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Abstract 

The integral equations for calculation of metric, equations of substance 

motion, as well as equations for gravitational and electromagnetic fields in 

covariant theory of gravitation are obtained by means of variation of action 

functional. In covariant form stress-energy tensor of gravitational field, strength 

tensor of gravitational field and 4-current of mass are determined. The meaning 

of the cosmological constant and its relation to the components of energy density 

in action functional are explained. The results obtained prove the validity of 

Mach's principle, assuming that gravitation effects are due to the flows of 

gravitons. The idea that metric can be entirely determined by variables 

describing fields’ properties is substantiated. 
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1 Introduction 

Covariant theory of gravitation (CTG) is one of the alternative gravitation 

theories in relation to the general relativity theory. The purpose of this article is 

to derive equations of CTG from the principle of least action. As the basis of our 

discussion we will use works of Einstein [1], Dirac [2], Pauli [3], Fock [4], 

Landau and Lifshitz [5]. 

We will use international system of units, basic coordinates in the form of 

coordinates with contravariant indices 
0 1 2 3( , , , )x x x x , metric tensor g , metric 

signature (+, –, –, –). The presence of repeated indices in formulas implies 

Einstein summation convention, which is a separate summation for each 

repeated index. 

 

2 The action function 

In the case of continuously distributed throughout the volume of space matter, 

the action function for the matter in gravitational and electromagnetic fields in 

covariant theory of gravitation can be presented as follows: 

 

0

0

1
( 2 )

16

1
,

4

c
S Ldt k R c D J Φ Φ

c

c
A j F F g d

c

 

 

 

 


 




       




   



 
            (1) 

 

where L  – Lagrange function or Lagrangian, 

dt  – differential of time in the used reference frame,  

k  – certain coefficient, 

R  – scalar curvature, 

  – a constant, which characterizes the energy density of the system as a 

whole, and therefore is a function of the system, 
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c  – speed of light, as a measure of velocity of electromagnetic and 

gravitational interactions propagation, 

0  – density of substance mass in reference frame in which the substance is 

at rest, 

,D
c



 
  
 

D  – 4-potential of gravitational field which is described by 

scalar potential   and vector potential D  of the field, 

J 
 – 4-vector of mass current, 

  – gravitational constant, 

Φ D D D D              – gravitational tensor (tensor of 

gravitational field strength), 

Φ g g Φ     

  – determining the gravitational tensor with contravariant 

indices by means of the metric tensor g  , 

,A
c



 
  
 

A  – 4-potential of electromagnetic field, set by scalar potential 

  and vector potential A  of the field, 

j  – 4-vector of electric current density, 

0  – electric constant (vacuum permittivity), 

F A A A A              – electromagnetic tensor (field strength 

tensor), 
1 2 3g d g cdt dx dx dx     – invariant 4-volume, expressed through 

differential of time coordinate 0dx cdt , through product of differentials of 

spatial coordinates 
1 2 3dx dx dx , and through the square root g  of determinant 

g  of metric tensor, taken with the negative sign.  

 

The symbol   denotes covariant derivative with respect to coordinates (in 

this case the coordinates x
). Similarly, 

x
 


 


 is an operator of partial 

derivative with respect to coordinates or 4-gradient. 
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The integrand in (1) is Lagrangian function, consisting of six terms. The first 

term with the scalar curvature R  depends on the metric tensor and its derivatives 

with respect to coordinates. In covariant theory of gravitation (CTG) metric is 

used to consider the impact of fundamental fields (which include 

electromagnetic and gravitational fields) of material bodies on the results of 

space-time measurements near the bodies. The field’s effect on measurement 

results shows that under the field’s action electromagnetic waves are deflected 

from rectilinear motion, electromagnetic clock changed its course, and measured 

distances changed its value. These effects can be described by introducing a 

curved space-time with metric tensor g  instead of flat Minkowski space with 

its single metric tensor  . In CTG gravitational field is an independent 

physical field and the metric tensor g  has the geometric meaning and auxiliary 

function, unlike general relativity where the metric field completely replaces 

gravitational field. 

In CTG second term in (1) is not simply related to rest energy substance 

density and its inertia with respect to the applied forces. According to [6], [7], 

the rest mass (and substance density at rest) is a consequence of strong 

gravitation and electromagnetic interactions operating at the level of elementary 

particles. But the first and the second terms in (1) are associated with 

microscopic fundamental fields, while other terms refer to action of macroscopic 

gravitational and electromagnetic fields. The division to microscopic and 

macroscopic fundamental fields follows from the theory of infinite nesting of 

matter in which its own gravitational field operates at every main level of matter. 

As a result, the usual gravitation is assumed as long-range component of strong 

gravitation. 

The third term in (1) 
1

D J
c



  is invariant with respect to different types of 

coordinate transformations that reflect the interaction of mass current density 

0J u   of arbitrary substance unit with gravitational field. 

According to [8], the fourth term in (1) associated with energy field, is an 

invariant of gravitational field which does not change its form by changing the 

reference system. The fifth and sixth terms, for electromagnetic field, are similar 

in structure to the third and fourth terms for gravitational field. And 4-vector of 
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electric current density j  can be determined by charge density 0q  of substance 

unit and 4-velocity: 0qj u  . 

In CTG 4-potentials D  and A  with covariant indices, and 4-currents J 
 

and j  with contravariant indices were determined in [7] and [9] as initial 

concepts for construction of axiomatic theory. Hence we can make a conclusion 

that, for example, 4-vector D g D 

  can not be found in absence of 

information about metric in any frame of reference. 

