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Abstract

This paper proposes a novel approach for discovering cultural scenes in social network data. “Cultural scenes”
are aggregations of people with overlapping interests, whose loosely interacting activities form virtuous cycles that
amplify cultural output (e.g., New York art scene, Silicon Valley startup scene, Seattle indie music scene). They are
defined by time, place, topics, people and values. The positive socioeconomic impact of scenes draws public and
private sector support to them. They could also become the focus for new digital services that fit their dynamics;
but their loose, multidimensional nature makes it hard to determine their boundaries and community structure using
standard social network analysis procedures. In this paper, we: (1) propose an ontology for representing cultural
scenes, (2) map a dataset to the ontology, and (3) compare two methods for detecting scenes in the dataset. Method
One takes a hard clustering approach. We derive three weighted, undirected graphs from three similarity analyses;
linking people by topics, topics by people, and places by people. We partition each graph using Louvain optimization,
overlap them, and let their inner join represent core scene elements. Method Two introduces a novel soft clustering
approach. We create a “scene graph”: a single, unweighted, directed graph including all three node classes (people,
place, topic). We devise a new way to apply Louvain optimization to such a graph, and use filtering and fan-in/out
analysis to identify the core. Both methods detect core clusters with precision, but the first method misses some
peripherals. Method Two evinces better recall, advancing our knowledge about how to represent and analyse scenes.
We use Louvain optimization recursively and in reverse to successfully find small clusters.

Keywords:
Scene Ontology, Scene Graph, Adventitious Network, Social Analytics, Community Detection, Cultural Web

1. Introduction

Cultural scenes1 [1, 2, 3, 4] emerge whenever a criti-
cal mass of people interacts within some shared context
(place and time) with overlapping interests on shared
topics [5]. Examples include the New York art scene,
the Silicon Valley startup scene, the Paris fashion scene,
and myriad smaller and less sharply delineated local
scenes all over the world.

Email addresses: mhamdaqa@uwaterloo.ca (Mohammad
Hamdaqa), ladan.tahvildari@uwaterloo.ca (Ladan
Tahvildari), neil@sceneverse.com (Neil LaChapelle),
brian@sceneverse.com (Brian Campbell)

URL: http://stargroup.uwaterloo.ca (Mohammad
Hamdaqa), http://www.sceneverse.com (Brian Campbell)

1Related social phenomena include: subcultures (Hebdige, 1979),
neo-tribes (Maffesoli, 1996; Cova, 1997; Kozinets, 2001), and genres
(Lena & Peterson, 2008).

1.1. Problem: The Challenge of Scene Analysis

People on a scene do not typically all know each
other. Connections both within and between clusters
can be weaker than in a friends-based network, as well
as less direct. The only connection between two people
may be two connected interests, participation in simi-
lar events, or patronage of a particular business that is
a known scene place. This partial mutual anonymity
is important for giving scenes the diffuse and pervasive
character that lets them serve as a soft frame of refer-
ence for their diverse, differentially committed partici-
pants [6, 7].

The diffuse nature of scenes does not prevent them
from being powerful drivers of economic and cultural
value creation. The indie music contributed approxi-
mately $379.4 million to the Canadian national econ-
omy in 2011, and roughly half of that value was gen-
erated by smaller players operating at the local scene
level [8]. Chicago assessed the impact of its own lo-
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cal indie music scene by determining how much of the
$80 million spent on live music tickets in 2004 went to
large pop acts listed in the Billboard 100 versus niche
and specialized artists listed in the Village Voice Pazz
and Jop Critics Poll. Again, the split was close to 50%
[9]. When Seattle assessed the economic impact of their
own musical scene in 2004, they of course had to refer
to one particular grassroots/indie scene repeatedly: the
grunge scene, made world famous by bands like Nir-
vana, Pearl Jam, Soundgarden and Alice in Chains [10].
Small local scenes frequently blow up to become global
phenomena, they can utterly transform local economies
in the process.

The positive socioeconomic impact of scenes is
strengthened, not weakened by the indirectness of scene
networks. In this regard, scenes can be described as ad-
ventitious networks. The property of adventitiousness in
this context means that many links are accidental and in-
direct, but fortuitous2 [11]; producing positive feedback
cycles of positive externalities3 [7], like Adam Smith’s
invisible hand. People accidentally and unintentionally
support and inspire people they will never meet to join
the creative community and produce what it values, by
virtue of these adventitious links [13].

In order to preserve the adventitious property of scene
networks, representations of the community structure
and boundaries of scenes need to be inclusive. High
recall and larger cluster sizes are more desirable than
narrower representations, given equal or near-equal pre-
cision. This is because the scene periphery feeds the
core. The participation of less central people adventi-
tiously supports the creativity of central people, so los-
ing sight of scene participants seriously compromises a
scene representation. However, achieving the necessary
degree of recall with precision is difficult, because: (1)
scenes are dynamic and evolve over time, (2) scenes are
multifaceted, involving multiple interacting dimensions
(topics, people, locations, times), and (3) scene interests
can be hidden or implicit; in cold stars (i.e., not explic-
itly ranked or rated [14]), or sparse data.

