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Several authors have previously shown that a Gpc-scale void based on the spherically symmetric

Lemaı̂tre-Tolman-Bondi (LTB) model can provide a good fit to certain cosmological data, including the

SNIa data, but it is only consistent with the observed CMB dipole if we are located very close to

the center, in violation of the Copernican principle. In this work we investigate the more general

quasispherical Szekeres model, which does not include spherical symmetry, in order to determine whether

this option may be less constricting. We find that the observer is still constrained to a small region, but it is

not as geometrically ‘‘special’’ as the center of a LTB void. Furthermore, whereas the quadrupole and

octupole near the center of a LTB void are necessarily small, certain Szekeres models can include a

significant quadrupole while still being consistent with the observed dipole, hinting that Szekeres models

may be able to give an explanation for the observed quadrupole/octupole anomalies.
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I. INTRODUCTION

The current standard model of the Universe includes a
large, mysterious dark energy component, generally taken to
be a cosmological constant, �. We know virtually nothing
about this major part of the Universe besides its magnitude,
inferred primarily from the supernova luminosity-redshift
relation [1]. The standard �CDM model, a homogeneous
model characterized by a cosmological constant (�) and a
cold dark matter (CDM) component, also provides a good fit
to the CMB power spectrum [2] and baryon acoustic oscil-
lation data [3], but these all essentially measure the same
thing: luminosity distances [4]. The cosmological constant,
a key feature of the standard model of cosmology, hinges on
the assumption that our interpretation of this one quantity is
accurate. In recent years, a number of authors have sug-
gested that an inhomogeneous universe model could provide
an alternative explanation of these observations without
requiring dark energy [5–10]. When we see larger luminos-
ity distances than expected, it could be due to a decrease in
the expansion rate with distance, rather than an increasewith
time. Much work has gone into studying the Lemaı̂tre-
Tolman-Bondi (LTB) model, an exact spherically symmet-
ric solution to Einstein’s equations [10–19]. This model is
capable of matching any possible distance-redshift curve,
without the need for any sort of dark energy.

This approach has a coincidence problem of its own. To
fully explain the supernova luminosity-redshift data with a
local void, it must be very large—at least several hundred
Mpc in radius [20]. It is unrealistic to put us at the exact
center of such a model, but if we are too far off center, we
would see a much larger CMB dipole than what we
actually observe. This is because photons passing through
the center of the void experience more of the higher

expansion rate inside the void, and are also subject to a
large-scale Rees-Sciama effect [11]. Alnes first estimated
the relationship between the observer’s position and the
CMB dipole in Ref. [7], and later calculated that this
constrains us to a position within 15 Mpc of the void center
for a 1500 Mpc-radius void [12]. Foreman later calculated
the constraint at 80 Mpc using a different model and some-
what different methods, still a small fraction of the total
void radius [13]. This goes against the Copernican princi-
ple, which states that the Earth does not occupy a special
place in the Universe. Indeed, to claim that we are very
close to the symmetry center of the Universe would seem
to be a step backwards towards the geocentric worldviews
of antiquity. Still, the Copernican principle is an assump-
tion, and though it has gained support from recently pro-
posed tests [21–25], it is not yet rigorously established by
observations. It should not be dismissed lightly, but there is
still room to consider alternative models.
Even if the observer is lucky enough to be in this small

low-dipole region, the high dipoles seen by hypothetical
observers farther from the center pose a problem due to the
kinetic Sunyaev-Zel’dovich (kSZ) effect. Free electrons
scatter CMB photons towards the observer, and if those
electrons see a large dipole along the line of sight, this will
affect the observed spectrum. This creates an additional
contribution to the CMB power spectrum at small angular
scales, tracing the anisotropy of the projected free electron
surface density [11,14,25,26]. This effect was first studied
in relation to clusters in LTB void models in Ref. [11], then
estimated for intracluster gas in Ref. [25], and finally
shown by Moss and Zibin to rule out most LTB models
without dark energy in Ref. [14].
Furthermore, due to the symmetry, CMB anisotropies

in the next several multipoles beyond the dipole re-
ceive very little contribution from the inhomogeneity
for observers near the center. This is disappointing,
because one of the most significant anomalies seen in
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the Wilkinson Microwave Anisotropy Probe (WMAP)
CMB data is the improbable alignment of the quadrupole
and octupole, first pointed out by Tegmark [27]. The
preferred axes of these two multipoles lie within 1�,
due to no specific feature, and there is currently no model
to explain this [28]. One might imagine that a very-large-
scale inhomogeneity of the sort proposed to explain the
distance-redshift curve could explain these large-scale
anomalies, but Alnes [12] found that, for observers in
the region allowed by the dipole, such a void produces
only a very small quadrupole and octupole, insignificant
compared to what is found in the WMAP.

The LTB model, though more general than the homoge-
neous and isotropic Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) model, is still a simplification. It can be
considered a smoothing of the inhomogeneities over the
angular variables, keeping only variation with respect to
the radial direction. The next step towards a general inho-
mogeneous universe model is the Szekeres class of models
introduced in Ref. [29]. These models, though still not
completely general, possess no inherent symmetries. The
most relevant subclass, the quasispherical Szekeres model,
can be pictured like a LTB model, but with the spherical
shells shifted around relative to each other. The notion of a
‘‘center’’ thus becomes somewhat unclear; outer shells are
not generally centered at the coordinate origin. Ishak et al.
and others have argued that this property gives these mod-
els an advantage over LTB models with regards to the
Copernican principle [30,31]. If there is no single unique
center, our position may not be so special after all.

