order.

GNU make supports pattern rules (rule templates) to ef-
fectively specify many rules with a single description. This
feature is particularly useful for many-task computation. GNU

215

make supports two kinds of pattern rules, one called static
pattern rules and the other called implicit pattern rules (similar
to the traditional suffix rules). Differences between them are
subtle, and this paper only explains the former.

The syntax of static pattern rules is similar to that of
ordinary rules, except for the following.

• A static pattern rule specifies a list of files to which the
pattern applies,

• the target may contain a single ’%’ character that matches
any non-empty string, and

• the prerequisites may also contain % character(s) repre-
senting the string that matched the % character in the
target.

A command-line can refer to the string that matched the
% character by the built-in variable ‘$*’. GNU make has
a filename globbing function (similar to that of shells), a
function that returns the standard output of arbitrary shell
commands, and many functions that transform a list of strings.
Combination of these functions and pattern rules makes make
particularly convenient for describing workflows of many
tasks.

B. Pattern Rules for Many Tasks

Here is a small yet complete makefile that applies ‘bwa’
command to all files that have suffix ‘.fastq’ in the current
directory.

fastq:=$(wildcard *.fastq)
sais:=$(fastq:.fastq=.sai)
all : $(sais)
$(sais) : %.sai : %.fastq

bwa aln hg19.fa $*.fastq -f $*.sai

The $(wildcard *.fastq) is an invocation of a filename
globbing function that expands into a list of files matching the
pattern *.fastq. The $(fastq:.fastq=.sai) in the
second line substitutes .sai for every occurrence of .fastq
in the $(fastq) list. This is a common template for data
parallel workflows.

The almost identical template can be used to describe so-
called “parameter-sweep” workflows, with the only difference
being that we use a function to generate parameters (most
typically by a shell command) rather than a file globbing.

x:=$(shell seq 1 10)
results:=$(addsuffix .res,$(x))
all : $(results)
$(results) : %.res :

simulate --seed $* > $@

The right hand side of the first line expands to the output of
seq 1 10, which is 1 2 ... 10 and that of the second
line 1.res 2.res ... 10.res, which becomes the list
of target files.

C. Encapsulating Parameter Sweep and Data Parallelism

With only pattern rules, describing tasks that take mul-
tiple parameters is not straightforward. For example, let’s
say we have two parameters x and y both taking one

map

tasks
intermediate

files reduce

tasksinput file

output files

Fig. 1. A DAG representation of MapReduce

of Cameroon, Denmark, Japan, and Netherlands,
and we would like to execute commands ‘match x y’ for all
combinations of x and y. That is, we would like to have a
concise description of tasks that would be equivalent to the
following.

Cameroon-Cameroon :
match Cameroon Cameroon

Cameroon-Denmark :
match Cameroon Denmark

...
Netherlands-Netherland :

match Netherlands Netherlands
A pattern rule cannot apply straightforwardly to this exam-

ple because the pattern rule can have only one placeholder (i.e.
%). A more powerful define primitive can be used to write
a template taking any number of parameters. The template of
the above rules can be written as follows.

define match_rule
$(1)-$(2) :

match $(1) $(2)
endef

A built-in function call instantiates the body of a define
and eval evaluates the argument string as if it is written in
the makefile. Finally, foreach built-in function is the make’s
loop construct. Putting them together, our example can be
written as follows.

teams:=Cameroon Denmark Japan Netherlands
$(foreach x,$(teams),\
$(foreach y,$(teams),\

$(eval $(call match_rule,$(x),$(y)))))
It is general and conceptually simple, but admittedly not

elegant in terms of syntax. Since this is very common in
parameter-sweep workflows, GXP make encapsulates this pat-
tern into a convenient library, with which this example can
look more straightforward.

parameters:=x y
x:=Cameroon Denmark Japan Netherlands
y:=Cameroon Denmark Japan Netherlands
cmd=match $(x) $(y)
include $(GXP_MAKE_PP)

All the mechanism is in an include file $(GXP_MAKE_PP).
Due to space limitation, we refer the interested readers to GXP
distribution [25] for implementation details. .