1.2. Research Goal and Methods
The goal of this paper is to contrast two approaches to

discovering scenes in cultural data with a special inter-
est in assessing the power and precision of each method

2Adventitiousness produces serendipity, so adventitious networks
would subsume and generate “serendipitous networks”, defined as
new connections between people who find themselves in the same
immediate situation

3Shank (1994) [12] defines a scene as a runaway creative system:
“an overproductive signifying community (in which) far more semi-
otic information is produced than can be rationally parsed”

for retrieving scene people. The data for our comparison
came from the location-based social networking service
Meetup4. This online service helps people coordinate
real-time, face-to-face gatherings (“meetups”) on topics
of shared interest, and so serves as an acceptable proxy
or indicator of scene activity. Our dataset included all
meetups within 25 miles of Waterloo, Ontario, Canada.
We devised a scene ontology that we used for organiz-
ing and processing the dataset, and subjected it to the
following procedures.

In Method One, we generated three weighted, undi-
rected graphs based on similarity analysis. One graph
represented scene people according to similar interests.
The second graphed scene topic similarity based on peo-
ple interested in those topics. The third graphed simi-
lar locations based on people at those locations. Each
graph was then partitioned using Louvain modularity
optimization [15] to reveal community structure, and
then the three graphs were overlapped to reveal scenes.
The inner join of the graphs was taken to represent cen-
tral scene elements. This was a relatively hard cluster-
ing approach.

In Method Two, we devised a scene graph; an un-
weighted, directed graph which combines people, place
and topic nodes in a single graph; with people as the
source nodes and places and topics as target nodes. We
also devised a way of applying the Louvain method to
this graph, treating it as an undirected graph for modu-
larization, then applying record reconciliation to restore
node facet information to the partitioned graph for sub-
sequent facet filtering. We could thus determine the
community structure of scenes in the data; and iden-
tify their constituent topics and people. Then we ex-
ploited the still-available directional information in the
graph using fan-in/fan-out analysis to determine central-
ity. This was a relatively soft clustering approach.

1.3. Findings and Limitations

A key finding of our research is that the limitations
of Louvain optimization for identifying small clusters
in large datasets can be overcome when the source do-
main is hierarchical. Large scenes generally contain
sub-scenes. We therefore exploited the hierarchical op-
eration of the Louvain method by applying it recursively
“in reverse” to find the sub-scenes. That is, we first
applied it to the whole network to discover the main
scenes, and then to those resulting scenes to reveal sub-
scenes. This enabled the successful detection of com-
munity structure at all scales.

4http://www.meetup.com
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Results from the two different methods were evalu-
ated with ground truth data, Jaccard similarity and our
own metric of “scene theme” similarity. Both graph-
ing techniques correctly identified the scene cores, but
community size was larger with scene graph analysis
(Method Two) than it was when similarity graphs were
overlapped (Method One). This suggests that the softer
scene graph analysis technique performed better at de-
lineating the actual scene boundaries in the available
data, and better preserved network adventitiousness.

Our scene graph is amenable to many more social
network analysis techniques, and the extraction of more
insights into scene structure and dynamics. However,
such work lies beyond the scope of this paper.

1.4. Significance of the Study

Several original contributions to the literature emerge
from our research.

(i) We introduce the unique features of cultural
scenes, including the property of adventitiousness,
and propose them as new objects for social net-
work analysis.

(ii) We formalize our current conceptualization of
scene elements in a semantic ontology.

(iii) We take Louvain optimization; a clustering and
partitioning technique usually used on bipartite,
undirected graphs; and apply it to a directed k-
partite graph. This enables Louvain partitioning
of a multidimensional directed network.

(iv) We exploit the hierarchical operation of Louvain
optimization to circumvent its difficulty in detect-
ing small clusters in large networks; applying it to
the global network first, then recursively to emer-
gent sub-graphs.

(v) We introduce a soft clustering strategy involving a
novel “scene graph” and techniques for analyzing
it; which together provide better scene recall than
a harder clustering approach, with equal precision.

(vi) We create a “scene theme similarity” metric, in
a manner which may turn out to be generalizable
to other k-partite graphs. No use of Louvain op-
timization that we are aware of applies it in the
manner described in our paper.

The reminder of this paper is organized as follows:
Section 2 describes related work. Section 3 gives an
overview of Sceneverse platform. Section 4 presents the
scene ontology. Section 5 gives an overview of the pro-
posed approach and motivates its main ideas. Section 6
presents our experimental design, the obtained results,
and a discussion on the results, respectively. Finally,

conclusions and directions for future work are presented
in Section 7.

2. Related Work and Research Context

This section position our work within the existing re-
lated work and defines its context.

2.1. Related Work

This article presents an empirical study of scene dis-
covery in online socio-cultural network data. This sec-
tion puts our work in context within the substantial lit-
erature targeting similar problems.