 

3 Variation of curvature invariant 

To obtain equations for metric the variation of action function for the case 

when in Lagrangian the metric tensor g  is variable should be set to zero. At 

the same time variation of metric tensor should be zero on the borders of four-

dimensional volume for which in (1) integration is performed. For full variation 

of the action should be as follows: 
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Let’s find the variation associated with the first term in (2). Using definition 

of scalar curvature  through Christoffel symbols, we obtain the same as in [2]: 
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where  1R g  

        ,     2R g    

        ,    

1 2R R R  . 

 

R
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The expression for 1R g  can be obtained by means of differentiation by 

parts: 

 

   

   
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The first two terms on the right side of (4) are the total derivatives 

(divergence), and after substituting them in (3), the integrals of the divergence 

over the volume according to Gauss's theorem can be replaced by the integrals 

over the surface surrounding the volume for which the integration takes place. 

Since variation of metric tensor on the surface equals to zero, these terms will 

not contribute to the variation of action function, so that in (4) only the last two 

terms should be taken into account. Then we can use two relations: 

 

   g g g g g g       

            ,                (5) 

 

 

    g g g g   

       . 

 

Substituting them in the last two terms in (4) and renaming some of indices 

on which the summation takes place, we obtain: 
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As a result, instead of (3) we can write: 

 

 1 2 2S k R g d k g d           .                      (6) 
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The first variation in (6) will equal to: 

 

     2R g g g g g     
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Using the relation: 
1

g
g
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    


, differentiation by parts, and using 

the second relation in (5), for the first part (7) we obtain: 
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(8) 

 

The expression for derivative of metric tensor has the form: 

g g g     

        . After multiplication by g , taking variation and 

another multiplication by 


   we will obtain: 
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We now transform the second part of (7), using replacing of indices, operation 

of differentiation by parts, and the previous expression: 
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(9) 

 

Substitution of (8) and (9) in (7) gives the following result: 
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The terms   g g 

     and   g g 

     in (10) can be 

transformed: 
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In equations (11) there are such divergences as   g g 

    , which, 

after substituting in (10) and then into (6) will be integrated over 4-volume and 

transformed into integrals over the surface, where variations are equal to zero. 

With this in mind, after substituting (10) and (11) into (6) we obtain: 
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where R  is Ricci tensor. 

 

For variations of metric tensor g
 and g  we can write down: 

 

g g g g   

    ,                  
2

g
g g g 
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
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Using (13) in (12), we obtain: 
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





 

 

With this result and the expression g   from (13), we obtain:  
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1

1

2
S k R g R g g g d     

  
 

      
 
 .                 (14) 

 

4 Variation of invariant mass density 

The second term in (2) is an invariant associated with the 4-current of mass 

J 
, so we can write down: 

 

0c g J J J J  

    .                                  (15) 

 

4-vector J 
 can be determined through 4-velosity 

dx
u

d





 , where 

0 1 2 3( , , , )dx dx dx dx dx   is displacement 4-vector, d  – differential of proper 

time, as follows: 
0

u g J J
J u

c

  

    , and 2u u c

  . In elementary 

particle physics instead of the values of mass and velocity of particles their 

energies E  and momentums p  are used as the quantities directly found from 

experiments. These quantities are part of 4-momentum of a particle: 

,
E

p mu
c

  
 

 
= p , and the invariant mass m  become a secondary concept, 

which may be found from the relation 

2 2 2E p c
p p mc

c






  . 

Accordingly, to calculate the velocity of particles in special relativity theory is 

applied relation: 
2c

E
 pv . 

The variation of the second term in (2) with (15) has the following form: 

 

 2S g J J g d 

     .                              (16) 

 

We determine the variation in (16) with the help of (13): 
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   
1

22

1
.

2

g J J g g g J J g J J g

J J g g g J g J
g J J g g g

g J J g J J

g JJ J
g g J J g g g J

g J J g J J

     

  

   

     

     

 

 
     

     

 

  

 


 

     

 
    

 
     
 
 

  (17) 

 

In (17) variation J   is contained which according to [2], [4] can be found 

using displacement 4-vector  . The displacement   is variation of 

coordinates, which gives variation of mass 4-current J  :  

 

   
1

J J J g J J
g

        

            
 

.         (18) 

 

Equation (18) was obtained based on the condition that mass of substance 

unit in variation of coordinates remains constant despite the change in density 

and its volume. With the help of (15) and (18) the last term in (17) can be 

transformed through 4-velosity u :  

 

 

   

1

1 1
.

g J
g J u g J J

cg J J

u g J J u g J J
c c



      

 
 



       

   

  

   

      
 

        
 

 

 

The term with complete divergence in integration over 4-volume in the action 

function will not make any contribution. The remaining term in the previous 

equation can be transformed further:  
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 
1 1

( )

1 1
( ) .

u g J J u u J g
c c

u u J g J u g
c c

     

     

   

     

  

 

         

        

        (19) 

 

Here the condition 0 0J u u u 

        was used, since it follows from 

the equation 2u u c

  , to which the covariant derivative 
  is applied.  

The symmetrical stress-energy tensor of substance is:  

 

c J J

g J J

 
 

 



  .                                        (20) 

 

Substituting (20) in (17) and using (19) instead of the last term in (17), we 

obtain the variation 2S  in (16): 

 

2

1 1 1

2 2
S g g g J J g J u g d

c c

       

          
 

       
 
 . 

        (21) 

 

5 Variation of Lagrangian of gravitational field and its sources 

The effect of macroscopic gravitational field is revealed in the third and 

fourth terms in (2), which gives the following:  

 

 3

1
S D J g d

c



     ,      4
16

c
S Φ Φ g d

 
 

    .    (22) 

 

We first consider variation for 3S  in (22), using g   by (13) and then 

(18) for J   :  
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   

 
1

.
2

D J g D J g J g D

D g J J D J g g g J g D

  

  

       

     

  

   

     

        
 

 

 

Transformation of the first term: 

 

 

   .