D. MapReduce
Given the power of user-defined macros (define), its

invocation (call), and a loop (foreach), it is not surprising

216

that MapReduce can also be expressed with them. Fig. 1
represents MapReduce in a DAG. GXP make allows users
to specify arbitrary command-lines for map and reduce tasks,
giving a framework similar to Hadoop’s streaming API. It is
encapsulated in a library just like the above parameter-sweep
framework. Here is the famous word count example that prints
the number of occurrences of each word in the text.

input:=big.txt
output:=wc.txt
mapper:=awk -f wc_mapper
reducer:=awk -f wc_reducer
include $(GXP_MAKE_MAPRED)

We again refer the interested readers to [25] for its im-
plementation. By default, the mapper is any command-line
that reads lines from its standard input and writes key-value
pairs to its standard output. Each line of the output should
contain a single key-value pair, with its key in the first
column, followed by the value. The reducer is any command-
line that reads key-value pairs from its standard input in the
ascending key order, and writes key-value pairs to its standard
output. A fully functioning implementation of wc_mapper
and wc_reducer in AWK is as follows.

mapper:
{ for (i = 1; i <= NF; i++) print $i,1; }

reducer:
{ if (k != $1) {

if (k != "") print k,v;
k = $1; v = 0; }

v += $2; }
END { if (k != "") print k,v; }

While GXP make’s MapReduce implementation is exper-
imental and nothing like a replacement of Hadoop, it has
advantages of being small and simple. It inherits the GXP’s
advantage of requiring no installation on compute nodes;
it can run in any environment GXP supports (e.g. batch
scheduled supercomputer) and in particular independent from
the underlying file system. For example, it can use an HPC
file system such as Lustre. It also inherits the benefit of
being based on make; it allows users to customize other
components, including input readers, partitioners, sorters, and
mergers, all with a matter of a single assignment prior to
the include statement. Customized components can also be
arbitrary executables and interaction between them can be
completely understood by dry-running the workflow (i.e. by
‘make -n’). This is in contrast to Hadoop streaming in which
only mappers and reducers can be arbitrary executables but
other components can only be written in Java after learning
the structure of its class library.

E. Summary: Why Make is so Useful for Workflows?

We believe make is useful not just because it is already there
in many environments, but also because it has many features
that fit workflows.

Data-oriented declarative view: Most workflow systems
are “task-oriented,” in the sense that users specify tasks that

should be performed. In practice, they depend on file system
states such as available input files and intermediate/output
files already produced, perhaps by previous runs of the same
workflow or other workflows. In most workflow systems,
it is the user’s responsibility to derive tasks to execute
from such file system states. In contrast, make allows users
to specify “result they eventually want.” The make system
calculates tasks that should be run based on file system states.
As a result, workflows become more declarative and their
reusability enhanced.
Concise description: As we have seen, makefile has pow-
erful constructs that make workflow descriptions much more
concise and less error-prone than some other systems. Some
systems lack mechanisms analogous to pattern rules (or
define) and many systems adopt XML-based syntax,
which are if not impossible very tedious to write manually.
Fault tolerance: The execution model of make automatically
implies a limited form of fault tolerance. After a job fails for
any reason and so does the entire make eventually, simply
running the same make again continues the workflow from
the point it left off. Similar observations are made in [18]
and [8].
Dry run: Make supports an option (‘-n’) that shows com-
mands that will be executed without actually running them.
Obviously, the feature is quite useful for debugging.
Flexible parallelism control: Make supports an option
(‘-j’), which specifies the maximum parallelism (the num-
ber of outstanding tasks). Switching between parallel and
serial executions is also trivial.

