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Abstract 12 

Lithium sulfur (Li-S) batteries have the potential to provide higher energy storage density at lower 13 

cost than conventional lithium ion batteries. A key challenge for Li-S batteries is the loss of sulfur 14 

to the electrolyte during cycling.  This loss can be mitigated by sequestering the sulfur in 15 

nanostructured carbon-sulfur composites. The nanoscale characterization of the sulfur distribution 16 

within these complex nanostructured electrodes is normally performed by electron microscopy, 17 

but sulfur sublimates and redistributes in the high vacuum conditions of conventional electron 18 

microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional 19 

electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic 20 

transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), 21 
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that enable the reliable characterization of sulfur across multiple length scales by suppressing 22 

sulfur sublimation. We use cryo-TEM and airSEM to examine carbon-sulfur composites 23 

synthesized for use as Li-S battery cathodes, noting several cases where the commonly-employed 24 

sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.   25 

Introduction 26 

Lithium sulfur (Li-S) batteries have the potential to provide greater energy storage density 27 

at lower cost than current lithium ion batteries. One of the main challenges to improving the 28 

performance of elemental sulfur cathodes for Li-S batteries is dissolution and loss of sulfur, in the 29 

form of polysulfides, to the electrolyte during battery operation (Bruce et. al., 2011). Recent 30 

research has focused on electrodes which attempt to sequester sulfur in nanostructured host 31 

materials, most prominently porous carbons, to prevent the loss of sulfur and associated capacity 32 

reduction as the battery is cycled (Ji et. al., 2009; Jayaprakash et. al., 2011; Wang et. al. 2011; 33 

Xiao et. al., 2012; Seh et. al. 2013; Zheng et. al., 2013; Song et. al., 2014; Zhao et. al., 2014; 34 

Werner et. al., 2015; Sahore et. al. 2015). These electrode materials are typically referred to as 35 

carbon-sulfur composites. Accurate characterization of the distribution of sulfur in these 36 

composites over 100 nm to sub-nm length scales is critical for developing an understanding of how 37 

the level of infiltration of sulfur into the host material relates to battery performance, which will 38 

aid in the design of more durable, high energy density Li-S batteries (Ma et. al. 2015).  39 

Electron microscopy offers both direct imaging and spectroscopic techniques for 40 

characterization of battery electrodes. For reliable characterization of a material using electron 41 

microscopy, it is essential that the sample is not altered by conditions in the microscope. However, 42 

elemental sulfur readily sublimates under high vacuum conditions similar to those of an electron 43 

microscope sample chamber. Sulfur sublimation under high vacuum has been observed in vacuum 44 
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chamber experiments on bulk sulfur (Nash, 1987), and can be predicted from sulfur’s measured 45 

vapor pressure (Ferreira & Lobo, 2011), but the sulfur battery community has only recently begun 46 

to become aware of the problem of sulfur sublimation in electron microscopy (Raiβ et. al., 2014).  47 

As an illustration of this challenge, Figure 1a shows the vapor pressure curve of sulfur, with the 48 

conditions of an FEI Tecnai F20 transmission electron microscopy (TEM) sample chamber 49 

(8.8×10-8 Torr at ~ 18oC room temperature) indicated. Figures 1b-g show the result of placing a 50 

sample of ball-milled sulfur particles into the microscope under these conditions. The sulfur is 51 

observed to sublimate at a rate of approximately 1 monolayer of sulfur atoms per second, leaving 52 

behind only a small residue of “super-sublimated” polymeric sulfur, which remains relatively 53 

stable under vacuum. The measured sublimation rate and residual product are fully consistent with 54 

previous macroscopic experiments (Nash, 1987).  55 

In nanostructured sulfur composites, sublimation effects in high vacuum may be very 56 

severe. In TEM for example, exposed nanoscale features of the sulfur distribution in a sulfur 57 

battery cathode composite would disappear within minutes at most. Only super-sublimated 58 

polymeric sulfur residue (Figure 1e), and sulfur encapsulated by another material lacking large 59 

enough pores for sulfur to escape (Zhou et. al., 2014; Kim et. al., 2015), will remain present under 60 

vacuum. 61 

In scanning electron microscopy (SEM), the sample is typically held at a higher pressure 62 

than in TEM. However, a recent study has observed that even in the vacuum of an SEM sample 63 

chamber (~ 10-6 Torr), sulfur sublimation artifacts occur, including the redistribution of sublimated 64 

sulfur into the pores of nearby carbon particles. The study concluded that characterization of 65 

sulfur/carbon composite materials by vacuum-based methods, including SEM, is very challenging, 66 

and results might be misleading (Raiβ et. al., 2014). Sulfur sublimation and the resulting artifacts, 67 
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including sulfur redistribution, present a serious problem for accurate characterization of the 68 

inherent sulfur distribution in battery cathodes in electron microscopy. This may be impeding the 69 

scientific community’s efforts to gain a systematic understanding of how sulfur distribution in 70 

different carbon-sulfur composites relates to their performance in batteries. More reliable 71 

alternative techniques for sulfur characterization that suppress sublimation are clearly needed.  72 