D g J J

D g J J D g J J

   

 

       

   

 

   

    
 

       
 

 

 

Neglecting the term with total derivative, we consider the following:  

 

  ( ) .D g J J D D J g Φ J g       

                    

 

Substituting these results into (22), we obtain: 

 

3

1 1 1
.

2
S Φ J D J g g J D g d

c c c

     

       
 

      
 
       (23) 

 

Variation for 4S  in (22) with (13) is equal to: 

 

   
1

.
2

Φ Φ g Φ Φ g Φ Φ g

Φ Φ g Φ Φ g Φ Φ g g g

  

  

    

    

  

  

     

     

        (24) 

 

Since Φ g g Φ  

   , the tensor Φ   is antisymmetrical, then using 

g   by (13), we obtain:  
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 

2

2 .

Φ Φ g Φ g g Φ g

Φ g g Φ g Φ g g Φ g g

Φ Φ g Φ g Φ g g

Φ Φ g g Φ Φ g g

  

   

     

      

   

    

    

    

 

  

 

 

   

      

    

   

 

 

Substitution of this expression into (24) gives the following result: 

 

 
1

2 2
2

1
.

2

Φ Φ g Φ Φ g Φ Φ g

Φ Φ g g g Φ Φ g g Φ Φ g g

Φ Φ g g g

  

  

       

       

  

  

  

  



     

      

 

 

(25) 

 

We denote U
 

 as the stress-energy tensor of gravitational field: 

 
2 21 1

.
4 4 4 4

c c
U g Φ Φ g Φ Φ Φ Φ g Φ Φ             

   
   

   
       

     
(26) 

 

Remembering that Φ D D D D             , using differentiation 

by parts, as well as equality for an antisymmetrical tensor: 

 Φ g g Φ   

      , for the term 2Φ Φ g 

    in (25) we obtain:  

 

   

   

 

2 2 2

4 4 4

4 4 .

Φ Φ g Φ D D g Φ D D g

Φ g D Φ g D Φ g D

Φ g D Φ g D

     

         

     

     

   

   

   

  

 

           

         

     

(27) 
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The term  4 Φ g D 

    in the last expression is divergence and can be 

neglected for variation of action function. Substituting (26) and (27) in (25), and 

the result in (22), we obtain:  

 

4

1

4 2

c
S Φ D U g g d

c

   

     
 

 
      

 
  .            (28) 

 

6 Variation of Lagrangian function of electromagnetic field and its sources 

Variation in (2) for electromagnetic field is the same as for gravitational field 

in the previous section. For the fifth and sixth terms in (2) we can write down:  

 

 5

1
S A j g d

c



     ,        0
6

4

c
S F F g d




     .      (29) 

 

Replacing in (22) 
 
D  with A , J 

 with j , Φ   with F , instead of (23) 

we obtain:  

 

5

1 1 1
.

2
S F j A j g g j A g d

c c c

     

       
 

      
 
        (30) 

 

In deriving (30) was used the expression for variation of electromagnetic 4-

current, similar to (18):  

 

   
1

j j j g j j
g

        

            
 

.          (31) 

 

The stress-energy tensor of electromagnetic field is: 

 

2 2

0 0

1 1
.

4 4
W c g F F g F F c F F g F F             

    
   

       
   

 

 

(32) 
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With the help of this tensor the variation 6S  will equal as in (28) to:  

 

6 0

1

2
S c F A W g g d

c

   

      
 

     
 
  .               (33) 

 

7 The equations for metric 

Let us put together and substitute in (2) all terms in (14), (21), (23), (28), (30) 

and (33) containing the variation g   of metric tensor. Due to the arbitrariness 

of the variation the sum of all these terms should equal to zero. The result is the 

following: 

 

1 1 1 1

2 2 2 2

1 1 1
0.

2 2 2

k R g R g g g J J D J g
c c

U A j g W
c c c

              

 

      




 
       
 

   

 

 

Let us rewrite this equation with 
3

16

c
k

 
   , where   – the coefficient of 

order 1, as an equation for determining metric tensor g   with the help of known 

sources of energy-momentum. Here, instead of  , we introduce a new constant 

 , according to the relation: 
4

8

c

  
  . As well as  , the constant   

determines the properties of system as a whole. It has the following result: 

 




4

1 8

2

.

R g R U W c g J J g
c

D J g A j g g

             



       

 

 




     

  

          (34) 

 

In case when such a large system, like our universe is considered   has a 

special name – the cosmological constant. It is estimated as 5210 m–2. Hence the 
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value   is of the order
4

105 10
8

c

 


   J/m3, having dimension of energy 

density. For other systems, which can roughly be considered as systems with the 

matter continuously distributed throughout the volume of space, the constants   

and   can have other values. 

The equation (34) was obtained based on the condition that either the 

variations of coordinates   and 4-potentials D  and A  in function of action 

(2) equal to zero, or the sums of all the terms with these variations are always 

equal to zero. In the first case (34) is an equation for the metric of a system, in 

which the motion of charged and gravitating substance by the definite 

trajectories were originally determined and the calibrated values of field 

potentials (that means, the constants appearing in potentials were determined) 

were determined as well. In the second case variations of coordinates 

(trajectories of substance) and variations of potentials are allowed due to their 

mutual influence on each other. However, it is assumed that each time the 

combinations of terms in function of action defining the relationship between the 

substance and the field, including generation of fields by substance and field 

influence on substance are of such kind that they equal to zero and do not affect 

the function of action and the metric. In the second case the initial distribution 

of substance in space and its initial velocity and initial values of the potentials 

are arbitrarily, so the laws of connection between the subsequent motion of 

substance and fields due to some reasons lead to the equation (34). Obviously, 

the validity of the second case requires additional evidence, or should be 

postulated, whereas in the former case it is not required. 