IV. DESIGN OF GXP MAKE

A. Design Features

As we have seen in the previous section, while the core
functions of make looks simple at a first glance, it is a
number of apparently minor features described in the previous
section that makes make particularly powerful for scientific
workflows. The design philosophy of GXP make is to carry all
functions of GNU make, from single node multicore systems
to clusters and distributed environments. Specific features are
the following.
Full Compatibility with GNU Make: From the beginning,
the goal is to make the migration path from GNU make on
single node to GXP make on multi node environments as
smooth as possible. To this end, GXP make is made fully
compatible with GNU make by its construction.
Ease of Installation: The setup cost of using GXP make
is kept minimum. All that is required is to download GXP
tarball on a single node and have GNU make ready on that
node. Specifically, GXP make requires no prior setup on re-
mote compute nodes, either by the user or the administrator,
besides the following two obvious requirements; (1) The user
has a means to remotely execute a command on the remote
compute nodes. It is usually either a remote shell (e.g. ssh)
or job submission command of a local batch scheduler (e.g.
qsub). We collectively call them remote-exec commands

217

hereafter. (2) They have a Python interpreter, since GXP is
written in Python.
Portability and Uniform Interface across Platforms: GXP
make supports a uniform user interface across a range of
platforms including multi-core single nodes, Beowulf clus-
ters accessed by SSH, and shared clusters or supercomputers
managed by a resource manager (a batch scheduler). When
a user migrates from one environment to another, he can
specify the difference with a matter of a few lines completely
independent from workflow descriptions.
Fast Dispatching: Batch schedulers and Grid middlewares
have varying dispatching latencies and throughput, and some
have poor performance [20]. Workflow systems dispatching
individual tasks to the underlying batch scheduler [14], [13],
[19], [18] easily hit these limitations. GXP make acquires
resources by an underlying remote-exec command only once
per a unit of resource (typically a single node) and dispatches
tasks of a workflow without invoking it each time. This two
level approach was successfully used in Falkon [20] for fast
dispatching, and in Condor Gliding In [26] for interfacing
with resources managed by different resource managers.

B. User Interface

This section explains interface of GXP shell and GXP make
from a user’s perspective. Assume he can access machines
either via SSH or TORQUE batch scheduler, but the system
does not have GXP installed. The steps until running his first
workflow are completely described below.

Step 1 (Installation): Installation takes only downloading
GXP to a single node where he intends to interact with
GXP (hereafter called the home node). He needs no work on
individual compute nodes. To interact with GXP, he issues
gxpc command from his favorite shell. All functions of GXP
are accessible via a sub-command of gxpc.
Step 2 (Configuration): He tells GXP how it can reach a
particular resource. This is done by the use sub-command.
Here is an example specifying that resources whose name
begin with tokyo can be reachable from resources whose
name begin with amsterdam via SSH.
gxpc use ssh amsterdam tokyo

Each term (i.e. amsterdam and tokyo above) is actually
interpreted as a regular expression; it can be made more
specific and/or reusable.
The following two lines describe another environment
in which a cluster’s gateway host (cluster-gw)
can be reached from the current host via SSH, and
cluster nodes, which we assume are named like
cluster-node000, cluster-node001, ...,
can be reached from the gateway or another cluster node
via TORQUE.
gxpc use ssh ‘hostname‘ cluster-gw
gxpc use torque cluster cluster-node

He can issue any number of such use commands to flexibly
specify the resource usage conventions/restrictions of the
environment. In essence, they specify an edge-labeled graph

remote gxpds
gxpc e ...

home node

root gxpd

Fig. 2. Process Structure of gxpc and gxpd

of resources in which an edge A
m→ B represents A can

reach B by issuing m (e.g. ssh).
The setting persists only until he quits the GXP “session”,
which automatically starts when gxpc finds no sessions
and ends with an explicit gxpc quit command. To avoid
repeating this setting on every session, they can of course
be stored in a shell script file. It is only a few lines of
gxpc use commands that need to be different from an
environment to another. Resource acquisitions, command
invocations, and workflow executions that follow can be done
identically regardless of the configuration. Besides ssh and
torque, GXP includes supports of sge (Sun Grid Engine),
condor (Condor), sh (shell), and systems customized for
several supercomputer sites.
Step 3 (Resource Acquisition): After telling GXP how it can
reach resources, he can actually acquire resources by issuing
explore sub-command. The following tries to acquire 8
resources named cluster-node, as well as a resource
named cluster-gw.
gxpc explore cluster-gw cluster-node 8

