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Abstract—In this paper, we present methods for segmenting
noisy two-dimensional forward-scan sonar images and classify
and model their background. The segmentation approach differ-
entiates the highlight blobs, cast shadows, and the background of
sonar images. There is usually little information within relatively
large background regions corresponding to the flat sea bottom
and (or) water column, as they are often corrupted with speckle
noise. Our experiments show that the background texture is
dominated by the speckle noise which has the appearance of
a pseudo-random texture. We show that the background texture
of the underwater sonar images can be categorized by a small
number of classes. The statistical features work better than
the texture-based features in categorizing the pseudo-random
background, which further strengthen our hypothesis of the
dominance of noise over the background texture. As a result,
we can model the noisy background with a few parameters. This
has an application in coding the sonar images in which highlight
blob regions and cast shadows are coded at the encoder side
while the speckle noise-corrupted background can be synthesized
at the decoder side. Since the background regions occupy a large
fraction of the FS sonar image, we expect higher compression
rates than most current image or video coding standards and
other custom-designed sonar image compression techniques.

Index Terms—forward-scan sonar imagery, sonar image seg-
mentation, sonar background classification, speckle noise model-
ing and synthesis.

I. INTRODUCTION

Acoustic signals can penetrate through silt and other sources
of turbidity that prohibit the deployment of optical systems,
the most common imaging modality in the terrestrial domain.
This has motivated the development and improvement of high-
frequency 2-D forward-scan (FS) video sonar systems over
the past decade, to meet the critical need of scene imaging
at improved resolution under poor visibility [1]. Automated
processing of FS sonar video imagery enables significant ca-
pabilities for a wide variety of underwater task and operations,
e.g., fish stock assessment, seafloor and habitat mapping, and
the inspection of pipelines and other structures.

Automated sonar image processing is rather complex due to
presence of and interactions among visual cues and artifacts.
To elaborate, we first note that FS sonar systems are typically
deployed at large grazing angles (relative to the sea bottom) in
order to 1) image a larger region of the sea floor within a single
image; 2) improve image quality and contrast by increasing
the diffuse backscatter returns relative to specular reflections.
Consequently, referring to the cartoon drawing in Fig. 1(a),

the 3-D targets on the sea bottom can often be detected by
two visual cues with distinct characteristics: 1) A thin but
horizontally elongated bright image blob, generated by the
backscattered signal from visible object surfaces; 2) shadows
cast by the object on neighboring background surfaces. In
addition to target detection, the cast shadows provide useful
visual cues for 3-D object shape reconstruction and sonar
motion estimation [1], [2]. Additionally, artifacts within these
regions can arise due to multiple reflections.

As depicted in Fig. 1(a), the object is also insonified
indirectly by the acoustic waves that are reflected from the
sea floor and the sea surface when operating within shallow
waters. The fraction of this indirect incident energy — reflected
by the visible object surfaces towards the sonar receiver along
various beams — travels longer distances than those due to
the direct insonification. The multipath component due to
ground reflection generally distorts the object highlight, while
component due to surface reflection often appears as bright
streaks within the shadow regions. Additionally, the multi-
path components can be generated by strong nearby reflectors,
e.g., metallic objects. Due to unknown number, location and
pose of scene objects, these distortions of object highlights
and the cast show due to multi-path components are generally
unpredictable. Fig. 1(b) depicts a sample FS sonar image
captured in very shallow water, where the highlights regions
generated by the surface reflections are identified by the red
squares.

For the scene interpretation from FS sonar image, informa-
tive image regions of interest (ROI) comprise of the object
blobs, cast shadows, and highlights from multi-path reflec-
tions. Thus, these regions, offering useful visual cues about
shape, positions and sizes of various objects, distance from
the sea surface, etc., may be treated as the signal components.

The treatment of speckle noise due to coherent interference
of acoustic waves is one of the serious complexities in
automated sonar image processing. The speckle noise often
has the appearance of, and may be indistinguishable from
pseudo-random texture of the background scene surfaces. This
can be noted within the background regions of three sample
FS sonar images in Fig. 2, recorded in a lake (a,b) and a
marina (c). In some cases, the speckle noise may also distort
the signal component, overshadowing certain visual cues for
image interpretation. There is generally little information
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Fig. 1. (a) Schematic diagram of FS sonar imaging. (b) Highlights within object shadows generated by water-surface reflection.

within relatively large background regions corresponding to
the flat sea bottom and (or) water column, particularly when
corrupted with speckle noise. Thus, it may be desirable to
discriminate between the signal component containing critical
visual cues and the background, prior to scene interpretation
through pre-processing. The varying composition of the noise-
corrupted background regions (e.g., water column, soft to hard
bottoms) leads to different texture characteristics, as shown in
Fig. 3. In order to reconstruct a sonar image, it is important
to classify and model these noisy background areas.