Outside the substance, where gravitational and electromagnetic 4-currents J   

and j  tend to zero, the contribution to the metric according to (34) is made only 

by the stress-energy tensor of gravitational field U    (26) and the stress-energy 

tensor of electromagnetic field W    (32). If the metric is determined within the 

substance, the contribution to the metric depends on all terms in (34).  

We should note that the right side of (34) contains additional terms that in 

general relativity theory usually are not considered. In particular, (34) includes 

all invariant scalar values from the function (1), including terms Φ Φ

  and 

F F 

 , which became components of the tensors U    and W   , respectively. 
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In general relativity, there is no stress-energy tensor of gravitational field U    

in the form in which we have determined it. This follows from the fact that in 

general relativity, gravitational field reduces to the metric field, where the 

components g  of metric tensor are considered as potentials describing the 

gravitational field. In this case, the presence of U    in the right side of equation 

for the metric (34) would mean that gravitational field is the source itself. In the 

absence of substance that would lead to a vicious circle where a metric 

gravitational field generates itself, the field gives the metric and the metric gives 

the field. As opposed to it, in covariant theory of gravitation (CTG), the metric 

is only an auxiliary geometric field induced by gravitation and electromagnetic 

field, taken in all their forms at different scale levels of matter.  

In CTG uses the metric theory of relativity [7], the essence of which is 

dependence of metric on not only the properties of motion of system, but also on 

the type of test bodies, which can be both substance particles and quanta of field. 

Test bodies are needed to determine the metric of system in nature, for 

measurement procedure of scale and time, and have different properties due to 

the difference in equations of motion. As a result, the coefficient   in (34) may 

be different for different systems and should be found separately for complete 

definition of metric tensor. In particular,    was found in several situations, such 

as calculating deviation of test body’s motion under the action of gravitation, 

and calculations of perihelion shift. Notes on the last four terms in (34) and the 

term with constant   will be made later in the section "Tensors of energy".  

 

8 The equations of motion of substance and field 

To obtain the equations of motion of substance it is necessary to select in the 

full variation of action (2) those terms which contain variations of coordinates 
 . Due to the arbitrariness of   the sum of all such terms should be equal to 

zero. From the sum of (21), (23) and (30) we obtain: 

 

1 1 1
0J u Φ J F j

c c c

  

       . 
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Taking into account that 0J u  ,  0qj u  , and using the operator of 

proper-time-derivative [7]: 
D

u
D






  , where D  denotes covariant 

differential,   is proper time, the last equation can be written as follows: 

 

0 0 0 0q

Du
a Φ u F u

D

  

     

   ,                         (35) 

 

where a  – 4-acceleration with covariant index, the first term on the right is 

the density of gravitational force, and the last term sets electromagnetic Lorentz 

force for charge density 0q .  

 

According to (35), the contribution to 4-acceleration of substance unit makes 

the gravitational acceleration Φ u  and 4-acceleration in electromagnetic field 

0

0

q
F u






. The physical meaning of (35) consists in the fact that it determines 

the impact on the substance of fields when the metric tensor of the system (this 

means that 0g    in action function), and field potentials ( 0D  , 0A   

in action function) are preset. 

The relation connecting the tensor of gravitational field Φ  with its source 

in the form of 4-vector J  , follows from (23) and (28) as the consequence of 

variation D  for gravitational 4-potential. Taking into account the 

antisymmetry of the tensor Φ Φ     we obtain: 

 

2

4
Φ J

c

  



 
   ,      or      

2

4
Φ J

c

 



 
  .                   (36) 

 

A similar relation for electromagnetic field, from expressions for variation 

A  of electromagnetic 4-potential in (30) and (33) has the form: 
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2

0

1
F j

c

  




  ,      or      02

0

1
F j j

c

  

 


     ,            (37) 

 

where 0 2

0

1

c



  – vacuum permeability. 

 

Equations (36) and (37), as it is evident after obtaining them from variation 

of action function, are valid in case when the variation of coordinates of 

substance and the variation of metric are equal to zero, that is 0  , 0g  

. This means that if the motion of substance and metric of system are preset, we 

can calculate how the substance generates the field strengths. 

If we consider the definition of gravitational tensor: 

Φ D D D D             , and take the covariant derivative of the 

tensor, followed by a cyclic permutation of indices, then the following equation 

is performed identically:  

 

0Φ Φ Φ          .                                (38) 

 

Another form of (38) is: 

 

0Φ  

     , 

 

where      is the Levi-Civita symbol or totally antisymmetrical unit tensor. 

 

Equation (38) sets the gravitational field equations without sources, so that 

the set of equations (36) and (38) completely determines the properties of the 

gravitational field. 

For electromagnetic field we have the similar formula as in (38): 

 

0F F F                 or       0F   

     .                 (39) 

 

Equations (37) and (39) are the Maxwell equations, written in four-

dimensional notation. 
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Relation (36) can be written in another way: 
2

4
Φ J

c



 

 
  . If we take on 

both sides of this equation the contravariant derivative  , and use the definition 

Φ D D      , then due to the symmetry and changing of the order of 

differentiation the left side will equal to zero. This leads to the continuity 

equation (mass conservation), which imposes certain conditions on 4-velocity 

and the density of substance: 

 

 0 0J J u  

       . 

 

For conservation of the electric charge, we have a similar relation: 

 

 0 0qj j u  

       . 

