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In a pair of influential papers, Dewar [1,2] has claimed that a principle of “maximum

entropy production” (MaxEP) follows from Jaynes’ “maximum entropy” (MaxEnt)

principle under certain conditions; that MaxEP holds even for systems far from

equilibrium, for which the constitutive relations are nonlinear; and that the phenomenon

of “self-organized criticality” (SOC) is a consequence of MaxEP for slowly driven

systems.

In this note we first point out an error in the derivation [2, pp. L372-75] that

invalidates the claimed proof of MaxEP for far-from-equilibrium systems. Second, we

show that the claimed link [1, pp. 639-40] between MaxEP and SOC is unjustified.

1. Systems far from equilibrium

Using the same assumptions and notation as Dewar [2], we have verified his results

through equation (13), the “fluctuation theorem” (FT): p(f)/p(−f) = exp(2
∑

k λkfk).

Here p(f) is the p.d.f. of the m-component vector f ≡ (f1, ..., fm), where the fi’s

are functions whose known average values are (F1, ..., Fm), and λi is the Lagrange

multiplier associated with Fi in the maximization of the information entropy in the

MaxEnt approach. Dewar notes that “the generic FT [2, equation (12)] has important

implications for the functional form of the relationship between λ and F .” He then

states, correctly, that the quadratic approximation to p(f) in the vicinity of f = F is

given by his equation (14):

p(f) ∝ exp{−1

2

m∑

j,k=1

(fj − Fj)Ajk(fk − Fk)} , (1)

However, there is no reason to expect, as Dewar requires in the line following equation

(14), that that equation be valid for all f including f far from F ; and therefore there is

no basis for concluding (equation (15)) that λk =
∑

j Ajk(F )Fj. Indeed, if it were true,

equation (15) would imply [using also equation (10) for the definition of Ank(F )] that

Ank(F ) ≡ ∂λk(F )

∂Fn
=

∑

j

∂Ajk(F )

∂Fn
Fj + Ank(F ) , (2)

hence that ∂Ajk(F )/∂Fn = 0 for arbitrary F . But this is only true when A is

independent of F (i.e., linear constitutive relations), contrary to Dewar’s claim.

The point is that approximation (14) of ref. [2] (our equation (1)), is typically valid

only for f near F , while the FT, equation (13), involves p at both ±f . Since f and −f

can both be near F only when F is near zero, however, equations (13) and (14) hold

simultaneously only for small F , i.e., in the linear (“near-equilibrium”) regime where

A(F ) is independent of F .

Defining (as does Dewar) the mean dissipation D = 〈d〉 where d ≡ 2
∑

k λkfk, and

using the definition of Ank(F ), we find

∂D(F )

∂Fn
= 2λn + 2

∑

k

Ank(F )Fk , (3)
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instead of Dewar’s orthogonality condition ∂D(F )/∂Fn = 4λn [2, equation (18)].

(The dual equation (19) for D(λ) is likewise found to be incorrect in general.) The

orthogonality condition – which states that the vector λ(F ) points along the direction

of steepest ascent of D(F ) [2, p. L374] – is therefore not valid far from equilibrium.

(By way of contrast, λ(F ) indeed does point along the direction of steepest descent in

the information entropy S(F ) [2, equation (9)] – a property of MaxEnt.)

The orthogonality condition for D is essential to the subsequent derivations in [2]

of the principles of “maximum dissipation” and “minimum dissipation,” and hence of

the corresponding principles of MaxEP and minimum entropy production, respectively.

Contrary to the claim in [2], therefore, the derivations using this orthogonality condition

do require “the usual near-equilibrium assumption of linear constitutive relations” [2,

p. L375]. Thus the question of the existence of possible extremal principles (and

in particular, of MaxEP) that might apply to far-from-equilibrium regimes (having

nonlinear constitutive relations) has not been settled by [1,2].