This study is aimed at devising a solution for effective
compact representation of a sonar image by: 1) segmenting
the signal (ROI) from the noisy background; 2) deriving an
efficient representation of the latter based on the speckle noise
and its statistics. To elaborate, we extract the foreground
ROI (highlight and shadow regions) and model the noisy
background. While our goals is solely the segmentation,
classification and modeling, one should take note of some key
applications: efficient FS sonar video coding and synthesis,
as well as robot localization based of ROI and background
classification.

For the coding application, highlight blob regions and cast
shadows are coded at the encoder side while the speckle
noise-corrupted background is synthesized at the decoder side.
Because the background regions occupy a large fraction of the
FS sonar image, we expect higher compression rates than most
current image or video coding standards and other custom-
designed sonar image compression techniques that do not fully
exploit the unique texture characteristics in sonar imagery [3]-
[6]. For operations involving autonomous underwater vehicles
(AUVs), the reduced bit rate for video transmission could
enable transmission of real-time FS sonar video through under-
water acoustic channels. Moreover, for image/video synthesis
applications, background classification and modeling enable
improving the subjective visual appearance based on ray-
casting [7], [8]. Moreover, this work can motivate more
applications for the realization of key robotics capabilities
in turbid waters. For certain applications, high volume of
watermark information can be incorporated within the noisy
background region, enabling integrity check/verification of the

decoded data.

In this paper, we apply the k-means segmentation technique
to differentiate the highlight blobs, cast shadows, and the
background. We have noted that the texture segmentation tech-
niques are not effective for this purpose. The reason is mostly
due to the dominance of the noise over the available texture
features. However, since the three major regions differ in the
average intensity, intensity-based multi-level thresholding has
proven to be effective.

Our experiments show that the background texture of
the underwater sonar images, some examples of which are
shown in Fig. 3, can be categorized by a small number of
classes. Here, we use an unsupervised technique to cluster
all the background images in our training data into different
background classes. Then, using these classes, we train a
supervised system to label the class of the background in the
test images. This will reduce the complexity of the background
modeling and number of parameters to represent them. Our ex-
periments showed that statistical features were discriminating
the different background classes much better than the well-
known texture-based features. These results strengthen our
hypothesis of the dominance of noise over texture features
in the background regions. Comprehensive experiments are
conducted by comparing our scheme with other sonar texture
synthesis methods [9]-[11].

The rest of the paper is organized as follows: Section II de-
scribes the methods used for pre-processing and segmentation
of FS sonar images. Section III presents the feature extraction
and clustering method used for background classification.
Background modeling and synthesis methods are explained
in Section IV. The implementation details and experimental
results are presented in Section V, and finally, Section VI
concludes the paper.

II. PRE-PROCESSING AND SEGMENTATION

In FS sonar images, the three object, shadow and back-
ground regions often have significantly different intensity
levels. Hence, we may use the k-means clustering technique to
differentiate among them. However, the segmentation result is
only roughly accurate. In particular, a sonar image is generally
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Fig. 2. Sample FS sonar images captured in a lake (a, b) and a marina (c).
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Fig. 3. (a) Three sample FS sonar images with different background types. (b) Background from these and other types of images.

corrupted by certain patterns due to the imprefections of sonar
hardware. For example, the central region of the image in Fig.
3(a) is brighter within the near-field central than within the
margin and far field. An effective pre-processing technique to
estimate the stationary FS sonar image pattern is to compute
the average over a large number of images with varying
scene content. Fig. 4(a), (b) and (c) show a sample image,
the stationary FS sonar image pattern, and the image after
illumination normalization, respectively.

Another factor that affects the segmentation results is the
speckle noise. To overcome noise issue, it is generally suffi-
cient to average a small number of consecutive frames, only
two in this work. As it will be discussed in the next section, in
order to have better results, we apply the averaging in the log
domain in which the noise is additive. Finally, we can apply
a median filter as the final step after returning the image to
the spatial domain. The result of normalized image after noise
reduction is depicted in Fig. 4(d), which can be compared with
the original frame in Fig. 4(a).