The sulfur vapor pressure curve (Figure 1a) indicates that sulfur has an equilibrium vapor 73 

pressure of ~ 6×10-7 Torr at 18oC. This means that at 18oC, a sulfur particle will sublimate until 74 

the partial pressure of sulfur surrounding the particle reaches 6×10-7 Torr. If a sample chamber is 75 

pumped to too low a pressure, sulfur will not be able to reach equilibrium, and will sublimate 76 

continually. To avoid sublimation artifacts, either the ambient pressure during imaging must be 77 

increased to a level much greater than sulfur’s equilibrium vapor pressure, or the ambient 78 

temperature must be reduced to much less than 18oC. In this paper, we demonstrate 79 

characterization of sulfur and nanostructured carbon-sulfur composite materials in vacuum at low 80 

temperature using cryo-TEM, and at atmospheric pressure at room temperature using airSEM. 81 

Sulfur sublimation artifacts are not observed using either technique. Our results demonstrate that 82 

sulfur infiltration by melt infusion is significantly more efficient in activated porous carbons than 83 

in non-activated porous carbons, carbon nanotubes, and hollow carbon spheres, all of which have 84 

recently been investigated as Li-S battery electrode materials. Adoption of cryo-TEM, airSEM, 85 

and other similar techniques, for more reliable characterization of the sulfur distribution in 86 

different carbon-sulfur composites will enable scientists to observe the inherent sulfur distribution 87 

in their composite materials, providing important insight and feedback to guide the design of 88 

improved Li-S batteries.  89 

Experimental 90 
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Cryo-TEM is a well-established method for imaging hydrated biological samples that 91 

cannot be exposed to vacuum at room temperature (Dubochet & McDowall, 1981; Adrian et. al., 92 

1984; Kourkoutis et. al. 2012). Cryogenic cooling of sulfur cathode samples inside the microscope 93 

was achieved using a Gatan model 626 cryo-holder (Gatan, Inc., Pleasanton, CA, USA), with 94 

liquid nitrogen as the cryogen. The cryo-TEM loading method for sulfur cathode samples is 95 

simpler than for biological samples, since the sulfur need only be cooled prior to loading into the 96 

microscope column, whereas biological samples must be vitrified. Carbon-sulfur composite 97 

particles were dispersed from an ethanol solution onto TEM grids, which were then allowed to dry 98 

in air. The cryo-holder was cooled so that the tip temperature was ~ -173oC. The sample TEM 99 

grids were loaded into the cryo-holder under nitrogen gas near liquid nitrogen temperature. An 100 

FEI Tecnai F20 STEM/TEM (FEI Company, Hillsboro, OR, USA) equipped with cryogenically 101 

cooled beryllium blades, and operated in scanning TEM (STEM) mode at 200 kV was used to 102 

image the samples. An Oxford Instruments XMAX detector (Oxford Instruments PLC, Tubney 103 

Woods, Oxfordshire, UK) was used for x-ray energy dispersive spectroscopy (XEDS), and a Gatan 104 

865 HR-GIF spectrometer was used for electron energy loss spectroscopy (EELS) acquisition.  105 

Experiments in air were performed using a B-nano airSEM (B-nano Ltd. Rehovot, Israel), 106 

operated at 30 kV. The airSEM is a relatively new design of electron microscope (a schematic 107 

diagram of an airSEM is shown in Supplementary Figure S1), which enables characterization of 108 

samples in air, with no sample vacuum chamber (Nguyen et. al., 2013; Solomonov et. al., 2014; 109 