Nevertheless, we must still satisfy the requirement that
the CMB dipole seen at the observer is not unacceptably
large compared to observations. We must then ask, in what
region of a Szekeres model of the kind Bolejko proposes
would an observer see a suitably small dipole? How does
the volume of this region compare to that of the corre-
sponding LTB model? If the region is still small, it would
seem that even in the Szekeres model we must reside in a
special location—the place where the observed dipole is
small—even if it is not the ‘‘center.’’ This provides a more
quantitative test of the model’s compliance with the
Copernican principle.

Once we have located the low-dipole region, we can also
investigate other properties this region can have, such as the
CMB quadrupole and octupole. This may show further
advantages over LTB models—in LTB models, the low-
dipole region has a inhomogeneity-induced quadrupole and
octupole too small to explain the anomalous alignment seen
in the real CMB [12], but we should not expect the Szekeres
model to be so limited. Studying the dipoles across the void
will also provide hints onwhether Szekeresmodels suffer the
same constraints from the kSZ effect as LTB models.

In summary, the LTB model has four shortcomings
related to its symmetry, the Copernican principle, and the
CMB, against which we wish to test the Szekeres model:

(i) Quantitatively, there is only a small region in a LTB
universe model in which an observer would see
a CMB dipole consistent with observations. This
fine-tuning requirement violates the Copernican
principle, which implies that any location should
be equally valid.

(ii) Qualitatively, the LTB model further violates the
Copernican principle because this ‘‘allowed’’ region
is geometrically special.

(iii) Due to the symmetry, CMB anisotropies in the next
several multipoles beyond the dipole receive very
little contribution from the inhomogeneity, so the
LTB model offers no explanation for the observed
anomalies in the quadrupole and octupole.

(iv) The kSZ effect at l ’ 2000–3000 is too strong to be
reconciled with observations [14].

The rest of this paper is organized as follows. In Sec. II,
we present the equations governing the quasispherical
Szekeres class of models and give the function definitions
used to describe the test models we will use. Section III
describes the methods we will use to perform our dipole
calculations. Section IV gives a brief theoretical discussion
of how exactly a CMB dipole arises in such models. We
present and discuss our results in Sec. V, and give our
conclusions in Sec. VI.

II. MODEL DEFINITIONS

A. The Szekeres model

The Szekeres model is a generalization of the LTB
model. It, too, contains only a comoving, irrotational,
pressureless dust. The Szekeres model, however, in gen-
eral, has no symmetry; there are no Killing vectors, except
in special cases [32].
The quasispherical Szekeres model is described by the

metric

ds2 ¼ �dt2 þ ð�0 �� E0
EÞ2

1� k
dr2 þ�2

E2
ðdx2 þ dy2Þ: (1)

Here, � ¼ �ðt; rÞ is the areal radius of the spherical shell
labeled by r at time t, k ¼ kðrÞ is an arbitrary function
determining curvature, and E ¼ Eðr; x; yÞ describes the
departure from LTB. A prime denotes a partial derivative
with respect to r. The function Eðr; x; yÞ is defined in terms
of three arbitrary functions of r as

Eðr; x; yÞ ¼ ½x� PðrÞ�2 þ ½y�QðrÞ�2 þ SðrÞ2
2SðrÞ : (2)

As with the LTB model, this model consists of a series of
spherical shells labeled by the coordinate r. The coordi-
nates on the shell, x and y, relate to the standard � and� by
a stereographic projection, as we will explain in the next
subsection. Unlike the LTB model, these shells are not
concentric, nor is matter distributed evenly across a given

ROBERT G. BUCKLEY AND ERIC M. SCHLEGEL PHYSICAL REVIEW D 87, 023524 (2013)

023524-2



shell. The functions PðrÞ, QðrÞ, and SðrÞ have three effects
on the model:

(i) They displace the centers of the shell rþ �r relative
to the shell r by �r�P0=S in the direction ð�;�Þ ¼
ð�=2; 0Þ, by �r�Q0=S in the direction ð�=2; �=2Þ,
and by �r�S0=S in the direction ð0; 0Þ.

(ii) They rotate the shells by �rP0=S about the axis
ð�=2;��=2Þ and by �rQ0=S about the axis
ð�=2; 0Þ.

(iii) They redistribute the matter on each shell in the
shape of a dipole along the direction of shifting.

If P0, Q0, and S0 all vanish, the model reduces to the LTB
model.

The Einstein equations describe the evolution of
the model in terms of its matter distribution and curvature:

_�ðt; rÞ2
c2

¼ 2MðrÞ
�ðt; rÞ � kðrÞ þ 1

3
��ðt; rÞ2; (3)

where an overdot indicates @=@t, � is a possible
cosmological constant, and the function MðrÞ is related
to the density by

4�
G

c2
�ðt; r; x; yÞ ¼ M0ðrÞ � 3MðrÞ E0ðr;x;yÞ

Eðr;x;yÞ
�ðt; rÞ2

h
�0ðt; rÞ ��ðt; rÞ E0ðr;x;yÞ

Eðr;x;yÞ
i :

(4)

By integrating (3), we reveal another free function:

t� tBðrÞ ¼
Z �

0

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=R� kþ�R2=3

p : (5)

The function tBðrÞ is called the ‘‘bang-time function,’’
because it denotes the time at which the shell labeled by
r emerges from the big bang singularity. It is associated
with decaying modes. For the remainder of this paper, we
will set � ¼ 0.

There is a gauge freedom in the choice of the r
coordinate, since the model is covariant under transforma-
tions of the form ~r ¼ fðrÞ. For instance, we could choose r
so that �ðt0; rÞ ¼ r, where t0 is the present time. This
effectively fixes tBðrÞ in terms of kðrÞ and MðrÞ through
Eq. (5). This leaves five free functions of r to define the
model: M, k, S, P, and Q.