2.1.1. Community Detection in Networks
A scene is a type of social community (i.e., people

community) that shares topics of interest in designated
locations during a period of time. In network and graph
theory, a community is defined as a group of nodes that
are densely connected to one another, but have rela-
tively weak connections with other parts in the network
[16]. Partitioning of nodes into groups and sub-groups
is crucial to understand the meaning and behaviour of
the network. Studying grouping patterns to detect com-
munities has been the focus of many research studies
for long time (e.g., Stuart Rice had manually clustered
data to study political groups in the 1920s [17]). Com-
munities have been studied in almost all domains (e.g.,
social sciences [18, 19, 20], bibliometrics [21], anthro-
pology [22], telecommunication [15], biology (i.e., hu-
man brain connectome [23])). For comprehensive stud-
ies on the literature of community detection in networks
the reader can refer to Porter et al [17], or Fortunato et
al [16] respectively.

Recently, there has been increasing interest in ap-
plying community detection techniques to discover vir-
tual communities in online social networks and the cul-
tural web [24, 25, 26, 27, 28]. Several techniques and
algorithms have been devised to automatically detect
communities in networks. These techniques can be di-
vided into two groups based on the type of the meth-
ods used to find the linkage between the network nodes;
namely, community detection based statistical correla-
tion and similarity analysis (e.g., hierarchical clustering,
k-means), and community detection based graph parti-
tioning [29] (e.g., Girvan Newman algorithm [20], net-
work modularity [15], surprise maximization [30], k-
clique percolation [31]).

Michelle Girvan and Mark Newman proposed us-
ing graph clustering for community detection in 2002
[20]. Since then, the field of community detection based
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graph clustering techniques (i.e., Modularity Analy-
sis) become vibrant. This is because, graph clustering
and community detection share the same goal; to find
clusters of vertices (i.e., modules) on a graph that are
strongly connected to each other than to the rest of the
network. However, while graph clustering techniques
usually require the number of clusters as input to the al-
gorithm, in community detection techniques the number
of communities is one of the desired outcomes.

Several studies have compared the aforementioned
community detection techniques with regard to modu-
larity, performance, memory requirements, scalability
and other measures. The work by Papadopoulos et al
[26] is an example of an up-to-date comprehensive com-
parison between these techniques within the context of
social media networks.

2.1.2. Social Graph Creation
Community detection is domain specific. This is be-

cause different domains expose different network struc-
tures. The underlying topology of a network is essen-
tial in order to utilize their data in applications. Social
media networks comprise of multiple types of vertices
and edges depending on the focal object the network is
created around (e.g., people in Facebook , pictures in
Flickr). The way the network is designed can signif-
icantly affect the community detection techniques that
can successfully works on it. For example, a scene
graph consists of three types of vertices. However, the
majority of community detection techniques explained
earlier work only with simple graphs (i.e., undirected
with one or two types of vertices), and do not work
with k-partite or hyper-graphs [26]. For example, the
Louvain modularity optimization method, used in this
paper, was originally designed to work with undirected
graphs. Arenas et al [32] proposed a graph transfor-
mation method to enable applying modularity optimiza-
tion on directed graphs. Similarly, Barber extended ap-
plying modularity optimization to bipartite graphs [33].
Conversely, our approach does not require applying any
graph transformation to scene graphs; instead it utilizes
Louvain modularity unawareness of the vertices-types
or the edges-directionality to perform pure modularity
clustering. Then, fan-in and fan-out analysis are applied
to the graph to highlight the hidden information within
each community.

To summarize, modularity and graph clustering tech-
niques are usually applied to social networks after re-
ducing the network into a simple form that consists of a
maximum of two types of vertices. The price paid for
this graph reduction is obviously a loss in information.
Consequently, these approaches fail to detect communi-

ties in social networks that cohere in multifaceted ways
(i.e., scenes).

2.1.3. Community Detection Applications
There have been several recent works that attempt

to derive meaningful clustering using modularity tech-
niques and graph partitioning. Most of these works are
single facet graph clustering (i.e., topic, people, loca-
tion, picture, etc.). In an attempt to create a folksonomy
[34], Begelman et al. [35] first designed an inter-tag cor-
relation graph, in which tags that describe the same re-
sources are correlated. Then they partitioned this graph
using spectral bisection and modularity function. Shar-
ing the same goal of clustering similar tags to create
folksonomies, Simpson [36], and Papadopoulos et al.
[37] applied different variations of graph partitioning
techniques on tag graphs to divide the graph into tags
modules.

Fatemi et al [38] constructed a social network graph
for the internet movies database (IMDb ) based on the
shared reviewers for these movies. Fatemi then used
four community detection algorithms to discover the
underlying community structure of these movies. The
study of IMDb is interesting because users review di-
verse topics that are interesting to them, hence commu-
nities of movies linked by their reviewers can reveal di-
verse interests regardless of their genre tags.