Vidavsky et. al. 2014; Nguyen et. al., 2016). Carbon-sulfur composite particles for analysis in 110 

airSEM were dispersed onto TEM grids from an ethanol solution and allowed to dry in air, in the 111 

same manner as for cryo-TEM. Sample TEM grids were placed directly on top of an airSTEM 112 

detector (Nguyen et. al., 2014; Han et. al. 2015; Nguyen et. al., 2016), which was mounted on an 113 
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optical slide. A white light optical reflectance microscope (Olympus, Centre Valley, PA, USA) 114 

was used both for optical imaging, and to set the height of the sample to ~ 50 μm below the electron 115 

window, the optimal working distance for airSEM imaging. XEDS maps were acquired using a 116 

Bruker XFlash 6160 detector (Bruker Corporation, Billerica, MA, USA). 117 

Pure sulfur particles were prepared for analysis by ball-milling sulfur flakes. Carbon-sulfur 118 

composites synthesized with ordered mesoporous carbon structures GDMC-15-1600°C and 119 

aGDMC-15-10h, were obtained from block copolymer co-assembly and heated to 1600oC to 120 

remove any intrinsic microporosity. The high-temperature treatment yielded low oxygen content 121 

and surface functionalization (hydrophobic surface). Carbon aGDMC-15-10h underwent 122 

activation by heating in CO2 at 950oC for 10 hours. Sulfur infiltration by melt infusion was 123 

attempted at a sulfur:carbon ration of 1:1 by weight. The synthesis, and performance of these 124 

mesoporous materials in battery testing is described in detail by Werner et. al. (Werner et. al., 125 

2015). Carbon nanotube – sulfur composite samples, CNT-S, were synthesized using multi-walled, 126 

> 8% carboxylic acid functionalized carbon nanotubes, average diameter ~ 9.5 nm, length ~ 1.5 127 

μm, which were obtained from Sigma Aldrich, and dried before use. Polyethylenimine (PEI) 128 

solution (50 wt. % in water) was obtained from Sigma-Aldrich, and PEI was covalently grafted to 129 

the carbon nanotubes. Sulfur infiltration by melt infusion was then attempted at a sulfur:carbon 130 

ration of 7:3 by weight. Mesoporous hollow carbon sphere – sulfur composites, MHCS-S, were 131 

prepared by an organic hard template method. In a typical synthesis, size tunable mono-dispersed 132 

melamine-formaldehyde (MF) resin sphere templates (0.5 g) were synthesized by the in-situ 133 

polymerization method reported by Xie et al. (Xie et al., 2008). These were then suspended in a 134 

50 mL water/ethanol (volume ratio 3/1) solvent containing 0.5 g of Triton X-100 surfactant. 135 

Formaldehyde solution (1.0 mL) and resorcinol (0.75 g) were then added to the reaction solution, 136 
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and stirred for 30 min at 60oC. The solution was subsequently heated for 2 hours at 75oC. The solid 137 

product was recovered by filtration and air-dried at 90oC for 8 hours. Mesoporous hollow carbon 138 

spheres were formed by carbonization of the as-made resorcinol-formaldehyde encapsulated MF 139 

spheres at 950oC for 2 hours under flowing nitrogen gas with a heating rate of 3oC/min. Sulfur 140 

infiltration was attempted by melt infusion at a sulfur:carbon ratio of 7:3 by weight. 141 

Results and Discussion 142 

I. Sulfur characterization in cryo-TEM. 143 

In order to investigate whether sublimation effects were still apparent at cryogenic 144 

temperatures, ball milled sulfur particles, were prepared in an identical manner to those in Figure 145 

1, and imaged by cryo-TEM at a temperature of approximately -173oC. A time series of cryo-TEM 146 

images from a sulfur particle is shown in Figure 2. No change in the morphology of the particle 147 

was observed over a 5-hour period, in stark contrast to the sulfur particle imaged by standard room 148 

temperature TEM shown in Figure 1, which sublimated and disappeared in under 40 minutes. The 149 

cryogenically cooled sulfur remained stable enough under the electron beam to allow imaging in 150 

annular dark field (ADF) cryo-scanning TEM (cryo-STEM, Figure 2d) and XEDS mapping 151 

(Figure 2e). The suppression of sulfur sublimation by cryogenic sample cooling demonstrates that 152 

cryo-TEM is a viable method for both imaging and spectroscopic characterization of composites 153 

containing elemental sulfur such as carbon-sulfur nanocomposites for advanced lithium batteries.  154 

Having established that sulfur sublimation is suppressed at cryogenic temperatures, we 155 

used cryo-TEM to analyze the sulfur distribution within three different carbon-sulfur 156 

nanocomposite materials recently investigated for Li-S battery electrodes. The first two samples, 157 