B. Spherical coordinates

We can bring the coordinates to a more familiar form
with a simple transformation:

x� P ¼ S cot

�
�

2

�
cos�; (6a)

y�Q ¼ S cot

�
�

2

�
sin�: (6b)

In these coordinates, the metric is significantly more com-
plicated and no longer diagonal, but for some applications
they provide greater clarity. For instance, we can write

E0

E
¼ �S0 cos�þ ðP0 cos�þQ0 sin�Þ sin�

S
: (7)

This makes it clear that P defines anisotropy in the direc-
tion (� ¼ �=2, � ¼ 0), Q in the direction (� ¼ �=2,
� ¼ �=2), and S in the direction (� ¼ 0)—what we would
call ‘‘x,’’ ‘‘y,’’ and ‘‘z’’ in pseudo-Cartesian coordinates.
Note that the positive ‘‘z’’ axis has the Szekeres x and y
coordinates that diverge; we will have to steer clear of this
region to avoid problems with our numerical calculations.
There is nothing physically special about this region
(except in the case of P0 ¼ Q0 ¼ 0 and S0 � 0, but even
then a simple coordinate transformation can switch the
positive and negative ‘‘z’’ directions), so systematically
avoiding this region should not significantly affect our
analysis.

C. Test models

We will construct a set of Szekeres test models by
starting with one base LTB model and adding several
different Szekeres functions to it, each one resulting in a
different Szekeres model.

1. Base LTB model

For a base LTB model, we use a constrained Garcia-
Bellido Haugbølle (GBH) model [10]. This model
describes a large void with a homogeneous big bang
[tBðrÞ ¼ const], with a density profile defined in terms of
a radially dependent matter density parameter, defined as

�MðrÞ ¼ �out þ ð�in ��outÞ
�
1� tanh½ðr� r0Þ=2�r�

1þ tanhðr0=2�rÞ
�
;

(8)

and a radially dependent present expansion rate H0ðrÞ,
defined to ensure tBðrÞ ¼ const.1 Since our model does
not include dark energy, we need �out ¼ 1 in order to
ensure asymptotic flatness far from the void. Our choices
for the other parameters, �in (the matter density at the
center of the void), r0 (the characteristic size of the void),
�r (the sharpness of the void wall), t0 (the present age of
the Universe), and H0 (the local Hubble constant at the
center of the void) are given in Table I. This is similar to the
best-fit model found in Ref. [10], which was selected by
combining SNIa distance-redshift data, baryon acoustic
oscillation (BAO) data, and the scale of the first peak in
the CMB power spectrum. We define our r coordinate so
that �ðt0; rÞ ¼ r in units of Mpc.

1A similar model was introduced by Alnes et al. in Ref. [7].
However, we followed Garcia-Bellido and Haugbølle’s presen-
tation because we found it made certain aspects more intuitive,
such as their method of ensuring tBðrÞ ¼ const.
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2. Szekeres functions

For our test models, we desired something simple
enough to be readily analyzable, yet without symmetries
which could hide more general effects. We chose to set
SðrÞ ¼ 1 and QðrÞ ¼ 0. This leaves only one function to
work with, PðrÞ, yet does not result in axial symmetry
(though there is a discrete bilateral symmetry). We con-
structed our PðrÞ functions by a method inspired by
Ref. [31]. First, we define a function

dðr; ri; rfÞ ¼ ð1þ rÞ�0:99e�0:0003r
ðr� riÞ2ðrf � rÞ2
ðrf=2� ri=2Þ4

:

(9)

Then, we define PðrÞ as a piecewise function,

PðrÞ ¼ C

8>>><
>>>:
0 r < riR
r
ri
dð~r; ri; rfÞd~r ri < r < rfRrf

ri dð~r; ri; rfÞd~r r > rf:

(10)

This general form allows us to put a Szekeres anisotropy of
any strength we wish over any r range we wish, depending
on the constant parameters C, ri, and rf. As long as C< 1,

there is no shell crossing at the present time, and the last
factor in the definition of dðr; ri; rfÞ ensures that PðrÞ is
continuous up to the second derivative, avoiding possible
numerical issues.

In this manner, we construct six test models, with
parameters given in Table I. In model 1, the P function
is moderately strong and extends from the origin to
one-fourth the void radius. In model 2, the P function is
weaker, but covers a broader range, and does not begin
until one-fourth the void radius. This allows us to separate
the radial dependence of the dipole from local effects of the
Szekeres function. The third model’s P function has only
a relatively narrow spike, allowing us to examine the
effects of an isolated segment of Szekeres anisotropy
from locations in the interior, exterior, and middle of the
anisotropic shells. These three models will be the focus of

TABLE I. The parameters used to define our test models.
The same base LTB model parameters apply to all six models.
Quantities in Mpc refer to area distances of shells at the present
time.

Base LTB model parameters Szekeres parameters

r0 �r t0 H0 ri rf
�in Mpc Mpc Gyr km

sMpc Model C Mpc Mpc

1 0.630 0 575

2 0.315 575 2875

0.13 2300 620 15.3 64 3 0.945 100 300

4 0.945 0 575

5 0.630 0 1150

6 0.945 1900 2100

FIG. 1 (color online). Density plots of (a) model 1, (b) model
2, and (c) model 3, covering a two-dimensional cross section
corresponding to the symmetry plane. The plotting range for
each model is chosen to cover the Szekeres anisotropies, and the
color scale is adjusted for each plot to maximize the visual
contrast. Densities on the scale are written as fractions of �FLRW,
the density of the background FLRW model, which the test
models approach asymptotically at very high r. Black circles
show shells of constant r. The green triangles on each marked
shell show the direction of shell shifting, and yellow dots show
the geometric centers of the shells.
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our investigation, but we will also examine three more:
model 4, which is like 1 but with a stronger P function;
model 5, again like 1 but with broader range; and model 6,
like 3 but with the spike at a much higher r value, to
compare the effects of distant anisotropies and nearby ones.