It is at this point that GXP invokes ssh and qsub to reach
cluster-gw and eight cluster-node’s, respectively.
On each resource successfully acquired via explore com-
mand, a process we call GXP daemon, or gxpd, brings up.
Users normally consider a single gxpd a representation of a
node, but it is sometimes useful to bring up multiple daemons
on a single physical node. All GXP daemons form a tree
rooted at the home node and the tree serves as the message
channel to communicate with daemons (Fig. 2).
Step 4 (Workflow Execution): Finally, he writes a regular
makefile and issues make sub-command to run the workflow
with resources acquired. The simplest example is this.
gxpc make -j

All but the last step above is an interface of GXP shell,
whose role here is to form a pool of resources and expose
a uniform interface to launch remote processes on them.
With some resources acquired with explore, he can launch
processes on them using e sub-command of GXP shell. By
default, a command is executed by all GXP daemons he
acquired in the session, but there are many ways to specify
a subset of them, such as those based on host names, unique
names given to them, etc. For example,

gxpc -t cluster-node e hostname

lets all GXP daemons acquired by names matching
cluster-node run hostname command;

gxpc -g tokyo-tau-2010-...-3700 \
e hostname

218

specifies a GXP daemon whose uniquely assigned name
matches tokyo-tau-2010-...-3700 (omitted due to
page width limit). This is useful to specify exactly one GXP
daemon. GXP make uses it when dispatching a task of a
workflow.

V. IMPLEMENTATION

This section illustrates the main points of GXP implemen-
tation, focusing on how it achieves features claimed above. It
also reveals its architecture necessary to understand the current
performance/scalability limitations.

A. Implementing e

Launching a process on a remote node via e is a sim-
ple and lightweight event. As previously described, it is an
invocation of explore sub-command that triggers resource
acquisition by a remote-exec command. After acquiring some
resources, GXP daemons stay there until the user quits the
session. A subsequent invocation of gxpc e command simply
sends a command message to the GXP daemon at the home
node (hereafter called the root daemon). It then forwards the
message to all the designated GXP daemons down in the
tree. Thus, gxpc e is much lighter than invoking ssh or
qsub. Given a command message, a GXP daemon launches
a process executing it and forwards its standard out/err upward
to the root daemon, which then forwards them to the gxpc e
process. It also detects the termination of the process and
similarly sends its status to the root daemon. gxpc e exits
after collecting statuses of all the processes invoked as the
result of it.

B. Implementing explore

The goal of explore command is to bring up GXP
daemons on all targets specified by the command-line. It deter-
mines which GXP daemons should invoke which underlying
remote-exec command to bring up new daemons, consulting
the configuration expressed by use commands. Thus, an
elementary function that needs to be implemented is to bring
up a new GXP daemon on a remote host by invoking the
specified remote-exec command. An interesting issue is how
to do it without requiring the user to install a GXP daemon
program on the remote host in advance nor assuming a shared
file system between the local and the remote host.

You might imagine it is as simple as invoking an scp
command or alike to copy the GXP daemon program, but it is
much more complex. First, a particular file transfer command
may be unavailable or disallowed between some hosts. Let
us take scp as a particular example. It is a subsystem of
SSH, so it is simply unreasonable to assume it gets through
to hosts to which ssh does not. Letting users specify a file
transfer command that should be used is too user-unfriendly.
More importantly, it is not a simple file copy that is required,
but a more intelligent remote installer that first checks if the
GXP daemon program has already been copied, copies it to
a unique temporary directory (to avoid race conditions) only
when this is not the case, and finally invokes the copy. Note

that we need to do it within a single invocation of a remote-
exec command, to guarantee that they all happen in the same
node. We developed a bootstrapping mechanism to achieve it
under the minimum assumptions that GXP already relies on—
availability of a Python interpreter and a means to remotely
invoke it.

We invoke a Python interpreter with an option ‘-c’, which
takes a string as an argument and executes it as a Python
program. Since strings that can be written in a shell command-
line can be limited in size (among others), we pass a small
stub code that reads a number of characters from its standard
input and then executes it. That is, we invoke a remote python
interpreter by a command-line like this.

ssh target python -c \
’import os; exec(os.read(N))’

This is an example for SSH and the exact command differs
depending on the underlying remote-exec command used. N
is replaced with the number of bytes to feed. exec is a Python
function that executes a string as a Python program. Now the
client (the host that issued the above ssh command) feeds the
real installer program to its standard input. The real installer
program performs the actions outlined above and finally calls
the ‘execv’ system call to invoke the GXP daemon program
just installed.