In a study on friendship relationship between social
network users, Mislove et al. [39] have crawled user
public profiles from different social media providers
(i.e., YouTube, Orkut, Flickr and LiveJournal). The au-
thors then studied the structure of the created network
by applying graph partitioning methods. Traud et al per-
formed a similar study on data collected from Facebook,
in which they examined the roles of universities in struc-
turing the social networks of students [40]. In the same
vein, several studies have been conducted to reveal user
segmentation based on various similarity factors. This
has extensively been explored lately in the field of con-
tent filtering and smart recommendation systems. For
example, Tsatsou et al. [41] integrate the results of tag
community detection in a personalized ad recommenda-
tion system. Moreover, Pham et al. [42] grouped users
into clusters to identify the neighborhood and hence de-
rive better recommendations than traditional content fil-
tering algorithms. Garcı́a-Crespo et al. used natural lan-
guage processing and semantic categorizations of opin-
ions to analyse customer emotional implications to as-
sist in deriving marketing strategies and product devel-
opment plans [13].

Perhaps the most relevant work to the approach pro-
posed in this paper is the work done by Zhao et al. [43],
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which is a multifaceted stepwise clustering approach.
The goal of their work is to find events in social text
streams (e.g., blogs). Zhao et al. defined an event as the
information flow between a group of social actors on
a specific topic over a certain time period [43]. There
are two main differences between the scene as a con-
cept and Zhao’s definition of events. First a scene is
a higher-level concept, in which an event serves as the
temporal snapshot that captures a social occasion during
a specific time interval on the scene timeline, and has a
particular title that belongs to the scene topics theme (as
explained in the scene ontology section). The second
difference is that the scene concept also has a spatial di-
mension.

Zhao et al. combined the three event dimensions;
namely, the temporal, the social and the textual content
of blog streams to discover events. Their approach con-
sists of three phases. In the first phase they transform the
social text streams into a graph, then partition the graph
using the N-cut graph partitioning method [44] into top-
ics so that each blog belongs to one topic. In the second
phase, a social graph is constructed. The topic-based so-
cial graph is then partitioned into a sequence of graphs
based on the intensity along the temporal dimension.
Finally, in the third phase, the social-temporal-topical
graphs are finally divided into finer grained events by
applying the N-cut graph partitioning method for the
second time. All the previous studies deal with undi-
rected weighted graphs, in contrast to the people, topics
and location graphs partitioning in our approach. Only
the work by Zhao et al. [43] deals with multifaceted
graphs. However, none of these works applied parti-
tioning on a directed multifaceted graph in single step,
and used the power of fan-in and fan-out analysis to fur-
ther identify the facets types in each cluster as we did in
our approach to scene graph partitioning.

2.2. Research Context: The Sceneverse Platform
This study is part of a collaborative research program

supporting the development of the Sceneverse platform.

2.2.1. Sceneverse Mission
Sceneverse, a portmanteau of “scene” and “universe”,

aims to support all scenes on a platform optimized
for representing scene dynamics and facilitating scene
transactions. Though scenes are natural contexts for
economic activity [45, 46], scene commerce can be con-
tentious. For it to be successful, it must respect the com-
plex interplay of values, politics, ideologies and atti-
tudes that structure scenes [47, 48, 49, 50]. For this rea-
son, accurate representations of scenes and scene values
are crucial for providing them with digital services.

On the Sceneverse platform, scene data will be de-
rived from two sources: user-contributed content, and
the behaviour of people using Sceneverse enabled web
and mobile applications. The provision of value-adding
services will depend on the faithful representation and
analysis of scenes in this data

2.2.2. Front-end Applications
Figure 1 presents an overview of the Sceneverse5

platform. It provides complementary services at two
different levels, front-end and back-end. Front-end ser-
vices consist of web and mobile applications that serve
participants’ needs from the scene center to its margins.

There are different levels of participation in scenes.
Active scenes have a small, dense core of avid partic-
ipants; as well as “near-satellite” members who par-
ticipate fairly frequently, and many peripheral “far-
satellite” members who participate infrequently.

For example, the inner core of an art scene would
consist of full-time professional artists, the dealers that
represent them, the galleries that display their works, the
art critics that review it, and the primary patrons who
purchase works. It would also include avid amateurs
who spend equal amounts of time in these activities, and
attend many of the same events, but who do so largely
on a voluntary, non-cash basis. Near-satellite members
would be the friends and contacts of this inner core who
participate as spectators or dabblers in art-scene-related
activities on a consistent basis (their default choice is to
participate unless they are busy), but whose main occu-
pations and preoccupations lie elsewhere.

Far-satellite members many not have friends or rela-
tives in the scene core, but maintain an interest in art.
They attend exhibitions, buy books and prints, and take
classes on an opportunistic and occasional basis, rarely
committing to more than one such activity, and only do-
ing so once in awhile.

Sceneverse-enabled applications help the inner-core
find better ways to produce and consume the “cultural
capital” of the scene. Satellite members enjoy high-
recall services that give them easier access to the scene’s
core, enhancing their scene experience. Peripheral par-
ticipants enjoy high-precision services that help them
quickly and efficiently enjoy select scene activities as
they fit their moods and inclinations.