GDMC-15-1600°C and aGDMC-15-10h, are examples of ordered carbon nano-networks (Werner 158 
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et. al., 2015). These have attracted interest as sulfur battery cathode materials due to the potential 159 

of sequestering sulfur in the pores of a torturous carbon network. GDMC-15-1600°C and aGDMC-160 

15-10h were prepared in an identical manner except that, prior to sulfur melt infusion, aGDMC-161 

15-10h underwent an additional activation procedure to substantially increase its microporosity 162 

and associated surface area, whereas the non-activated carbon, GDMC-15-1600°C, exhibits very 163 

little microporosity (see Experimental). The third sample, CNT-S used a network of carbon 164 

nanotubes as the host material for sulfur. Carbon nanotubes have attracted interest as Li-S battery 165 

electrodes due to the potential to sequester sulfur inside the body of the nanotubes (Fujimori et. 166 

al., 2013; Kim et. al., 2015). In each of our three samples, successful melt infusion would ensure 167 

that electrically insulating sulfur is in contact with electrically conducting carbon at the nanoscale. 168 

Cryo-STEM imaging and XEDS maps of the activated C-S composite aGDMC-15-10h (Figure 169 

3a), showed a high degree of infiltration of sulfur into the carbon following melt infusion. 170 

However, in the non-activated C-S composite GDMC-15-1600°C we observed that a majority of 171 

the sulfur had not infiltrated the carbon, and remained external to the carbon particles (Figure 3b). 172 

External sulfur particles typically had a diameter of several μm or larger. In reported battery 173 

performance tests, the activated carbon aGDMC-15-10h outperformed its non-activated 174 

counterpart GDMC-15-1600°C in terms of initial capacity, capacity retention over cycling, and 175 

rate capability (Werner et. al., 2015). This may be partly explained by our observation that sulfur 176 

infiltration was much more successful in the activated carbon aGDMC-15-10h than the non-177 

activated carbon GDMC-15-1600°C, because the external sulfur particles observed in GDMC-15-178 

1600°C would be in poorer electrical contact with the carbon, and more exposed to dissolution and 179 

loss to the electrolyte in the form of polysulfides during battery cycling.  180 
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High magnification STEM imaging and EELS spectra of sample CNT-S indicated that little 181 

or no sulfur had infiltrated into the carbon nanotubes, which had remained hollow (Figure 3c). 182 

XEDS mapping of sample CNT-S at low magnification showed that much of the sulfur in the 183 

composite remained external to the nanotube network after melt infusion, forming particles several 184 

microns in diameter (Figure 3d), in a similar way to the sulfur in sample GDMC-15-1600°C. X-185 

ray sum spectra from the datasets used to generate element distribution maps contain information 186 

about the relative quantities of carbon and sulfur in the field of view that are not evident from x-187 

ray maps alone. The x-ray spectra used to generate the maps in Figure 3 are shown in 188 

Supplementary Figure S2. Each of these spectra show a strong sulfur peak relative to the carbon 189 

peak, indicating significant quantities of sulfur in the field of view. Our results show that the degree 190 

to which sulfur infiltrates into carbon host particles can vary significantly depending on the 191 

porosity and structural characteristics of the carbon host, and how the carbon was prepared. In this 192 

case, sulfur infiltrated far more efficiently into the activated, high-surface area carbon aGDMC-193 

15-10h exhibiting both 15 nm mesopores and a large fraction of small micropores (< 4 nm), than 194 

into the non-activated carbon GDMC-15-1600°C, exhibiting only 15 nm mesopores, or into a 195 

network of carbon nanotubes. In a related cryo-TEM study of sulfur infusion into highly porous 196 

carbons synthesized by ice templation, sulfur was observed to have infiltrated far more efficiently 197 

into activated carbon 20-2-1.5-80S exhibiting both mesopores and micropores, than into non-198 

activated carbon 20-2-0-80S, exhibiting only mesopores (Sahore et. al., 2016), a very similar trend 199 

to the results described above.  200 

II. Sulfur characterization in airSEM. 201 

An alternative approach to cryogenic cooling to avoid sulfur sublimation is to keep the 202 

sample at room temperature, but increase the pressure around the sample, for example by imaging 203 
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the sulfur at atmospheric pressure. The recently developed airSEM by B-nano enables correlative 204 

optical and electron microscopy of samples in air, with no vacuum specimen chamber, by using 205 

an electron transparent silicon-nitride window to separate the sample in air from the electron optics 206 

in vacuum (Solomonov et. al., 2014; Vidavsky et. al. 2014; Nguyen et. al., 2016). Our cryo-TEM 207 

observations of external sulfur particles several μm in diameter in carbon-sulfur composite samples 208 

suggested that correlative optical-electron microscopy would be a useful method of high-209 

throughput characterization of these materials. Optical microscopy can screen samples for large 210 

external sulfur particles, since external sulfur (yellow) is optically distinct from carbon (black). 211 