C. Implementing make

gxpc make invokes GNU make passing all arguments
to it. In addition, gxpc make invokes a dispatcher, named
xmake. xmake is a simple event-driven program that behaves
as follows.

• It listens to a Unix domain socket to which external
clients will connect. The socket can only be written by
the user.

• Upon accepting a connection from a client, it receives
tasks. They originate from GNU make, so their depen-
dencies have been met (i.e. they are ready to go). The
exact mechanism in which GNU make sends tasks to it
will be described shortly.

• It performs match-makings between tasks and available
resources.

• It dispatches tasks to the resource selected, by invoking
gxpc e command.

• It detects termination of tasks and collects their exit
statuses.

• For each task terminated, it sends back the task’s status
to the client that sent it.

A missing piece is how to let the unmodified GNU make
send tasks to xmake, rather than directly executing it on the
local node. When GNU make decides to launch a command,
say hostname, it invokes the following command-line.

sh -c hostname

The good news is GNU make allows the user to customize
the name of the shell. Specifically, if it finds a definition

SHELL=S

219

gxpd

gxpc e ...

gxpc make

GNU make

mksh

xmake

home node

Fig. 3. Process Structure During make

0
300000
600000
900000

1200000

0 5000 10000 15000 20000

R
et

ir
ed

ta
sk

s

Elapsed time (sec)

0
50

100
150
200
250

0 5000 10000 15000 20000L
oa

d
av

g.
(1

m
in

)

Elapsed time (sec)

Fig. 4. Retired Tasks (top) and Load Average on the Dispatcher Node
(bottom)

in the makefile, it uses S in place of the sh above. This
way we can effectively ‘intercept’ process invocations of GNU
make. We implemented a small program called mksh, which
simply sends the argument of -c option to xmake. Fig. 3
summarizes the process structure while running a workflow
with GXP make.

We still need a trick to insert the above definition into
the makefile given from the user, for which GNU make
provides another useful feature. It is a customization via an
environment variable MAKEFILES, which lists makefiles that
should be read before each makefile as if they are included
from it. Before invoking GNU make, gxpc make appends
to this variable the name of the file whose only content is
SHELL=mksh.

VI. PERFORMANCE ASSESSMENT

Scalability and throughput of GXP make are limited by
resources imposed on the dispatcher and actions that must
happen there. In particular, given the maximum parallelism P
(specified by ’-j P ’), the dispatcher node must accommodate
GNU make, xmake, up to P mksh processes, and up to P
gxpc e processes. They clearly limit the scalability at some
point. Throughput is limited by how fast the dispatcher node
can process events related to task submission and termination.
Due to space limitation, our evaluation results presented here
are brief. We will publish more thorough performance analysis
and optimization elsewhere.

We measured the dispatching throughput of GXP make in
the InTrigger environment [27]. It is a cluster of 16 clusters in
Japan. It has approximately 400 nodes and 1,600 CPU cores
in total, of which 385 nodes were used in the experiment.

To emulate a high concurrency environment, GXP make is
configured so it sends to each host up to six times as many
tasks as its cores. For example, it sends to a dual-core host up
to 12 tasks at a time. It resulted in a worker pool running
up to 10,032 tasks concurrently. A node is designated as
the dispatcher node (home node of GXP). It is DELL R610
server with Xeon 5560 2.8GHz and 24GB DDR3 memory.
The operating system is Linux version 2.6.26-2-amd64 with
completely fair scheduler (CFS).