 

If we specify a condition for 4-vector of gravitational potential D , or for 4-

vector of electromagnetic potential A , then it provides definite relation between 

scalar and vector potentials. The standard approach is Lorenz gauge, which gives 

the following conditions: 

 

0D D 

    ,                     0A A 

    .                 (40) 

 

Substituting (40) into (36) and (37) and using Φ D D       ,  

F A A      , while the expression 

     is D'Alembert operator, 

we obtain wave equations for 4-potentials in the Lorenz gauge: 

 

2

4
D J

c

  
  ,                                0A j  . 

 

9 About applicability of equations of motion in general case 

As we mentioned above, the equation for the metric (34) is correct in case 

when the motion of substance and field potentials are completely specified. 

However, in most cases only the initial state of motion and initial potentials are 

known, later the motion of substance is determined by field and is set indirectly. 
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How the equation (34) should be used in this case, and under what conditions? 

To answer this question, we assume that the motion of substance and field 

potentials at a short interval of time after initial time point remain unchanged. 

Then we can find metric tensor from (34). After that, assuming immutability of 

metric and the motion of substance in the second time interval, using (36) and 

(37) we can calculate the derivatives of tensors Φ   and F   by coordinates. 

After integration of these derivatives the field strengths can be found which are 

part of these tensors. Since now correct tensors Φ   and F   are known, with 

the help of them on the third time interval in the equation of motion (35) the 

acceleration of substance and its motion can be estimated, and the motion can be 

adjusted. In the fourth time interval the data about motion of substance from the 

third interval and about fields from the second interval can be used in order to 

evaluate the change of metric. Further calculations are repeated in the specified 

order. Thus the actual motion of substance in gravitational and electromagnetic 

fields, and space-time metric can be found approximately by an iterative 

procedure by means of the above-mentioned equations for metric, motion of 

substance and fields. 

 

10 Tensors of energy 

Let’s return to the equation for metric (34). It is known that the covariant 

derivative of left side of (34) is equal to zero, which is a characteristic of the 

Hilbert-Einstein tensor located there. Consequently, the covariant derivative of 

the right side of (34) must also equal to zero: 

 

  0U W c g J J g D J g A j g g                 

            . 

(41) 

 

Taking into account the definition of stress-energy tensor of substance (20), 

relations 0g J J c 

  ,   0J u  , and using operator of the proper-time-

derivative: 
D

u
D






  , we can write down:  
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 
0 0

0
0 0 0

1 1

,

c J J
J J J J

g J J

DDJ Du
u J u u u a

D D D

 
     

    



 
     

 


 


  

  

   
         
    

       

         (42) 

 

where a  – 4-acceleration. 

 

Now we find the covariant derivative of stress-energy tensor of gravitational 

field. Since the metric tensor under covariant differentiation acts as a constant, 

using (36), we obtain from (26): 

 

2

2

4 1

4

1 1

4 4

4 1
.

2

U g Φ Φ g Φ Φ
c

g Φ Φ g Φ Φ g Φ Φ g Φ Φ

Φ Φ g Φ J g Φ Φ
c

       

   

           

       

       

    

 

 

 
     

 

        

     

 

(43) 

 

We apply (38) to the last term in (43), on condition that tensor Φ   is 

antisymmetrical:  

 

 
1 1

2 2

1 1 1 1

2 2 2 2

.

g Φ Φ g Φ Φ Φ

g Φ Φ g Φ Φ Φ Φ g Φ Φ

Φ Φ

     

       

           

         

 

 

      

        

 

 

 

Substituting this into (43) we obtain the relation between the covariant 

derivative of stress-energy tensor of gravitational field and 4-vector density of 

gravitational force:  
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U Φ J   

    .                                        (44) 

 

We obtain a similar expression for the covariant derivative of stress-energy 

tensor of electromagnetic field and 4-vector density of electromagnetic force 

(Lorentz force density) with (32) and (39):  

 

W F j   

    .                                        (45) 

 

Substituting (42), (44) and (45) into (41) we obtain:  

 

  0 0U W a Φ J F j          

          .                (46) 

 

The zero right side of (46) follows from the equations of substance motion in 

gravitational and electromagnetic fields (35). Consequently, the covariant 

derivative for the remaining terms in (41) must also equal to zero: 

 

 

  0.

g c g J J D J A j

c g J J D J A j

     

   

    

  





    

     

                     (47) 

 

In brackets in (47) there is a scalar quantity, in this case the covariant 

derivative   is equal to partial derivative   (that is 4-gradient). Relation (47) 

is automatically satisfied if we assume that the constant in brackets is set equal 

to zero. This gives the relation:  

 

c g J J D J A j const   

       .                      (48) 

 

Equality (48) is necessary to perform in (34) the limit relations for tensors at 

infinity, where there is neither substance nor fields. As it is indicated in [4], at 

infinity the right side of (34) with energy tensors is equal to zero, and the space-

time becomes flat, bringing to zero the left side of Hilbert-Einstein tensor. 

Taking into account (48) the equations for metric obtain the simplest form:  
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 4

1 8
.

2
R g R U W

c

          
                         (49) 

 

Let’s use (15) and reveal in (48) the scalar product of 4-vectors, with the help 

of ,D
c



 
  
 

D ,  ,A
c



 
  
 

A ,  0J u  ,  0qj u   : 

 
00

02 0
0 0 0

q

q

uu
c

c c

  
        D u+ A u .                 (50) 

 

Here u  is a 3-vector, which is part of 4-velocity u  . In uncurved space-time 

according to special relativity theory 
2 2 2 2

,
1 1

c
u

c c


 
 
   

v

v v
, then 

0

2 21

c
u

c


v
, 

2 21 c
u =

v

v
, where v  is the velocity of substance motion. 