1.1. Illustrative example

To illustrate these points explicitly, we make use of an instructive model proposed by

Bruers in a recent preprint [3] that also discusses Dewar’s work. We consider a single-

spin-chain simplification of that (two-spin-chain) model, make some small changes in

definition (corresponding to differences in factors of τ , the number of spins in the

chain), present some results that correspond to those in [3], and go on to show how

and why Dewar’s argument [2] fails. In the single-chain model, the distribution pi

is over all sequences of spins i ≡ (σ1, σ2, . . . , στ ), where each σt = ±c. We choose

the quantity f to be the sum of spins f(i) ≡ σ1 + . . . + στ , and the constraint [2,

equation (2)] to be 〈f(i)〉 ≡ ∑
i pif(i) = F . [Dewar’s vectors λ, f , and F , and matrix

A, are all scalars here since m = 1.] As Dewar requires (equation (11)), the possible

sequences i can be grouped into pairs (i+, i−) with respect to which f is antisymmetric,

f(i−) = −f(i+), by defining, for each i+ = (σ1, . . . , στ ), i− ≡ (−σ1, . . . ,−στ ) [or,

alternatively, i− ≡ (−στ , . . . ,−σ1)].† In order that F → constant as τ is increased, c

should go as 1/τ . We define c = 1/τ for convenience in what follows.

For this model we obtain, exactly (again as in [3], except for factors of τ , and for

one spin chain rather than two): the partition function Z(λ) = [2 cosh(λ/τ)]τ ; F (λ) =

∂ lnZ(λ)/∂λ = tanh(λ/τ); λ(F ) = τarctanhF ; and A(F ) ≡ ∂λ(F )/∂F = τ/(1 − F 2).

The FT (Dewar’s equation (12)), pi+/pi− = exp[2λf(i+)], is also exact.

For finite τ , only a discrete set of f values can occur; therefore, to calculate the

p.d.f. p(f) of f , we pass to the large-τ limit. Using Stirling’s approximation for the

† This model can be interpreted (as in [3], except for factors of τ) as one in which a constant macroscopic
unit time interval is divided into τ microscopic steps, a microscopic quantity c of material or charge
flows from left to right (if σt = +c) or right to left (if σt = −c) at each microscopic time step t, f(i) is
the total flux (net flow per macroscopic unit of time) for the microscopic path defined by i, and F is
the observed value of f averaged over all microscopic paths.
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factorial, and dropping terms of O(ln τ/τ, 1/τ) on the RHS, we obtain:

1

τ
ln p(f) =

1 − f

2
ln

1 − F

1 − f
+

1 + f

2
ln

1 + F

1 + f
. (4)

Expanding this about f = F , we obtain the quadratic approximation 1
τ

ln p(f) =

− (f−F )2

2(1−F 2)
+ O((f − F )3). This corresponds to [2, equation (14)] for f near F , since

A(F ) = τ/(1 − F 2). However, [2, equation (15)] is violated: the LHS is λ(F ) =

τarctanhF , while the RHS is A(F )F = τF/(1 − F 2). These two quantities are only

equal in the limit F → 0, where both reduce to τF . In this limit the constitutive relation

between λ and F becomes linear, and the quantity A(F ) becomes independent of F .

Dewar emphasizes that the constitutive relation (equation (15)) is nonlinear owing to

the dependence of A on F ; however, as we see, equation (15) is only satisfied in the

linear limit in which A becomes independent of F .

Bruers [3, p.25] notes that the orthogonality condition for D is only valid for linear

systems, contrary to Dewar’s [2] claim. However, the error in [2] that invalidates Dewar’s

claim is not identified in [3], and [3, equation (40)] repeats Dewar’s assertion that D is

equal to 〈2 ∑
k λkfk〉 and also to 2

∑
j,k Ajk(F )FjFk. As we have seen, the latter assertion

is incorrect in the nonlinear (far-from-equilibrium) regime.

2. MaxEP and SOC

We turn now to Dewar’s first article[1], in which it is argued that the occurrence of

SOC in flux-driven systems follows generally from the principle of MaxEP, in the limit

where the driving is infinitely slow with respect to the internal dynamics. This claim

has great potential significance, since there is at present no clear, general understanding

of the origins of SOC; nor have necessary and sufficient conditions for the occurrence of

the phenomenon been delineated. We demonstrate, however, that the arguments about

SOC in [1] are flawed, and that no conclusion about the occurrence of the phenomenon

in the model considered there can be properly drawn.