Electron microscopy and XEDS can then be used to image carbon particles at higher magnification 212 

to analyze the degree of sulfur infiltration into the carbon, and investigate nanoscale features of 213 

the sulfur distribution.  214 

As a demonstration of this technique, we used airSEM to investigate the distribution of 215 

sulfur in sample MHCS-S, a composite of sulfur and 3 µm diameter hollow carbon spheres with 216 

porous shells. These have attracted interest as candidate materials for Li-S batteries because of the 217 

potential for large quantities of sulfur to be sequestered in both the porous shell, and in the hollow 218 

interior of the sphere, though some recent studies have questioned whether melt infusion is actually 219 

successful at infiltrating sulfur into the hollow interior (Jayaprakash et. al., 2011; He et. al., 2013). 220 

In our sample, sulfur infiltration was attempted by melt infusion at a ratio of 7:3 sulfur to carbon 221 

by weight prior to imaging, sufficient to ensure that both the pores in the shell wall, and the interior 222 

cavity could be filled if melt infusion was successful.  223 

Particles of external sulfur were identified by optical microscopy (Figure 4a). Closer 224 

inspection of a ~ 30 μm wide external sulfur particle (Figure 4b) with airSEM, using a bright-field 225 

STEM detector positioned directly below the sample (Nguyen et. al., 2014; Han et. al. 2015; 226 
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Nguyen et. al., 2016), shows a morphology that suggests this particle was formed by freezing from 227 

a liquid state. XEDS mapping confirmed the identity of the particle as external sulfur (Figure 4c 228 

& 4d, spectrum in Supplementary Figure S4a). Clusters of carbon spheres were identified in the 229 

optical microscope (Figure 4e) and imaged at high resolution in the airSEM (Figure 4f). The 230 

spheres appeared to be unfilled in the airSEM images, suggesting that sulfur had not infiltrated 231 

into the sphere interior. This was confirmed by XEDS mapping (Figure 4g & 4h, spectrum in 232 

Supplementary Figure S4b). However, XEDS maps did show that sulfur had infiltrated the walls 233 

of the spheres, despite not infiltrating the hollow interior as had been intended. 234 

 235 

III. Comparison of airSEM and cryo-TEM  236 

The spatial resolution set by electron optics in the airSEM will be more limited than for 237 

cryo-TEM. However, an advantage of the airSEM is that samples do not need to be cooled and 238 

placed in a vacuum chamber, meaning that airSEM can achieve greater sample throughput. 239 

AirSEM will be most suitable for use in conjunction with optical microscopy for high-throughput 240 

characterization of samples using a broader field of view where image resolution of < 5 nm is not 241 

required, whereas cryo-TEM will be most suitable for characterization of samples that require 242 

resolution of finer, nanometer scale features.  243 

IV. Limitations due to radiation damage 244 

Even after sublimation has been suppressed, radiation damage will ultimately limit the 245 

resolution at which sulfur can be characterized in electron microscopy. Electrical insulators, such 246 

as sulfur, are vulnerable to ionization damage (Egerton & Malac, 2004). Furthermore, sulfur 247 

molecules are weakly bound, making sulfur vulnerable to knock-on displacement damage 248 

(Chisney et. al., 1988). When sulfur is imaged at relatively low magnification, as in the results 249 
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presented in this paper, electron dose is spread over a wide area, and beam damage effects to sulfur 250 

will be minimal. However, at high magnification, electron dose becomes more concentrated and 251 

radiation damage will cause mass loss from sulfur particles. Radiation damage effects have been 252 

observed in Supplementary Figure S5, which is accompanied by further discussion of damage. 253 

Conclusions 254 

The high vapor pressure of sulfur creates a serious risk that sublimation artifacts will lead 255 

to a mischaracterization of samples containing sulfur in standard high-vacuum electron 256 

microscopy. As a solution to this problem, we have demonstrated that sulfur sublimation is 257 

suppressed by cooling sulfur samples below the sulfur sublimation point in vacuum using cryo-258 