Applying the k-means clustering method to the pre-
proccessed FS sonar image yields the result given in Fig. 5(a).
As stated, this is accurate only roughly due to misclassification
of isolated outlier pixels. The result is improved by applying
consistency verification with a majority filter [12]. If the
majority of pixels surrounding a point are from a different
cluster, we change the label of the point to that of the majority
of the neighboring points. Figs. 5(b-d) show the result of
consistency verification using majority filter of size 3 X 3 once

and twice, and size 5 x 5 once, respectively. In these images,
gray, black and white regions represent the object, shadow and
background regions, respectively. In experiments with sonar
images of varying types, applying the 3 x 3 window twice has
proven to produce consistent segmentation results.

III. CLASSIFICATION OF FS SONAR BACKGROUND:
STATISTICAL VS TEXTURE-BASED FEATURES

After segmentation, we can extract samples from back-
ground region. We categorize these samples into several
groups by k-means clustering based on different feature types.
Some examples of popular texture-based feature types are
Gabor wavelet features [13], [14], Gray Level Co-occurrence
Matrix (GLCM) features [15], and first-order statistical fea-
tures.

We tried the above-mentioned features individually and also
their fusion. In this work, we use silhouette plots to compare
the effectiveness of clustering results using different features
[16]. For each sample, the silhouette values, ranging from -1
to 1, shows how well this sample matches its cluster [17]. A
good clustering solution results in high silhouette values for
the samples. Negative silhouette values, however, indicate that
the clusters are not well separated. The silhouette plots of our
k-means classification results using different sets of features
are shown in Fig. 6(a-c).

Based the silhouette plots, the clustering result of the first-
order statistical features has highest silhouette values and
fewest negative values. This suggests that the first-order statis-
tical features perform better than Gabor and GLCM features
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Fig. 4. (a) A sample sonar image. (b) The stationary FS sonar image pattern. (c) Image after illumination normalization. (d) Image after normalization and

noise reduction.

Fig. 5. (a) Result of k-means segmentation. (b-d) Result after consistency verification using majority filter of size 3 x 3 once (b), 3 x 3 twice (c), 5 x 5 once

(d).

for the k-means clustering of the sonar backgrounds. The
reason might be the lack of any particular shape or texel
elements in the the sonar background samples. The first-order
statistical features which work well include the mean, variance,
skewness, third and fourth central momentum of the samples.
Therefore, if we model the background as a uniform region
corrupted with noise, we can use the first-order statistical
features to represent each background cluster.

The result shown in Fig. 6(c) shows that even using the
statistical features, some negative silhouette values still exist,
and two of the clusters contain only few samples. Since the
number of the samples in the two smallest clusters and those
with negative silhouette values is very low, we consider them
as outliers. In order to improve the classification accuracy, we
remove these outlier samples, and apply the k-means for four
clusters. For the final classification result, the silhouette plot
is shown in Fig. 6(d).

As mentioned above, we use the first-order statistical fea-
tures and the average feature vector of each cluster is used
to represent that cluster. At the testing time, having a query
image, for every pixel in the background region, we extract
the statistical features in a neighborhood (window) around that
pixel and classify the region using a simple minimum distance
classifier. Each pixel in the background area is labeled with
a background class using a sliding window, which sweeps
through the whole background area. As a result, we determine
the background class of each region. Please note that the
consistency verification is also used here to enhance the
results.

IV. BACKGROUND MODELING AND SYNTHESIS

In the previous section, we concluded that the statistical
features are most suitable in describing the background classes.
K-mean clustering showed that the background samples ex-

tracted from the training images can be categorized into
four classes. We represent each of these classes with the
average feature vector of all samples in the class. However,
since the statistical features extracted from the background
were dominated by the speckle noise, these features actually
represent the noise within these regions.

A. Modeling the Noise Distribution

it is known that the image with speckle noise can be
represented by a multiplicative model:

S=SxN. ey

where S denotes the noisy signal, and the signal (S) is the
perfect image without the multiplicative noise (N). Taking the
logarithm of the above equation, we have:

log(8) = log(S) +1log(N) . (2)

where the noise impact is now additive. We may assume
that an estimation of the noiseless image can be obtained
by averaging the consecutive frames in the log domain as
described in Section II. We can achieve the distribution of the
noise in the log domain by simply subtracting the logarithm of
the noiseless signal (S) from the logarithm of the noisy signal.
Our experimental results on different estimation models show
that the distribution of the noise in log domain resembles a
Gaussian (normal) distribution. This means that the noise in
the image spatial domain has a lognormal distribution’.