This shows that 
0

0 u

c

 
 is the energy density for substance in gravitational field 

with scalar potential  . The vector potential D  of gravitational field is also 

associated with energy, but its value 0 D u  can have different sign depending 

on the direction of vector u , which is proportional to speed v , and the direction 

of vector D . The same is true in respect of the density of electromagnetic energy 

– it depends on the charge density 0q , the scalar electric potential   and vector 

potential A  of electromagnetic field. 

Now suppose that in (50) the macroscopic gravitational and electromagnetic 

fields are off and their potentials are equal to zero. In this case, the density of 

substance must reach a certain value 0 , which depends only on fundamental 

microscopic fields acting at the level of elementary particles. Then we will obtain 
2

0c  , and (50) can be rewritten as follows: 

 
00

02 2 20
0 0 0 0 0

q

q g e

uu
c c c

c c

  
               D u A u = ,       (51) 
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where g  and e  denote the energy density of substance in gravitational and 

electromagnetic fields, respectively. 

 

As g  for substance is usually negative (due to the negative gravitational 

potential  ), then from (51) it follows that density of substance 0  in 

gravitational field becomes greater than density of substance 0  in the absence 

of field (when the substance of a body is divided into parts and separated to 

infinity). The same thing can be said about mass – in gravitational field it is 

expected to increase due to the contribution of gravitational mass-energy of 

substance in the field. Thus we have obtained the result similar to that which we 

have proved in [6] and [10], but in relation to contribution of mass-energy of 

field to the total mass of system of substance and field. Then we found that the 

mass of a spherical body grows due to its field, and with constant volume, this 

means an increase in the effective density of the substance. 

We can integrate (51) over the volume of substance of a spherical uncharged 

body in static position, when the body is at rest and does not rotate. If the 

substance is infinitely slowly superimposed on the body by parts in the form of 

thin spherical shells with the same density of substance, we can assume that in 

(49) 0u c , as well as: 

 
2 1 2 3 2

0c dx dx dx mc  ,                       2 1 2 3 2

0c dx dx dx m c  , 

1 2 3 1 2 30
0

( )m r
dx dx dx dx dx dx

r

 
     , 

 

where m  – the observed mass of the body with its radius R ,  

m  – the mass of substance of the body without taking into account the energy 

of gravitation, 
3

04
( )

3

r
m r

 
  – the mass inside the radius r , increasing from 0 to the radius 

of the body R  with increasing of mass. 

 

As a result, (51) becomes equality for the masses: 
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2
2 2 1 2 3 20 ( ) 3

5

m r m
mc m c dx dx dx m c

r R

  
     ,                  (52) 

 

where   is gravitational constant. 

 

In (52) the module of mass-energy of gravitational field is added to the mass-

energy of the body. In reality, during the formation of space objects in 

gravitational field the virial theorem applies according to which approximately 

half of gravitational field energy leaves the system in the form of radiation, and 

the other half heats the substance. This reduces by half the additive to mass-

energy in (52). 

For the main objects of stellar level of matter the contribution to (51) of 

energy density of substance in electromagnetic field e  is little in comparison to 

g . In particular, for neutron stars, gravitational energy is equal to 

2
462.4 10s

s

k M
E

R



      J, here 0.6k   in approximation of uniform density 

of substance,   – gravitational constant, 302.7 10sM    kg, 12sR  km – mass 

and radius of a typical neutron star. The electromagnetic energy reaches a 

maximum in magnetars at magnetic pole of which the magnetic field can be 

about 111.9 10mB    T. Since magnetic energy density is given in form 
0

2

2

B
, then 

the integral over the entire volume inside the star and beyond it gives the 

magnitude of the magnetic energy of about 4110  J, which is considerably less 

than the modulus of gravitational energy.  

The similar situation exists at the level of elementary particles, where 

according to the theory of infinite nesting of matter [8], an analog of a neutron 

star is a nucleon. The energy of a proton in its own field of strong gravitation is 

estimated with the formula 

2

p

Γ

p

k ΓM
E

R
  , where pM  and pR  denote mass and 

radius of a proton, 
2

29

0

1.514 10
4 p e

e
Γ =

M M
  m3∙∙kg–1∙s–2 – strong 

gravitational constant, e – elementary charge, 0  – vacuum permittivity, eM  – 
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electron mass. The expression for electric energy of a proton in the case of 

uniform charge distribution is as follows: 
2

04
e

p

ke
E

R
 . Consequently, for a 

proton the ratio of module energy of strong gravitation to electrical energy is 

equal to the ratio of a proton to an electron mass, and the energy of strong 

gravitation dominates. 

The global dominance of gravitational forces over electromagnetic forces 

leads to possibility of formation of elementary particles of substance, massive 

bodies and other objects found in space. For the observable universe 

cosmological constant   is estimated by 5210  m–2, and constant   reaches 
105 10   J/m3. We consider that 2

0c   characterizes the visible universe 

as a whole, setting the rest energy density of substance distributed in space, 

without taking into account the energy fields. We further assume that 

gravitational fields are a consequence of flows of gravitons, which are produced 

by tiny particles of all the substance that exists in the universe. The more 

substance is in the universe, the greater is the density of substance and the more 

is the density of gravitons’ flows. Then relation (50) supports the Einstein’s idea 

that the inertia of a body must increase near other gravitational masses [11], 

which is in turn the development of Mach's principle of the impact of distant 

masses to acceleration of bodies. 