Figure 1 shows two-dimensional cross sections of the
density distributions of each of the first three models.
These are not intended to be realistic models. Their pur-
pose is to provide insight into the observational effects that
can arise from a Szekeres-type anisotropy and to establish
a baseline from which we can extrapolate to more general
cases. A more realistic model would require that an
observer in the region allowed by the dipole would also
see a luminosity distance-redshift curve with directional
variation within the constraints set by supernova observa-
tions, as well as consistency with baryon acoustic oscilla-
tions, galaxy age data, and other such observations (all now
direction dependent due to the lack of perfect isotropy), all
while containing structures in some manner consistent with
the shape and statistics of observed large-scale structure.

III. METHODS

A. Calculating the dipole

We can calculate the observed CMB temperature at any
point in the sky by generating a null geodesic from the
observer backwards in time to the last scattering surface
(LSS), with the initial tangent vector at an angle corre-
sponding to the point in the sky in question. We do this by
integrating the geodesic equations,

d2x�

d�2
þ ��

�	

dx�

d�

dx	

d�
¼ 0; (11)

where � is the Christoffel symbol and � is an affine
parameter along the photon path. The exact forms of the
geodesic equations in the Szekeres model can be found in
Refs. [33,34], and are reproduced in Appendix A, along
with a brief discussion on calculating redshift, which
determines the CMB temperature seen along any line of
sight.

To rigorously calculate the observed dipole, we would
have to generate geodesics going in every direction to see
the CMB temperature over the whole sky, and find the
dipole by calculating the a1m coefficients of the spherical
harmonic expansion,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
m¼�1

ja1mj2
vuut ; (12)

a1m ¼
Z 2�

0

Z �

0

�T

T
Y1mð�;�Þ sin�d�d�: (13)

Since we desire a map of the observed dipole over the
whole space of the model, this would be computationally
expensive. A much faster method is possible if we can
assume the CMB anisotropies are dominated by the dipole

term. This is the case near the center of a LTB model
[12,13]; we will have to check whether this still holds in
our Szekeres models.
The method we will use is an extension of that used in

Ref. [13]. We will generate three spatially orthogonal pairs
of null geodesics backwards in time from the observer,
with the geodesics in each pair propagating in opposite
spatial directions. A basic illustration is shown in Fig. 2,
and the precise methods used to choose directions are
described in Appendix B.
Assuming the temperature of the LSS is uniform, the

CMB temperature measured at any point in the sky is found
from the redshift of the geodesic in that direction by

T ¼ T�
1þ z�

; (14)

where asterisks mark quantities at the LSS. We further
assume that the intersections of the geodesics with the
LSS occurs at an equal time t� in the synchronous gauge,
regardless of the direction of propagation.2 The tempera-
ture difference in each pair of geodesics can be treated as a
component of a vector. The magnitude of this vector gives
the total dipole. By dividing by the mean temperature, we
get the apparent dipole velocity,

FIG. 2 (color online). The six geodesics used to calculate the
dipole at a particular point in model 5. Each geodesic is shown in
a different color (online; gray in print), and each dot represents
one step in the numerical integration. The solid, black line
indicates where x and y diverge to �1.

2This is not strictly accurate, as the void in our test models
approaches the FLRW model only asymptotically, without a
compensating overdensity; since geodesics going in different
directions from a noncentral observer reach different radial
distances, the LSS may occur at slightly different times for
each. However, in our calculations, all of the geodesics reach
distances where the density approaches the FLRWmodel closely
enough that such differences are insignificant, as further verified
in the next section.
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v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT1 � T2Þ2 þ ðT3 � T4Þ2 þ ðT5 � T6Þ2

p
1
3 ðT1 þ T2 þ T3 þ T4 þ T5 þ T6Þ

; (15)

and the dipole magnitude is given by D ¼
ffiffiffiffiffi
4�
3

q
v. For a

derivation confirming that v as calculated above is indeed
the correct dipole, and a brief assessment of the error
caused by higher-order multipoles, refer to Appendix C.

In practice, we do not need to integrate the geodesics all
the way back to the LSS. At large radii, our models
asymptotically approach the FLRW model. If we integrate
to a sufficiently early time t1, all of the geodesics will be far
enough outside of the inhomogeneity that from then on the
redshifts evolve nearly exactly as in the FLRW model.
Then we can write

T ¼ T�
1þ zðt1Þ �

aðt1Þ
aðt�Þ ; (16)

where aðtÞ is the scale factor of the FLRW background.

The factors aðt1Þ
aðt�Þ in the numerator and denominator of (15)

cancel out, and can therefore be ignored. Likewise, we do
not need to assume any particular value for T�, since it does
not affect the final result in (15).

To check that the result is the true dipole, and has not
been overly contaminated by higher multipoles, we can
repeat the process with a different set of orthogonal
geodesics, and compare the results. Using this method,
we estimate that the relative error in our data due to this
effect is on the level of 10�3 or less.