Current Sceneverse frontend applications target
avid/core and near-orbiting scene participants. One ex-
ample Sceneverse currently offers is an event planning
and ticket sales service for people booking concerts on

5www.sceneverse.com
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Figure 1: Sceneverse Platform Architecture

the indie music scene. Sceneverse is also producing a
storytelling application that engages scene participants
in social, mobile, augmented reality content creation
and curation. The application lets participants compose
stories describing personal scene experiences, chronicle
the broader history of their scene, discover other peo-
ples’ stories, and indicate their sentiments towards sto-
ries. Stories include those based on Sceneverse Events.
The user-contributed content and behaviour provides es-
sential information to create what we call a user uni-
verse. A user universe can be seen as an ego network
of a user’s topics of interests, locations, and behaviour
monitored in both time and space.

2.2.3. Back-end Processesing
On the back-end, the Sceneverse platform aims to of-

fer a cross-service, cross-device, pervasive frame of ref-
erence for all the digitally mediated activities that might
support a local scene.

The back-end architecture under consideration in this
paper consists of three main components; the scene
ontology, a semantic and linguistic engine, and the
scene extraction engine. Both of the engines depend

on the scene ontology, which provides the vocabulary
for building semantic queries, rendering scene content,
and reasoning about new and existing scenes. For ex-
ample, the semantic and linguistic engine provides nat-
ural language understanding and semantic web links
for processing and annotating user stories with context-
appropriate tags. It also supports dynamic rendering
of content based on the scene ontology. The extrac-
tion engine uses pre-existing web data as well as data
gathered from frontend services to discover scenes. All
the algorithms needed to identify and reason about the
socio-spatio-topical boundaries of scenes are either im-
plemented in the semantic/linguistic engine or the scene
extraction engine.

These back-end processes support front-end tasks and
facilitate the creation and manipulation of scene repre-
sentations.

3. The Scene Ontology

The scene ontology developed for this paper fur-
nishes a set of clear concepts with well-defined interre-
lationships for representing cultural scenes in web data.

6



Such a formal scene ontology is essential for (1) build-
ing semantic queries, (2) rendering scene content, and
(3) reasoning about new and existing scenes. The on-
tology proposed in this section is mainly used to con-
solidate the data collected from different resources and
check inconsistencies. It will also be used in our frame-
work for query the data.

The rationale for scene participation is the scene
itself. It is its own ultimate reason for gather-
ing/clustering. No individual scene dimension alone can
furnish the reason, since adventitious connections can
come through all of them. This becomes clear when
you ask a core scene participant why they care about the
scene. The answer is unlikely to be only one thing, or
one type of thing, but their cumulative scene experience
in its totality. Because the scene is both psychologically
and sociologically real, it has its own distinct represen-
tation in our ontology.

3.1. High-Level Overview

The Scene is constituted by several other ontologi-
cal concepts, including Topics, People, Locations and
Times. In our current ontology we split the Time di-
mension into two categories: Scene Active Period, and
Events. The two time concepts are needed to define tem-
poral boundaries of scenes. Scenes are constituted by
many events, which in total sum up to the Scene Active
Period. This is shown in the UML diagram illustrating
the scene ontology in Figure 3.

While the UML diagram gives a useful schematic
overview, the fully formalized ontology exploits RDF
and OWL to explicitly represent the scene facets and
their relationship in a way that allows easy discovery,
dynamic access, and simple linkage to other resources
on the web.

Ontologies can be either designed from scratch or as
an extension of existing ontologies. Extending existing
ontologies is the recommended best practice [51]. An
ontology can be extended horizontally or vertically. In
horizontal extension, the original ontology is imported
and used in the same way (i.e. with the same seman-
tics) as in the domain it was imported form. In contrast,
with vertical extension, an ontology is imported and
then updated to support the new domain. A good core
ontology should be designed to support both horizon-
tal and vertical extension, by maintaining the right bal-
ance between domain-independent and domain-specific
concepts. Getting the balance wrong can restrict further
vertical extensions in the future.

Our scene ontology was designed by horizontal ex-
tension [52] through importing existing ontologies, e.g.:

TimeOntology, EventOntology, FOAF, and GeoOntol-
ogy. It was also designed to be generic enough to sup-
port vertical extensibility [53] to other domains.

Figure 2: A Scene Ontology Excerpt

Figure 2 shows an excerpt of the Scene ontology.
When transcribing an OWL ontology to RDF, every
statement must be converted into triples. An RDF triple
contains a subject, a predicate and an object. A set of
such triples is a graph, where the subject is always a
node, the predicate is always an arc and the object is al-
ways a node. The OWL scene ontology graph is fully
laid out in Appendix A of this paper. Its corresponding
RDF triples are given in Appendix B.