We should remind that in the usual interpretation the cosmological constant 

is proportional to vacuum energy density, and still it is not known exactly what 

particles or fields are responsible for this energy. There are also suggestions that 

the cosmological constant depends on the time, on the scalar curvature of space-

time (in f(R) gravity) or on the energy-momentum tensor [12]. 

We will further evaluate the scalar curvature R  for our universe. To find R  

we multiply (49) by g   and taking into account the fact that g R R 

   ,  

4g g 

   , while for stress-energy tensors (26) and (32) there are equations: 

0g U 

   ,  0g W  

   . Using the expression (20), we obtain: 

 

0

2

8
R

c

  
  . 
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If we assume that the density of substance can be calculated as follows 
2

0 0 2 8

c

c


 

 


   , the curvature of cosmological constant accurate to the 

sign equals to: R   . At the first approximation the observed universe can be 

regarded as the space-time of constant negative curvature, for which the equation 

is 
2

12
R

r
  . Hence the radius of such a world would be 

26

0

3 12
3.4 10

2

c
r

  
   


 m. On the other hand, if the observable 

universe is close to the state of Schwarzschild’s black hole, its radius should 

equal to: 
2

0

2 3

28
bh

M c r
r

c



 
   . In both cases, in determination of space-

time curvature, and in evaluating the radius of the black hole, speed of light is 

used as a measure of speed and means for measuring. 

 

11 Analysis of equation of motion in relation to mass 

According to (46) the equation of substance motion in gravitational and 

electromagnetic fields has the form:  

 

  0U W     

     .                                   (53) 

 

Let’s consider (53) in weak field limit, where the special relativity theory is 

valid and the covariant derivative becomes the 4-gradient. In this case we obtain: 

 

0 0
2 2 2 2

,
1 1

c
J u

c c

  
 
  
   v v

v
, 

 

and for the scalar components of stress-energy tensor of substance (20) we 

can write down:  

 
2

00 0

2 21

c

c


 

v
,                     

0 0

2 21

ii
i cK

c c


  



v

v
,                 (54) 
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where the index 1, 2, 3i  , so that in the Cartesian coordinate system 1

xv v

,  
2

yv v , 3

zv v , and vector 
2

0

2 21

c

c




v

v
K  is 3-vector of mechanical energy 

flow density or relativistic Umov’s vector. 

 

The gravitational tensor Φ D D D D               is defined by 

the 4-potential ,D
c



 
  
 

D  of the gravitational field, which depends on the 

scalar potential   and vector potential D  of the gravitational field. We shall 

introduce gravitational acceleration G  and torsion field   (gravitomagnetic 

field) as follows: 

 

t



  



D
G ,                       D . 

 

With the help of the quantities G  and   the scalar components of the stress-

energy tensor of gravitational field (26) can be represented as follows: 

 

00 2 2 21
( )

8
U G c 


   ,                      0

i
i H

U
c

 ,                      (55) 

 

where iH denotes the components of 3-vector energy flow density of 

gravitational field (Heaviside vector)  
2

4

c


  H G  . 

 

For the stress-energy tensor of electromagnetic field (32) in substance which 

is not magnetized and not polarized in the limit of special relativity we obtain 

similarly: 

 

00 2 2 20 ( )
2

W E c Β


  ,                           0
i

i P
W

c
 ,                    (56) 
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where iP  denote the components of 3-vector of electromagnetic energy flow 

density (Poynting vector)  2

0c P E Β . 

 

Substituting (54), (55) and (56) into (53) for 0   and for the replacement   

on   in Minkowski space makes an expression of Poynting's theorem: 

 

 0 0 0 0U W  

     ,      or        00 00 00 ( )U W
t



     


K H P . 

(57) 

 

The values 00 , 00U  and 00W  set the energy density of substance, 

gravitational and electromagnetic fields respectively.  

Let’s integrate (57) over the entire volume of space occupied by substance 

and field. We shall consider the quasi-stationary case, when all energy flows are 

closed so that the volume integral of divergence of the right side of (57) becomes 

close to zero. This means that the amount of energy flows, extending forever into 

infinity is little. Then taking into account (54), (55) and (56) we should obtain: 

 
2

2 2 2 2 2 2 20 0

2 2

1
( ) ( )

1 8 2

c
G c E c Β dV const m c

c

 




 
      

 
 v

,      (58) 

2 2 2
2 2 20 0

02 2 2 2 2 2
1

1 1 1
k

c c c dm
dV c dV mc E

c c c

 
    

  
  v

v v v
, 

2 2 2 2 2 2 2 201
( ) ( )

8 2
kmc m c E G c E c Β dV






 
      

 
 .

 
 

We denoted by m  the mass of substance when the substance is separated to 

infinity and is in rest there. In this case all the fields G ,  , E  and Β  will tend 

to zero. Equation (58) shows that the mass of substance m  in relation to the mass 

of substance m  increases due to the contribution of total mass-energy of 

gravitational field and decreases due to the contribution of mass-energy of 
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electromagnetic field and the kinetic energy of motion of substance kE . Actually 

(58) confirms the relation (52) from the previous section. 

 

12 Additional notes 

In our view, the equation of motion of substance (35) should look a little 

differently: 

 

0

0 0

( )
q

D J D u
Φ u F u

D D

   

 


 

 
   .                        (59) 

 

In (59) the substance density 0  has been included under the sign of total 

derivative with respect to proper time. This allows us to describe cases where the 

substance density changes and thus creates an additional acceleration of 

substance. Meanwhile, equation (35) was obtained from the variation of 

coordinates described in [2] and [4], with constant mass in the variation. This led 

to the fact that (35) differs from (59), as in case 0 const  , and therefore 0  

can be outside of the total differential. 