In this environment, we ran a workflow of 1,003,200 (≈ 1M)
independent tasks. Each task does nothing (the exact command
is ‘:’), so the purpose of the experiment is purely stressing
the dispatcher. It finished in 16,050 seconds. On the top of
Fig. 4 is the number of finished tasks over time. The retirement
rate is very stable over time and 62 tasks per second. The
number justifies the two level architecture; there are popular
batch schedulers and Grid middleware that have a throughput
as low as a few tasks per second [8]. It is still much slower
than Falkon that is outstandingly faster than any other systems
(> 3, 000 tasks per second as of [20] and 15, 558 tasks per
second in a more recent report on the web1). It should be
noted however that Falkon is a back-end job dispatcher that
should be combined with a front-end that analyzes workflows
and sends tasks to it. Combined with its front-end Swift, the
reported throughput is 56 tasks per second on the TeraGrid
[8]. Although these numbers are easy to vary by a significant
constant factor, the bottom line is that GXP make is among the
fastest systems supporting task dependencies. At the bottom
of Fig. 4 is the load average of the dispatcher node over time.
It fluctuates and in the beginning went above 200, due to
creations of many mksh and gxpc e processes. Note that
they block most of their lifetimes; they use CPU time only
right after they start and right before they exit. In systems
shared by many users, the usual deployment scenario is the
user runs the dispatcher at one of the nodes allocated by a
batch scheduler.

VII. A REAL USE CASE—EVENT RECOGNITION FROM
PUBMED ABSTRACTS

GXP make was applied to an event recognition workflow
that extracts and classifies bio-molecular events mentioned in
English texts. Example bio-molecular events of interest are an
expression of a certain gene, a phosphorylation of a protein,
and a regulation of certain reactions. The main component
program is based on the winning algorithm in BioNLP09
shared task on event extraction citeKim09Overview. We refer
the reader to [28] for details of the method used and [29], [30]
for other components. The input text is approximately 50% of
the whole PubMed [31] database as of April 2010 and contains
72 million sentences in total. To the best of our knowledge,
this is the largest dataset to which such deep NLP is applied.
The entire dataset was split into approximately 300K chunks
and the structure of the workflow for each chunk is shown on
the top of Fig. 5.

1http://dev.globus.org/wiki/Incubator/Falkon

220

text extraction

sentence splitter

Protein name

recognizer

Event recognizer

Enju

parser

Sagae's

dependency

parser

Event Structure

MEDLINE XML

0
2000
4000
6000
8000

10000

0 10000 20000 30000 40000O
ut

st
an

di
ng

ta
sk

s

Elapsed time (sec)

Fig. 5. Event Recognition Workflow (top) and Its Parallelism Profile (bottom)

The workflow is executed by GXP make over two clusters;
one is a cluster of 952 Hitachi HA8000 servers. Each node
is a four way Quad Core AMD Opteron 8356 (2.3GHz)
with 32GB memory. We use 512 nodes (8192 CPU cores)
of it. The other is a campus cluster of DELL R610 nodes.
Each node has Xeon E5530 2.4GHz and 24GB memory. We
used 52 nodes of it (416 CPU cores). At the bottom of
Fig. 5 is the parallelism profile over approximately ten hours.
Parallelism drops at around 18,000 sec, from about 8,000 to
below 1,000. This is because HA8000 is allocated to us only
in the first six hours. After those hours, the second cluster
joined the computation and remaining tasks were dispatched
to it, achieving the parallelism around 400.

VIII. CONCLUSION AND FUTURE WORK

We described a workflow system based on make and demon-
strated that it is indeed a powerful and expressive system with
a useful performance. We built it based on the unmodified
GNU make and a remote shell (GXP), by intercepting process
invocation of GNU make. Our hope is the paper provided a
refreshing view about how economically a powerful, easy-to-
learn/teach, and efficient workflow system can be built. Our
future work includes performance investigation and improve-
ment, file systems for distributed data intensive workflows, and
workflow systems embedded in a popular scripting language.
GXP is available at http://www.logos.ic.i.u-tokyo.ac.jp/gxp/.

ACKNOWLEDGMENT

This work was supported in part by the MEXT Grant-in-
Aid for Specially Promoted Research and Scientific Research
on Priority Areas.

REFERENCES

[1] K. Taura, “GXP: An interactive shell for the grid environment,” in IWIA,
2004, pp. 59–67.