The Scene ontology has been constructed using the
Protégé [54] ontology editor. Protégé utilizes vari-
ous Description Logic reasoners (e.g., RACER [55],
FaCT++ [56], Pellet[57]) to to perform different infer-
encing services (i.e., computing inferred superclasses,
determining class consistency). In addition to reason-
ing, Protégé facilitates generating the RDFs needed to
query the model using the SPARQL protocol and RDF
query language [58]. In this paper, model reconciliation
between the ontology and the dataset (i.e., Meetup data)
was carried out by mapping the API schema elements
to the ontology concept tree manually, and a script was
used to populate the OWL ontology with individual el-
ements based on the target social network site API. The
design of the Sceneverse platform calls for a semantic
and linguistic engine that automatically tags parsed data
from users stories with concepts belonging to the scene
ontology. The implementation of such an engine is out
of scope for this paper.
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Figure 3: The Scene Ontology

3.2. Main Scene Concepts

The main scene concepts are Topic, People, Loca-
tions and Time. Each is expanded and explained in de-
tail below.
Topic: The subject of interest. It can be anything (e.g.,
person, place, event, topic, thing). A scene is normally
described as a list of topics (e.g. the Blues/Jazz scene).
People (social graph): Scene participants share a rea-
son for gathering, and thus form a membership group,
albeit a diffuse one. The network centrality of People
derives from their contribution to the Scene and their
activity level (active or passive). Types of People in-
clude:

(a) Scenester: A Person whose Scene is clearly identi-
fied.

(b) Scenester Friend: A Person who communicates and
collaborates with a Scenester, but does not partici-
pate directly in that Scenester’s Scenes.

(c) Multi- Persona Scenester: A Person with multiple
personas. A persona is how a Person is known on a
particular Scene. A single-persona Scenester is just
a Scenester.

(d) Personage: Some person named or mentioned in
Scene stories, chronicles or news. May or may not
also be a Scenester.

(e) Silhouette: An abstraction over Scenesters, per-
sonas and Personages. Silhouettes define various
categories and types of People, what they value,
how they are valued and how much prestige they
have in the scene. The platform’s engines generate
Silhouettes for marketing purposes or making rec-
ommendations etc. This allows People to be typi-
fied while protecting their privacy.

(f) Scene Organizer: A Person who sets up Scenes and
grants authorizations to new Scenesters.

(g) Scene Follower: A Person who follows Scenes, but
is not a Scenester or Scenester Friend. A Scene Fol-
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lower is a passive presence, whose existence ampli-
fies the Scene’s reputation. However, s/he does not
otherwise participate in the Scene.

(h) Secluded Scenester: People who are not part of any
Scene (e.g., new members in online networks who
have insufficient profile or interest data).

Location: Holds the list of locations (e.g., Uptown Wa-
terloo, University of Waterloo) where Scene events and
happenings have previously occurred. These locations
are centralized around the main scene location (e.g.,
Waterloo)
Time: Captures the temporal aspect of the scene. Pro-
cessing Time is much harder than processing the other
scene dimensions. Currently, we manage scene tempo-
rality using two main concepts:

(a) Scene Active Period: The period during which Peo-
ple were involved in activities related to the Scene,
and Events were organized. Conventions for declar-
ing a Scene inactive are needed (e.g., if no Events
have occurred in the past two years).

(b) Event: Used to capture a Scene snapshot. An Event
has the following properties:
• Title: Should be aligned with Scene themes,

described by the list of Scene Topics.
• Location: Should fall within the perimeter

defining the core Scene Location.
• Participants: Should be Scene People. Be-

havioural and social data indicate when some-
one new should be added to the list of Scene
People.

• Time: This value percolates upwards to be
used to inferences that determine the Scene
Active Period. The timespan between the first
Event Time and the Time of the last Event de-
fines the Scene Active Period.

Capturing the temporal data is one of the main chal-
lenges. The elements used to capture the temporal data
in our ontology (i.e., Scene Active Period and Event)
are discrete and hence, by using the standard methods
of publishing structured data (i.e., RDF) the ontology
can be updated with the correct information. Currently,
the Sceneverse framework depends on batch processing
to update the data, and the update function runs period-
ically.

3.3. Passions as Associations

Scenes are fundamentally constituted by the collec-
tive set of relationships or associations that connect Peo-
ple with their Topics of interest. In Figure 4 these asso-
ciations are represented as Passions connecting a Per-
son to a Topic. Figure 4 shows that people can be part
of the scene or peripherals. People who are part of the
scene directly affect the scene reputation through their
participation or contribution to the scene. While pe-
ripherals only follow the scene; hence, they affect the
scene reputation by their collective engagement not di-
rect contributions. For example in a soccer scene, a soc-
cer player is part of the scene because s/he directly af-
fects the scene, while the team fans are just followers.
Similarly, in the social network scene people who con-

Figure 4: The Scene Conceptual Model
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tribute to the topic by commenting can have direct im-
pact on the scene and hence they are in the core of the
scene; whereas, people who just like the topic or silently
follow it are peripherals.

Recall that a Topic can be anything. There are topic-
people who cannot be real people or Scene People (they
may be fictional, like Harry Potter, or dead/historical,
like Socrates). There can also be topic-people who hap-
pen to also be real people, and who may further be
Scene People of some type. Similarly, there can be
topic-places, topic-events and topic-periods.