B. Higher-order multipoles

We have seen how to calculate the CMB dipoles
generated by the inhomogeneities, but this is not
the only effect the inhomogeneities have on the CMB.
The inhomogeneities leave higher-order multipole
imprints on the CMB as well. To analyze the extent of
the inhomogeneity-induced spherical harmonics, we
adopt a procedure similar to that used to calculate the
dipoles, but with many more geodesics, propagating in
evenly spaced directions across the entire sky. We will use
a spacing of 4 degrees, for a total of 2534 data points for
each location we test.

To obtain the strength of a given multipole, we calculate
the alm coefficients by numerical integration (limited by
the resolution of the data)3:

alm � X2534
n¼1

Tð�n;�nÞY�
lmð�n;�nÞ sin�n����: (17)

We pixelize the sphere in a rectangular manner, with rows
of points of constant � and a uniform spacing between

rows of �� ¼ 4�. Within each row, �� varies to fill the
circle4:

�� ¼ 180�

b180 sin�=4c : (18)

IV. ORIGIN OF THE DIPOLE

In the LTB model, one can understand the CMB dipole
in terms of the Rees-Sciama effect [11]. Since the void is in
the nonlinear regime, its density contrast grows faster than
the scale of the Universe, causing the gravitational poten-
tial well to deepen over time. CMB photons passing
through the void lose energy because the well they climb
out of is deeper than the well they fell into. An off-center
observer will therefore see that photons which pass through
the center of the void are redshifted more than those
coming from the opposite direction.
Another way to understand the dipole is by directly

looking at two null geodesics, one passing through the
center of the void (ingoing) and the other extending radi-
ally in the opposite direction (outgoing). If the observer is
near the center, the ingoing geodesic crosses the center and
returns to the original shell without picking up much
redshift. The two geodesics then both propagate outwards
(and backwards in time), but since the ingoing geodesic
took a nonzero amount of time to cross the center (linearly
proportional to the initial shell radius), they cross each
shell at slightly different times throughout the journey.
We identify three potential ways in which the Szekeres

functions can influence photon redshifts, and therefore the
dipole:
(i) By directly affecting the longitudinal expansion rate,

�l ¼
_�0 � _�E0=E
�0 ��E0=E

: (19)

In a void model, this means that the expansion rate is
slower where shells are pressed together, and faster
where they are stretched apart. This induces greater
photon redshift on the stretched side and lesser red-
shift on the compressed side.

(ii) By altering the times at which photons pass through
shells. Looking backwards in time from the
observer, photons traveling along the direction of
shell shifting must travel a greater distance to reach
the outer shells than for an observer at the same
coordinates in the corresponding LTB model, thus

3In practice, we remove each multipole (starting with the
monopole) from the data before calculating the next, to avoid
spurious results from integration error.

4This simplistic pixelization scheme is prone to certain sys-
tematic errors in the calculations, but tests suggest that in the
present work these errors are on the order of 1 �K or less, small
enough to be ignored. We used this scheme because it was
simple to implement in MATHEMATICA, but for future work we
intend to use the HEALPix scheme, which is less straightforward
to connect with our MATHEMATICA code but ultimately more
reliable.
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reaching them at an earlier time; conversely, travel-
ing in the opposite direction appears faster. Even
when the Szekeres functions do not extend to high
radii, this effect causes the observer to see the outer
shells as though looking from a shifted position.

(iii) By influencing the total distance from the void the
photons reach when they hit the surface of last
scattering. This is related to the second case, but
only applies when the model does not approach the
FLRW model sufficiently quickly.

The third contribution is undesirable, since it explicitly
violates the assumption of a statistically uniform surface of
last scattering. We have confirmed that it does not play a
significant role in our model by comparing the difference
in the change in redshifts for a typical observer’s geodesics
between the times t0=600 and t0=20000. We find that they
differ by less than 0.1%. The dipoles found using these two
times as ending times also differ by less than 0.1%. We can
therefore be confident that the dipole is not greatly influ-
enced by effects near the surface of last scattering.

V. RESULTS AND DISCUSSION

For each model, we choose several r values, and for each
of these, we calculate the CMB dipoles seen by observers
at evenly spaced locations covering the sphere.

A. Fitting function

We have found that the dipoles on each shell of constant
r can be well approximated by a simple function of three
parameters:

Dðr; �;�Þ ¼ aðrÞr̂ð�;�Þ þ bðrÞ½cos�0ðrÞk̂� sin�0ðrÞî � ;
(20)

where r̂ð�;�Þ is the radial unit vector (normal to the shell),

and î and k̂ are unit vectors in the directions ð�=2; 0Þ and
ð0; 0Þ, respectively. This describes the sum of two vectors,
one of magnitude a and radial direction, and one of mag-
nitude b and constant direction ð�0; �Þ. The magnitude of
the former corresponds very closely to that of the dipole
seen in the corresponding LTB model [i.e., a model with
SðrÞ, PðrÞ, and QðrÞ set to constant values, but otherwise
unchanged]. The other vector can be thought of as a
‘‘Szekeres dipole,’’ as it is the result of the Szekeres SðrÞ,
PðrÞ, and QðrÞ functions. A few examples are shown in
Fig. 3. This simple function is able to fit the data to within
0.1 mK in all cases.