TEM, or by using airSEM to image sulfur in air. Both techniques are able to detect features of the 259 

sulfur distribution across C-S nanocomposite materials that are extremely challenging to observe 260 

reliably in standard electron microscopy due to sulfur sublimation in vacuum and resulting artifacts 261 

such as sulfur redistribution. Most notably, in three of the four carbon-sulfur composite samples 262 

investigated in this paper, we have directly observed that sulfur infiltration by melt infusion is 263 

unsuccessful or inefficient, leaving much of the sulfur external to the carbon host material. It may 264 

be of interest for future studies to investigate whether inefficient sulfur infiltration by melt infusion 265 

occurs in other composite materials, and to what extent this affects battery performance.   266 

In conclusion, we strongly recommend adoption of cryo-TEM, airSEM for more reliable 267 

characterization of sulfur and sulfur battery cathodes. Other techniques that may also be able to 268 

suppress sulfur sublimation artifacts could include environmental SEM, cryo-SEM, and 269 

environmental-cell TEM. Applying these techniques to Li-S batteries will allow researchers to 270 

reliably characterize the inherent distribution of sulfur in their composite electrodes, helping to 271 

guide the design of improved lithium sulfur batteries. 272 
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Figures 368 

369 

Figure 1. a) Vapor pressure vs temperature for elemental sulfur (Ferreira & Lobo, 2011). Purple 370 

marker indicates approximate conditions in specimen chamber of the F20 TEM used for image 371 

acquisition. b) – f) Sulfur particle sublimating in TEM vacuum chamber at 18oC, at a pressure of 372 

8.8x10-8 Torr, imaged after (b) 16 min, (c) 21 min, (d) 28 min, (e) 33 min, (f) 40 min under vacuum. 373 

Scale bars 1µm. The particle was not exposed to the electron beam between images. After 40 min, 374 

particle has sublimated almost completely, leaving a small residue, which was stable in vacuum. 375 

STEM-XEDS map (g) indicates that the residue is sulfur. Residue morphology suggests the 376 

formation of super-sublimated polymeric sulfur, as expected from the macroscopic experiments of 377 

(Nash, 1987). 378 
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379 

Figure 2. a) – c) Time series of images of a cryogenically cooled sulfur particle at approximately 380 

-173oC after a) 86 minutes, b) 170 minutes, and c) 311 minutes under 8.8x10-8 Torr vacuum. Scale 381 

bars 1 μm. The particle was not exposed to the electron beam between images. No sublimation 382 

effects were observed over a 5 hour period. After 4 hours under vacuum, a HAADF STEM image 383 

(d) (scale bar 500 nm) and STEM-XEDS map (e) were taken from the tip of the particle, 384 

demonstrating the stability of sulfur for STEM imaging and spectroscopic analysis under 385 

cryogenic conditions. Stronger signal on left hand side of particle due to detector geometry. 386 

387 

Figure 3.  Cryo-STEM ADF images and XEDS maps of: a) Composite of sulfur and activated 388 

gyroidal mesoporous and microporous carbon aGDMC-15-10h, showing a high degree and 389 

homogeneity of sulfur infiltration (overlap in carbon and sulfur signals). b) Composite of sulfur 390 



19 
 

and the same gyroidal mesoporous carbon GDMC-15-1600°C without prior activation and very 391 

low microporosity, showing pure sulfur external to the carbon host, indicating poor infiltration 392 

efficiency. c) Cryo-STEM image of carbon nanotubes after attempted sulfur melt infusion. Tubes 393 

remain hollow. EELS spectrum from body of tube (red) on carbon support film shows little or no 394 

sulfur L-edge signal. EELS spectrum from an elemental sulfur particle shown for comparison in 395 

blue. d) Carbon nanotube-sulfur composite CNT-S, also showing most sulfur external to 396 

nanotubes. 397 

398 

Figure 4. a) Optical microscope image of pure sulfur that has not infiltrated into carbon spheres. 399 

b) airSEM BF-STEM image of sulfur particle corresponding to that in the optical image. c) & d) 400 
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carbon and sulfur XEDS maps, confirming that the material is bulk sulfur. e) Extended depth of 401 

field optical microscope image of clusters of carbon-sulfur spheres recorded on the airSEM’s 402 

optical microscope. f) airSEM BF-STEM image of single cluster of carbon spheres from the same 403 

region as (b). g) & h) XEDS maps showing carbon and sulfur signals that confirm sulfur 404 

infiltration into the sphere walls, but suggests no infiltration into the sphere interior.     405 