[2] “Lustre,” http://wiki.lustre.org/.
[3] “IBM general parallel file system,” http://www-

03.ibm.com/systems/clusters/software/gpfs/index.html.
[4] “SSH filesystem,” http://fuse.sourceforge.net/sshfs.html.
[5] O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, and S. Sekiguchi, “Gfarm

v2: A grid file system that supports high-performance distributed and
parallel data computing,” in CHEP, 2004.

[6] N. Dun, K. Taura, and A. Yonezawa, “GMount: An ad hoc and locality-
aware distributed file system by using SSH and FUSE,” in CCGRID,
2009, pp. 188–195.

[7] D. Thain and M. Livny, “Parrot: Transparent user-level middleware for
data-intensive computing,” in Workshop on Adaptive Grid Middleware,
2003.

[8] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu,
T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely coupled
parallel computation,” in IEEE International Workshop on Scientific
Workflows, 2007.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, , and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
EuroSys, 2007.

[10] T. Hiraishi, T. Abe, Y. Miyake, T. Iwashita, and H. Nakashima, “Xcrypt:
Flexible and intuitive job-parallel script,” in SACSIS, 2010, pp. 183–191,
(in Japanese).

[11] “Hadoop,” http://hadoop.apache.org/.
[12] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,

C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Taverna: lessons in
creating a workflow environment for the life sciences,” Concurrency and
Computation: Practice and Experience, vol. 18, no. 10, pp. 1067–1100,
August 2006.

[13] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,
M. Shields, I. Taylor, and I. Wang, “Programming scientific and dis-
tributed workflow with Triana services,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1021–1037, August 2006.

[14] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the Kepler system,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1039–1065, August 2006.

[15] M. Tanaka and O. Tatebe, “Pwrake: A parallel and distributed flexible
workflow management tool for wide-area data intensive computing
(poster),” in HPDC, 2010.

[16] L. Yi, C. Moretti, S. Emrich, J. Kenneth, and D. Thain, “Harnessing
parallelism in multicore clusters with the all-pairs and wavefront ab-
stractions,” in HPDC, 2009, pp. 1–10.

[17] “Grid Engine project home,” http://gridengine.sunsource.net/.
[18] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, Workflows for

e-Science: Scientific Workflows for Grids. Springer Press, 2007, ch.
Workflow in Condor.

[19] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz., “Pegasus: a framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming Journal,
vol. 13, no. 3, pp. 219–237, 2005.

[20] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a
Fast and Light-weight tasK executiON framework,” in SC, 2007.

[21] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in OSDI, 2004, pp. 137–150.

[22] B. Folliot, “Implementation of a parallel and distributed MAKE on NFS
with GATOS,” in International Phoenix Conference on Computers and
Communications, 1990, p. 871.

[23] J. Buffenbarger, “A large-scale fault-tolerant distributed software-build
process,” in British Computer Society Configuration Management Spe-
cialist Group Conference, 2005.

[24] A. Lih and E. Zadok, “PGMAKE: A portable distributed make system,”
Computer Science Department, Columbia University, Tech. Rep., 1994.

[25] “GXP Grid and Cluster Shell,” http://www.logos.ic.i.u-tokyo.ac.jp/gxp/.
[26] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-

tice: the Condor experience.” Concurrency - Practice and Experience,
vol. 17, no. 2-4, pp. 323–356, 2005.

[27] “InTrigger platform,” http://www.intrigger.jp/.
[28] M. Miwa, R. Sætre, J.-D. Kim, and J. Tsujii, “Event extraction with

complex event classification using rich features,” JBCB, vol. 8, no. 1,
pp. 131–146, Feb. 2010.

[29] T. Ninomiya, T. Matsuzaki, Y. Miyao, and J. Tsujii, “A log-linear model
with an n-gram reference distribution for accurate HPSG parsing,” in
IWPT, 2007.

[30] K. Sagae and J. Tsujii, “Dependency parsing and domain adaptation
with LR models and parser ensembles,” in The CoNLL 2007 Shared
Task (EMNLP-CoNLL’07), 2007.

[31] “Pubmed,” http://www.ncbi.nlm.nih.gov/pubmed.

221