To see this, consider the sandpile-like system considered in [1], using the same

definitions and notation. In particular, F is the output flux of grains from the pile, Fext

the fixed external input of grains, and p(F |Fext) the output-flux probability distribution

for given Fext. Ref. [1] starts with the assumption (in equation (26)) that

p(F |Fext) =
1

Z(Fext)
exp{H(F |Fext)} , (5)

where Z(Fext) ≡
∫

dF exp{H(F |Fext)}, and (equation (27))

H(F |Fext) = rF 2 + gF 4 (6)

for small F , with the real constants r and g respectively positive and negative.

Dewar’s claim that the model defined in this way exhibits SOC rests on the assertion

that the quantity 〈F 2〉 ≡
∫

dFF 2p(F |Fext) diverges in the limit Fext → 0. The only

divergence in the integral defining 〈F 2〉 can come from large F , since the integrand

is well behaved near F = 0. In particular, for 〈F 2〉 to be infinite at a given Fext,
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p(F |Fext) must not decrease more rapidly than F−3 as F → ∞, aside from slowly

varying corrections such as logarithms. Such an algebraically slow decrease of p(F |Fext)

with F means that the distribution, D(n), of avalanche sizes n, also falls off algebraically

slowly with n for large n, which is the defining characteristic of SOC[4].

The assertion that 〈F 2〉 diverges is unjustified, however. In fact, since the behaviour

of H(F |Fext) at large F is unspecified in the model, no conclusion about the large-F

behaviour of p(F |Fext) and hence about the behaviour of 〈F 2〉 can be drawn. If one

assumes a particular large-F form for p(F |Fext), moreover, that assumed form alone

determines whether the model has SOC or not. If, for example, one assumes that

p(F |Fext) ∼ 1/F α for some power α as F → ∞, then one has by fiat defined the model

to exhibit SOC. (Any value of α suffices to ensure SOC, even though 〈F 2〉 is finite for

α > 3.) If, on the other hand, one assumes that p(F |Fext) decreases faster than a power

of F – exponentially say – then by definition the model does not exhibit SOC.

It remains to understand, then, how ref. [1] concludes that 〈F 2〉 diverges as

Fext → 0. The point is that 〈F 2〉 is computed in ref. [1] under a (“mean-field”)

approximation wherein H(F |Fext) is expanded to quadratic order in (F − 〈F 〉) (with

〈F 〉 = Fext =
√
−r/2g in mean field approximation), the cubic and quartic terms being

neglected. Implicitly, moreover, this quadratic form is assumed to hold not just for small

F but for all F , so that 〈F 2〉 can be computed.‡ Since the coefficient of the quadratic

term vanishes like |g|F 2
ext (i.e., like r) as Fext → 0, the integral defining 〈F 2〉 diverges

in this limit. Note, however, that if one keeps the higher order terms in the expansion

of H(F |Fext), and again assumes that the resulting form – now quartic in (F − 〈F 〉)
– holds for all F to allow the computation of 〈F 2〉, one readily sees that 〈F 2〉 stays

finite at Fext = 0, where one finds 〈F 2〉 ∝ 1/
√
|g|. (This result follows immediately

from changing the integration variable from F to y ≡ F |g|1/4 in the integrals defining

Z and 〈F 2〉, assuming that |g| > 0 at Fext = 0.) Thus the apparent divergence of 〈F 2〉
is an artefact of using the mean-field approximation and assuming that the resulting

quadratic form remains valid for large F .

Though it has yet to be demonstrated, Dewar’s conjecture in [1] that MaxEP or a

similar principle underlies SOC remains an intuitively appealing notion.
[1] Dewar R 2003 J. Phys. A: Math. Gen. 36 631
[2] Dewar R C 2005 J. Phys. A: Math. Gen. 38 L371
[3] Bruers S 2006 preprint (arXiv:cond-mat/0604482 v2, 5 Sep 2006)
[4] E.g., Jensen H J 1998 Self-Organized Criticality (Cambridge, UK: Cambridge University Press)

‡ The mean-field result 〈F 〉 =
√
−r/2g is only self-consistent if the integrals over F in the computation

of 〈F 2〉 using the quadratic approximation for H(F |Fext) are taken to run from −∞ to ∞. Our
conclusion remains valid if the integrals are taken to run from 0 to ∞, however.
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