“Passion for” can capture the strength of a Person’s
connection to any object of interest. These relation-
ships can be explicit or implicit, with Time (real-time,
not topic-time) and Location working as orthogonal fac-
tors (disjoint) that either weaken or strengthen these re-
lationships. This is illustrated using concentric circles
in the bottom right corner of Figure 4, where Passion
decreases with temporal, spatial or social distance.

4. Graph Construction and Scene Identification
Methods

Identifying the socio-spatio-topical boundaries of a
scene is a non-trivial soft clustering problem. Cluster-
ing needs to exploit both the similarities among multiple
concepts (i.e., people, topics and locations), and the re-
lationships between these concepts, in order to identify
community’s boundaries. In this section, we describe
how we collected and prepared our data, and enacted
two methods for graphing that data and detecting scene
structures and boundaries implicit in it.

4.1. Graph Construction Overview
Figure 5 illustrates the entire procedure we followed

in our approach to detecting scenes, including both
methods of graph generation and analysis that we eval-
uate in our study. Both techniques start with a data pre-
processing stage. Method One (Blue) applies similarity
analysis to create three undirected weighted graphs (i.e.,
a contingency matrix); one for topics associated by peo-
ple who are interested in them, on for people associated
by interest in similar topics, and one for places associ-
ated with similar people. Method Two (Red), by con-
trast, starts right away with the construction of a single
scene graph; a simple directed graph that permits nodes
of all three kinds: people, topics and locations.

Following graph construction, clustering is carried
out on all of the graphs using network modularity analy-
sis. In Method One, the three separate similarity graphs
are clustered individually, and then combined by find-
ing the intersection between the clusters. This produced
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Figure 5: The Scene Discovery Approach

a single graph for comparison with the single graph al-
ready generated using Method Two.

After clustering, both resulting graphs are further an-
alyzed and visualized using graph visualization and ma-
nipulation software (Gephi) [59]. Finally the scenes re-
vealed by the procedures are analyzed.

Many social network analysis measures and tech-
niques could have been used to bring out scene facets
and rearrange them around graph centers. However, to
keep things concise, this paper will focus mainly on
scene discovery, and only mention centrality analysis
techniques very briefly. A comprehensive paper will
follow to illustrate in detail all the analysis techniques
that can be applied to scene representations, and the so-
cioeconomic research questions these analyses could il-
luminate.

4.2. Data Collection

Finding relevant cultural data for scene research is a
challenging task. Most social networking sites present
some, but not all of the needed data, restricting access
to it for both business and privacy reasons. For our pur-
poses, the best available data came from “Meetup.com”;
an online social network that helps people organise
gatherings at offline local venues to enjoy shared inter-
ests. The gatherings are called meetups, and their data
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Figure 6: The Data Collection Process

points include social, topical, temporal and geographi-
cal information. Meetups are not clustered into scenes,
but scenes are potentially detectable in this dataset.

Figure 6 shows the data collection process. A scraper
was implemented using Meetup.com’s APIs to collect
the data required to build scenes. The scraper started
with a specific geographical location, and returned all
meetups around that location. For each Meetup group
returned, the scraper then requested a membership list
and the topics that describe the group. For each mem-
ber in that group, the scraper then returned their topics
of interest and profile information (i.e., age, residential
location), as well as the groups and meetups they be-
long to. The time the user joined the group, as well as
the user’s last activity in that group were also retrieved.

4.3. Preprocessing

Several preprocessing steps were needed before the
raw data was ready for clustering and analysis:

(a) Topic Dimensionality Reduction: Meetup lets
people propose topics in their own terms at both the
group purpose and personal interest level, produc-
ing a large population of topics with many similar
terms that would compromise similarity-based clus-
tering. We reduced this dimensionality by combin-
ing topics with high syntactic similarity using text-
clustering techniques.

(b) Outlier Removal: Outliers would negatively im-
pact scene discovery and analysis, so it was im-
portant to purge them from the dataset and correct
skewed data. We used facet filtering to detect ab-
normalities in the data and remove outliers.

(c) Formatting for Visualization and Analysis: Fur-
ther refinements and transformations were needed
to make the data compatible with all the tools we
used in our study (e.g., Gephi).

4.4. Graph Creation

As explained earlier, two methods were used to create
graphs in preparation for the graph modularity partition-
ing step. Then the partitioning algorithm was applied in
the same way to both graph types. We found that the
way the graphs were created and weights assigned to
their edges significantly affected the final partitioning
results.

4.4.1. Method One: Similarity Matrix Graphs
In this technique, three similarity matrices were cre-

ated; one for topics based on their being liked by similar
people, one for people based on their liking of similar
topics, and one for location based on persons who were
there.

To find the topic similarity matrix, the topic-person
table was first converted into a coincidence matrix
(a.k.a. adjacency matrix). Each topic was represented
as a vector of users who liked it. The algorithm then
correlated topic similarities using cosine similarity as
shown in Equation 1. Cosine similarity is defined as the
cosine of the angle between two vectors (x and y) with
the value being normalized between zero and one if both
x and y are positive.