Though the Szekeres dipole appears to be nearly constant
on a given shell, its magnitude and direction do change as
we move between shells. Figure 4 shows the radial depen-
dence for each of the six models. A few key features are
immediately apparent. In models 2 and 6, we see that the
Szekeres dipole has very little radial dependence in the
range tested. In model 3, shells outside the Szekeres anisot-
ropy spike see virtually no Szekeres dipole at all, while

interior shells see a significant amount. The shell in
the middle of the spike sees a Szekeres dipole roughly
(but not exactly) half the magnitude (and half the �0 devia-
tion from �=2) of the interior shells. In general, as we
traverse through shells which have Szekeres anisotropies,
the magnitude of the Szekeres dipole decreases and the
angle decreases towards�=2. Furthermore, models in which
the Szekeres anisotropies occur at higher r (e.g., model 5
compared to 4, or 6 compared to 3) appear to generate
Szekeres dipoles with angles closer to �=2, compared to
the differences in the Szekeres dipole magnitudes.
The picture appears to be that the behavior of the

Szekeres functions at r values lower than that of the
observer has much less effect on the dipole than the behav-
ior at higher r values. As we move outwards from r1 to r2,
the portion of the Szekeres functions between r1 and r2
loses its impact. At least for observers reasonably close to
the origin (on the order of a few hundred Mpc or less), the
effects of the Szekeres functions in the interior are virtually
nonexistent.
As found by Ref. [12], the LTB dipole component

increases approximately linearly with r near the origin.
However, the Szekeres modifications shift the region of
interest to higher r values. We find that a cubic fit matches
the data to within 3� 10�4 mK for r � 400.

(a) (b)

(d)(c)

FIG. 3 (color online). Magnitudes and directions of dipoles
in a two-dimensional cross section corresponding to the
symmetry plane. Solid black arrows represent the total dipoles
from numerical calculations, green dashed arrows are the LTB
dipole, and blue dot-dashed arrows are the Szekeres component
of the dipole. Smaller red dotted arrows are the fitting errors—
the data minus the fit—magnified by a factor of 2000. (a): model
1, r ¼ 100 Mpc; (b): model 1, r ¼ 200 Mpc; (c): model 2,
r ¼ 150 Mpc; (d): model 3, r ¼ 200 Mpc.
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B. Size of ‘‘allowed’’ region

For the model to be consistent with observations, one
requirement is that the CMB dipole does not greatly exceed
the actual observed dipole. A number of authors have found
that in LTB models large enough to explain the observed
acceleration, this is only true within a very small region
near the center; everywhere else, the dipole is much larger
[7,11–15,26,35]. It would therefore seem highly improb-
able that we would find ourselves in such a specific region
where the dipole is relatively small. We wish to repeat this
calculation in our Szekeres test models, to see the size and
shape of this ‘‘allowed’’ region and determinewhether there
is any measurable advantage over the LTB model.

We will use our fits for the magnitudes and directions of
the Szekeres and LTB dipole components to find the region
where the total dipole is less than the 3.35 mK dipole
observed by COBE [36]. (A more complete calculation
would incorporate an additional stochastic dipole compo-
nent arising from peculiar velocities, but a rigorous calcu-
lation of this sort would require knowledge of the evolution
of perturbations in a Szekeres model, so we will leave this
to future work.5) The dipole is only low where the LTB

dipole and Szekeres dipole nearly cancel; it must therefore
be centered around a point on the shell where the Szekeres
dipole magnitude lines intersect the LTB dipole line in
Fig. 4. Once we have calculated the boundaries of this
allowed region, we will numerically integrate over it to
find the mass and volume contained within it.
Our results are summarized in Table II. Figure 5

shows this region visually for each of the three models.
We see that they are still small, roughly spherical regions
(even when they reside in a region of significant shell
shifting and twisting), though they are displaced away
from the coordinate origin. They are often larger than in
the base LTB model, but still small compared to the size of
the void, by a factor on the order of 10�6.
The mass is the more relevant quantity, since it deter-

mines the number of allowed galaxies. And we should
expect that the allowed mass is, in general, larger in
Szekeres models than in LTB models, because the
Szekeres anisotropy shifts the allowed region away from
the center of the void. This means it is in a higher density
region, with more galaxies where we may find ourselves
located. It seems that removing the spherical symmetry of
the LTB model does tend to somewhat alleviate the need
for fine-tuning of the observer’s location, but not by nearly
enough to fix the problem entirely.

C. Higher-order multipoles

Because a complete CMB map is far more computation-
ally intensive, we have fewer data points for the higher-
order multipoles at this time, so our analysis is limited. We
leave a more thorough analysis for future work, and present
our preliminary results here.
We performed the calculation for an observer at the

point of zero total dipole in each of the six models. We
found that model 2 has a significant quadrupole at this
location—about 5� 10�6, compared to the real observed
anisotropies of the order 10�5 [12]—and a very small
octupole, on the order of 10�7. Figure 6 shows the CMB
map at this point, as well as at a random point near the edge
of the allowed region. In the other models, the quadrupole
and octupole at the null-dipole point are below the level of
the random noise from numerical errors, and are therefore
not measurable.
It is clearly not a fluke that the quadrupole vanishes at

the null dipole, since it happened in five very different

FIG. 4 (color online). (a): Magnitudes of the Szekeres dipoles
at various r values in each of the three models, and the LTB
dipoles in brown, all as a factor of the actual observed dipole.
(b): �0 for the same dipoles.

TABLE II. Volumes and masses of the ‘‘allowed’’ region in
each of the six models, compared to that of the base LTB model.

Model Vi=VLTB mi=mLTB

1 1.14 1.26

2 1.14 1.27

3 0.93 0.99

4 1.18 1.35

5 1.30 1.58

6 1.04 1.05

5Since the region of interest is not necessarily near the
coordinate origin, the shear may be significant, so we cannot
assume that perturbations evolve the same way as in the FLRW
model, as done for LTB models in Ref. [13].
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FIG. 5 (color online). The total dipole magnitudes across
models 1 (a), 2 (b), and 3 (c). The region where the dipole
is less than the actual observed dipole is shown as a green
sphere. Its range is also marked in green on the axes. Shells of
constant r are also shown, in increments of 33 Mpc, colored
according to the magnitude of the total dipole, with lighter being
larger.