It is interesting that we can choose the stress-energy tensor of substance so 

that its covariant derivative just gives the rate of change of substance’s 4-current. 

This tensor has an unusual form in terms of indices, but formal covariant 

derivative gives the correct result. Instead of (20) we shall write down: 

2c J J

g J J

 
 

 

 

  . Taking into account the continuity equation 0J 

   we 

obtain: 

 

 1,5

22 1
2

2
.

( )

c J Jc J J
c J J

g J J g J J g J J

c J J c J Jc J J D J
g J J u J

g J J Dg J J g J J

  
   

       

     

     
    

       
    





   
         
   
   

 
      
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In fact, we have found the tensor 
2c J J

g J J

 
 

 

 

   in (17). The reason that 

we have not used it as it is described here, is that instead of the exact form of 

variation J   as the function of coordinate’s variations, the simplified form (18) 

was used in derivation of motion equations. This leads to (35), but not to (59). 

From variation (48) it follows that the total variation of mass 4-current J   

is associated with variation of metric tensor g , variation of electromagnetic 

4-current j  and variations of 4-potentials: 

 

  0c g J J D J A j   

       ,                         (60) 

1
0

2
u J g u J D J J D A j j A      

                . 

 

The relationship of variations in (60) is connected through variation of 

coordinates   in such a way that the mass of any local volume does not change 

during variation. However, we can admit a situation when the mass-energy is 

converted into radiation energy, or substance density changes due to inflow or 

outflow of mass. Then, some results presented in this paper will require a 

corresponding change. 

Let’s now substitute (48) into (2), and with equations 0g J J c 

  ,  

2 0k
c


    ,  we obtain: 

 

0 0
16 4

cc
S kR Φ Φ F F g d 

 


 

 

 
      

 
 . 

 

After implementation of variation in this equation we will obtain the 

equations for metric (49), but without the tensor   : 

 

 4

1 8
.

2
R g R U W

c

        
                               (61) 
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The metric obtained in (61) is as it should be outside the substance, and this 

metric depends directly on the magnitude of existing fields and indirectly on the 

distribution of substance in this field. 

In CTG there is a concept of geodesic line, which coincides with the 

expression of general relativity theory, but only for field quanta. The equation of 

motion (35), taking into account D d  , can be written as: 

 

0

0

qdx DdxD dx dx
Φ F

d d d d d d

 
 

 



      

 
   

 
.                      (62) 

 

For field quanta we obtain 0ds cd  . Multiplying (62) by d d  , we 

obtain the equality to zero of the right side: 0Ddx  . Dividing this by the 

square differential of time coordinate  , which measures time along the 

trajectory of quantum, and recalling the definition of operator of proper-time-

derivative, we obtain the geodesic equation in covariant indices: 

 

0.

Ddx dx dx dx dxD dx dx dx

d d d d d d d d d d

dx dxd dx

d d d d

  
    

   


 

 

         

   

     
           

     

 
   

 

 

(63) 

 

While the field quanta are distributed outside the substance in a given field 

(gravitational and electromagnetic), their movement takes place in accordance 

with the equation of motion (63), and the space-time metric is determined from 

(61). What can change while the field quanta pass through the substance? If the 

substance is rare and does not interact with quanta, the quanta move between the 

particles of substance. Then in principle, equation (61) should be valid for the 

metric with the amendment that it is now necessary to take into account the 

stress-energy tensor of field of strong gravitation acting at the level of elementary 

particles. This new tensor should look as a supplement to the stress-energy tensor 

U    of normal gravitation (26), replacing the constant of gravitation   by the 
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constant of strong gravitation Γ , and with a factor of proportionality. In practice 

instead of using this new tensor, it is replaced by the stress-energy tensor of 

substance   , and one say that "the substance alters the space-time metric 

inside, and affects the metric beyond its borders". 

This leads to the equation for the metric in the form of (49). But another 

interpretation is possible – a field always affects the metric, whereas the role of 

substance is reduced only to creation of field. In this case it is necessary to 

impose the condition on the properties of test objects with the help of which we 

study metric and find metric tensor components – these test bodies must interact 

with the substance at a distance and only through the fields, without mechanical 

contact randomly changing the movement. 

The above interpretation of relationship between substance, metric and field 

is difficult in general relativity, in which gravitation is hiding in the shadow of 

geometrical metric field and losing its physical essence. Metric gravitational 

field (metric of space-time) in general relativity depends on the substance and 

electromagnetic field and is fully determined by them. But how does the 

substance change physically the metric field even if it is far away from it? What 

is the relationship mechanism between the substance and the field? All this 

remains a mystery. 

In covariant theory of gravitation the Fatio-Le Sage’s gravitation theory is 

considered as the basic idea of generating gravitational field, which allows to 

describe in the same way strong gravitation at the level of elementary particles 

and usual macroscopic gravitation [13], as well as electromagnetic interaction 

between bodies [7]. Quanta of gravitation, which are formed by relativistic 

objects at the lower levels of matter presumably in the form of electromagnetic 

radiation and neutrinos, become gravitons for the objects of higher levels of 

matter and create there gravitational interaction. The gradients of energy density 

of gravitons’ flows may be considered as gravitational field strengths. Then the 

gravitational potential is the difference between the energy density of gravitons’ 

flows near or inside the bodies, and the energy density of gravitons’ flows at 

infinity in the absence of bodies. These flows of gravitons are responsible for 

deviation of test particles and field quanta near the massive bodies. In this picture 

the field quanta of lower levels of matter generate macroscopic fields and form 

macroscopic metric, and the substance (regarded as an aggregation of objects 

from different levels of matter, distinguishing by their characteristic sizes and 

masses) interacts with the field quanta and generates them. 
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