We can readily calculate the mean (m) and the variance (V)
of the noise distribution in the log domain. The mean (1) and

The lognormal distribution is a probability distribution whose logarithm
has a normal distribution
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Fig. 6. Silhouette plot of background classification in six clusters using (a) Gabor features, (b) GLCM features, and (c) the first-order statistical features. (d)

Silhouette plot of revised samples in four clusters using the statistical features.

the standard deviation (o) of the distribution can be calculated
from the corresponding values for the Gaussian distribution:

) 3)

m
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Likewise, the mean m and the variance v of the lognormal
random variable are functions of u and o©:
2
o
m=ett
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No that we have established the background classes, we
can transform all the samples of each class to the log domain
and calculate the average mean and average standard deviation
of each class over all its samples. This will present the noise
parameters of each class, which can later be used in the process
of synthesizing the background classes.

B. Background Synthesis

In order to synthesize the background image of each class
we use an image quilting [18] technique to create the back-
ground texture and then add its corresponding speckle noise.
Image quilting is a fast and very simple texture synthesis
algorithms that generates visual appearance in which a new
image is synthesized by stitching together small patches of
existing texture images. It takes a sample of texture and
generate an unlimited amount of image data which, while not
exactly like the original, will be perceived by humans to be
the same texture.

Relying on psychophysical and computational models of
human texture discrimination, it is shown that two texture
images will be perceived by human observers to be the same
if some appropriate statistics of these images match [19]-
[21]. If we simply tile the patches randomly taken from
the input texture to create the synthesized background, the
resulting image will suffer from blocking artifact. To address
this problem, the image quilting algorithm [18] lets the patches
have ragged edges and allows having overlaps in the placement
of patches onto the new image. Before placing a selected patch
into the texture, we calculate the discrepancy in the overlap

(b)

()

(d)

Fig. 7. Sample synthesized background images. (a) Class 1. (b) Class 2. (c)
Class 3. (d) Class 4.

region between the patch and other patches. The minimum
cost path through that discrepancy surface is chosen to be the
boundary of the new patch.

In order to synthesize the background of a each class, we
feed the image quilting algorithm with the texture patches
cropped from random background samples of that class.
Finally, we generate the speckle lognormal noise sample
corresponding to the class, as a multiplicative field for the
synthesized texture image. Fig. 7 shows sample synthesized
background images for the four background classes defined
on our sonar data.

V. EXPERIMENTS AND ANALYSIS

In this section, we present the results of applying the
method described in the previous sections to segment, classify,
and synthesize a sonar image. First, the pre-processing and
segmentation algorithm described in Section II is applied on
input FS sonar image to differentiate among the highlight
blobs, cast shadows, and the background regions. Then, the
sliding window technique described in Section III is applied
on the background regions to label the background classes. A
binary mask is created for each class which is used to crop
the synthesized background region and put together the new
synthesized FS sonar image. It is noted that the highlight and
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Fig. 8. Results of different steps on sonar images collected at University of Miami. Column 1: original images. Column 2: pre-processed images. Column 3:

segmentation results. Column 4: images with synthesized background.

cast shadow regions are kept intact and we only synthesize
the background region.

Fig. 8 and Fig. 9 show the above-mentioned steps on several
sample FS sonar images. The samples in Fig. 8 are from
the dataset collected at University of Miami, while Fig. 9
shows samples from publicly available Sound Metrics dataset
available from [22]. The results show that our synthesized
images are very similar to the input images subjectively. Since
the background regions often occupy a large fraction of the
FS sonar image, and we can represent them with just a small
number of features, we expect our method to have applications
in sonar image compression.

VI. CONCLUSIONS

In this paper, we proposed methods for segmentation , clas-
sification, and modeling of noisy two-dimensional forward-
scan sonar images. We showed that the background region of
the sonar images can be represented by a small number of
parameters and it can be synthesized with no need to keep
all the information about it. This is very important for the
coding application in which the highlight blob regions and
cast shadows are coded at the encoder side while the speckle
noise-corrupted background is synthesized at the decoder side.
Because the background regions occupy a large fraction of the
FS sonar image, we expect higher compression rates than most
current image or video coding standards and other custom-
designed sonar image compression techniques. In future, we

will investigate the results of the compression using the current
technique.
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