(a)

9 6 3 0 3 6
K

(b)

4 3 2 1 0 1 2 3
K

(c)

3 2 1 0 1 2 3
mK

(d)

12 9 6 3 0 3 6
K

FIG. 6 (color online). The full CMB sky induced by the
Szekeres void of model 2. Maps are oriented such that the z
axis (the top of the map) points in the model’s radial direction, and
the center of the map points in the model’s �̂ direction. (a): Raw
CMB sky map for an observer near the center of the low-dipole
region, with only the uniform 2.725 K monopole removed;
(b): same, but with the dipole and quadrupole removed, showing
that no higher moments are visible above the noise. (c): Raw map
for an observer at a random point near the edge of the low-dipole
region; (d): same, but with the dipole removed.
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models, but it does not appear to be a general rule
for Szekeres models either, as seen in model 2. The dis-
tinguishing feature of model 2 is that the Szekeres anisot-
ropies cover a broad range, reaching a very high r value.
We may hypothesize that this is the reason for the differ-
ence in behavior—why the quadrupole is nonzero at the
point where the dipole vanishes. Model 6 also has anisot-
ropy at high r, but Fig. 4 shows that its total impact on the
dipole is relatively small, and it stands to reason that its
effect on the quadrupole might be small as well—too small
to push it significantly away from zero at the null-dipole
point. It seems that a broader range is necessary to visibly
affect the quadrupole separately from the dipole.

To test this hypothesis, we created a seventh model,
with C ¼ 0:945, ri ¼ 1500, and rf ¼ 2500. This is

similar to model 6 in that the Szekeres functions only
act in the outer regions of the void, but the broader range
gives the Szekeres dipoles greater strength. In fact, the
magnitude of the Szekeres dipole seen in the inner regions
(r < 300 Mpc) is within 3% of what is seen in model 2,
with the direction the same to within 0.01 radians. The
quadrupole at the null-dipole point in model 7, however, is
double what it is in model 2—a full 10�5, comparable to
observations. The octupole is still only on the order of
10�7, though. Comparing models 2 and 7 seems to confirm
that, given equal Szekeres dipole strength, the model with
Szekeres functions weighted at higher r values will have a
larger CMB quadrupole at the null-dipole point.

To better understand the more general behavior of the
quadrupole and octupole, we gathered data at a number of
different points in model 2 (with only 6 degree resolution
for faster computations). Along the radial line passing
through the null-dipole point, we found that the quadrupole
is dominated by a20, which follows a simple quadratic
curve, as shown in Fig. 7. This parabola is centered neither
at the origin nor at the null-dipole point, and its minimum
dips significantly into the negative. The total quadrupole
magnitude thus hits zero at two points on this line, with a
hill in between (where the null-dipole point falls). Off of

this line, the quadrupole displays more complex behavior,
which we do not yet have enough data points to fully
describe or explain. Figure 8 summarizes both the quadru-
pole and octupole data. The quadrupoles seem to roughly
follow a quadratic trend, consistent with what Alnes found
for LTBmodels [12], but it is clearly not an exact fit. For the
octupoles, it is even less clear that a cubic fit is accurate.
Finally, a test of the CMB at r ¼ 300 in model 3,

compared with a similar test in the corresponding LTB
model, revealed that Szekeres behavior on shells interior to
the observer’s shell has negligible effects on the entire
CMB, not just the dipole. The differences between the
two maps are on the level of 1 �K (a tenth the strength
of even the octupole), and appear to follow a random noise
pattern across the entire sky; we can thus attribute these
small differences to numerical error.

VI. CONCLUSIONS

In this paper, we have studied the CMB dipole seen by
observers in a Szekeres model. We have established a
procedure for calculating dipoles at general locations,
and we have shown that they follow a simple, consistent
pattern. While the models tested show little quantitative
advantage over the LTB model in terms of the size of the

100 0 100 200
r Mpc

2. 10 7

4. 10 7

6. 10 7

a20

FIG. 7 (color online). The primary quadrupole coefficient a20
at several points along the radial line containing the null-dipole
point in model 2, and a quadratic fitting curve. Negative r values
simply refer to points on the opposite side of the origin. The
larger red dot indicates the null-dipole point.

50 100 150 200 250
Dquad Mpc

0.05

0.10

0.15

T mK (a)

(b)

50 100 150 200 250
Doct Mpc

0.005

0.010

0.015

0.020

0.025

T mK

FIG. 8 (color online). (a) The quadrupoles at all tested points
in model 2, in terms of �T, as a function of the distance from the
center of the fit shown in Fig. 7. The blue (solid) curve is a
simple extrapolation of the fit from Fig. 7. (b) The octupoles at
all tested points, as a function of the distance from the center of a
cubic fit on the line containing the null-dipole point. Both
quadratic (green, dashed) and cubic (blue, solid) fitting curves
are shown for comparison.
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region allowed by dipole observations, Szekeres models do
offer greater freedom in where this region is located. We
are no longer required to be at the center of the void, where
the density is low and anisotropies are only significant at
the dipole level.

We have found that the CMB quadrupole seen by
observers in the low-dipole region is not always as small
as in the corresponding LTB model, and can be significant
compared to the quadrupole seen in the WMAP data. The
octupole was still small in this region in all the models
tested, but it is possible that a more extreme Szekeres model
would amplify that mode as well. There is then some hope
that a Szekeres model may offer a possible explanation for
the WMAP quadrupole and octupole anomalies.

Of the four shortcomings of the LTB model listed in
Sec. I, it appears that Szekeres models offer improvements
on one and partial improvement on one more. The region
allowed by the dipole requirements is still small, so there is
still a need for fine-tuning of the observer’s location, but
this region is not necessarily ‘‘special’’ in other ways, as it
is in LTB void models. That is, LTB void models constrain
the observer to a small region that sees a small CMB
dipole, and this region also happens to see a very small
quadrupole and octupole, lies near the unique symmetry
center of the entire model, and typically is the region of
minimum density. A Szekeres void model, by contrast,
constrains the observer to a region that is only necessarily
special in the first of these ways. The strength of the
quadrupole and octupole in this region shows significant
improvement over LTB for some models, but not for
others, and it is still unclear whether they can truly match
the anomalies seen by WMAP. The kSZ effect, though not
calculated here, is expected to still be a problem for
Szekeres void models, since the total dipoles still follow
a roughly linear trend similar to the LTB model.

It is worth noting that the test models considered here used
a homogeneous bang time function, meaning no decaying
modes are present. While this is consistent with the standard
viewof inflation and the earlyUniverse, it has been suggested
that even slight variations in the bang time could significantly
reduce the kSZ effect and allow for very different void
profiles [16,37]. This could be an avenue of future work.
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APPENDIX A: GEODESIC EQUATIONS

Here we write out the full null geodesic equations in the
quasispherical Szekeres model, which can also be found in
Ref. [33] or Ref. [34].
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The temperature of the LSS along any geodesic depends
on the redshift. This is easy to calculate from the definition
of redshift [38]:

1þ z ¼ ðk�u�Þs
ðk�u�Þo ; (A5)

where subscripts s and o denote source and observer,
respectively, k� ¼ dx�=d�, and u is the four-velocity of
the source or observer, defined to be (1,0,0,0) because the
matter is comoving. We can normalize the null geodesic
tangent vector at the observer so that kto ¼ �1, so we are
left with simply

1þ z ¼ �kts: (A6)
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APPENDIX B: CHOOSING DIRECTIONS

We will label the three geodesics with subscripts 1, 2,
and 3. Greek indices will refer to spacetime dimensions,
while latin indices will refer only to spatial dimensions
r, x, and y.

Each geodesic is defined by three initial tangent vector
components, kr, kx, and ky (kt being determined by the null
condition), but there is a degree of freedom in the scale of
the affine parameter that allows us to remove a constant
factor from each component (a geodesic with the entire
tangent vector doubled is still the same geodesic). Since we
need three pairs of opposite geodesics, we necessarily have
three with positive kr and three with negative kr (assuming
none are 0). We can therefore decide to focus on the ones
with positive kr, and scale them so that they all, in fact,
share the same kr, which we choose arbitrarily. This leaves
two degrees of freedom for the choice of direction for each
geodesic, so we need six equations to fix them.

The only strict requirement is mutual spatial orthogo-
nality. With three geodesics with initial tangent vectors k�1 ,
k�2 , and k�3 , we have three spatial orthogonality equations:

gijk
i
1k

j
2 ¼ 0; (B1a)

gijk
i
2k

j
3 ¼ 0; (B1b)

gijk
i
3k

j
1 ¼ 0: (B1c)

We still need three more, which we can choose more or less
arbitrarily.

We wish to keep the geodesics away from the axis,
where x and y go to infinity or zero, since the numerical
integration of the geodesic equations loses precision here.
To do this, we try to maximize the quantity j cos�ky �
sin�kxj. Due to the orthogonality, the magnitude of this
quantity for one geodesic can only be increased at the
expense of another. We therefore choose to require that

all three have the same magnitude. To satisfy orthogonal-
ity, we will need to have two with the same sign and one
with the opposite. This gives us two equations,

cos�ky1 � sin�kx1 ¼ cos�ky2 � sin�kx2; (B2a)

cos�ky1 � sin�kx1 ¼ � cos�ky3 þ sin�kx3: (B2b)

For the final equation, we choose

cos�ðkx1 þ kx2Þ þ sin�ðky1 þ ky2Þ ¼ 0: (B3)

These six equations have two distinct solutions, corre-
sponding roughly to (1) geodesics going right, up-left, and
down-left, and (2) geodesics going left, up-right, and
down-right. Which we choose is not important. For con-
sistency, wewill simply require ðd�=dsÞ3 < 0, correspond-
ing to solution (2). A basic picture of the geodesics
generated by these methods is shown in Fig. 2.

APPENDIX C: CONFIRMATION OF
SIX-GEODESIC DIPOLE EQUATION

To see that Eq. (15) indeed gives the correct dipole, and
to estimate the error caused by the quadrupole (expected to
typically be the next largest multipole moment), we can
expand the CMB temperature into spherical harmonics to
the second degree.

T ¼ T0

�
1þ X1

m¼�1

a1mY1m þ X2
m¼�2

a2mY2m

�
: (C1)

For simplicity, we can orient our sky so that geodesics 1, 3,
and 5 go in the directions ð�;�Þ ¼ ð0; 0Þ, ð�=2; 0Þ,
ð�=2; �=2Þ, and 2, 4, and 6 in the opposite directions.
The terms in the numerator of (15) have no net contribution
from the quadrupole terms, since Y2mð�� �;�þ �Þ ¼
Y2mð�;�Þ. In the denominator, the dipole terms cancel out
in a similar fashion. We then find

v ¼
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So we see that this prescription gives the correct dipole, and the quadrupole introduces no error. Additional contributions
come only from the octupole terms and higher.
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