CosSim(x, y) =

∑
i xiyi√∑

i x2
i

√∑
i y2

i

=
x · y

‖ x ‖‖ y ‖
(1)
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Cosine similarity was selected in this case for two
main reasons: First, cosine similarity is proven to be
powerful, yet it is the simplest inner product correlation
between two vectors [60]; hence, it will give better per-
formance results. Second, our dataset does not contain
any subjective values or ratings. It consists of vectors
of only zeros and ones (e.g., zero represents the absence
of a person on the topic list, whereas one presents their
presence). This makes a higher performance correlation
measure more valuable than a shift invariant one. Fur-
thermore, calculating the cosine correlation can be eas-
ily map-reduced/parallelized. This has major implica-
tions for the applicability of our techniques on big data
sets.

Figure 7: A Similarity Matrix and its Corresponding Graph

Cosine similarity was calculated between each pair
of topics to generate a similarity matrix. The similarity
matrix was then converted into a weighted undirected
graph with links between nodes (edges) considered only
when the weights (similarity measures) were within the
upper 97th percentile. In other words, we considered
the three nearest neighbors. Figure 7 shows an example
of a similarity matrix and its corresponding graph.

The same steps were repeated to create the people and
location similarity matrices. For example, in the case
of people graph, each person was represented as a vec-
tor of the topics s/he liked. The graphs generated were
then exported for partitioning and clustering based on
the Louvain graph modularity algorithm.

4.4.2. Method Two: The Scene Graph
For Method Two: instead of separately clustering

people, topics, and locations, we combined them on a
single graph: a scene graph. This gave it the property
of being bijective. We also created it as a simple (un-
weighted) directed graph, with people as source nodes
and either topics or locations as target nodes. So a di-
rected edge would be created from a person node to
a topic node if that person expressed an interest in it.
Similarly, a directed edge would be created between a

person and a location if the person was involved in an
activity there or a topic situated there.

We hypothesized that the precise relationships be-
tween nodes of different facet types might preserve im-
portant information, as would the directedness. Further-
more, generating a single graph would allow us to run
a multifaceted similarity analysis in a single step. How-
ever, modularity maximization partitioning uses modu-
larity strength, which depends on the graph structure to
cluster the graph into communities. Hence, all nodes in
the graph would be treated as equivalent regardless of
type for purposes of clustering.

Figure 8: Scene Graph Example

Figure 8 illustrates the scene graph of one person who
likes three topics, and participates in activities related
to these topics in two locations (Kitchener and Water-
loo). Note that a scene graph focuses on Scene Loca-
tions rather than the personal profile location, which re-
flects the place of residence.

The advantage of having a scene graph is twofold: (1)
It enables simple one step multi-facet clustering when
combined with modularity maximization graph parti-
tioning. (2) Since scene graphs are bijective graphs,
we can store more information about the relationship
between scene concepts. In fact, a scene graph inher-
ently models the core relationships of a scene (passions
and places). Knowing the direction of the relationships,
techniques like fan-in and fan-out analysis can be ap-
plied. This enriches knowledge discovery by providing
insight about the types of clustered nodes. For example,
scene graph partitioning can easily reveal who the most
influential people in the scene are, where the scene is
geographically centered, and what the most important
topics are on a scene.

Our hypothesis was that this second approach to
graph generation might produce better results than first
approach, while tremendously simplifying scene dis-
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covery. This would extremely important for cultural
scene computing, since social network data volume can
explode quickly on networks with heavy user participa-
tion.

4.5. New Louvain Graph Partitioning Techniques

This section shows how Louvain graph partitioning
has been utilized and modified for scene detection.

4.5.1. Revealing Community Structure
The steps listed above generated graphs from

“Meetup.com” data, but did not partition them into
scenes. Our goal was to reveal scenes boundaries us-
ing network analysis and graph partitioning; discover-
ing community structure and maximizing modularity
by analyzing which nodes were most densely intercon-
nected. Modularity (Q) maximization approaches parti-
tion graphs on the principle that a set of nodes are highly
likely to be in the same module if they are densely inter-
connected as a cluster, relative to their sparser connec-
tion to other modules. Many natural networks, informal
human networks, organizational networks and system
networks in fact exhibit this kind of modular structure,
also called community structure. Since scenes are infor-
mal human networks, it was reasonable to hypothesize
that modularity maximization would reveal the commu-
nity structure of scenes.

The Louvain method is a well accepted and widely
used modularity maximization approach for discovering

communities in large networks. The main advantage of
the Louvain method is that it is very fast (e.g., in one
experiment it was able to analyse 118 million nodes in
152 minutes) [15]). It also provides a generally accept-
able degree of accuracy. This is extremely important for
scene discovery due to the large size of social networks
and that fact that data in such networks grows exponen-
tially over time. However, what makes this approach
appealing in our case is that scenes exhibit hierarchical
structure; super-scenes may include several sub-scenes.
This exactly matches how the Louvain method works.

4.5.2. “Reverse” Louvain
The Louvain method is an iterative algorithm with

two phases. First, it searches small communities by op-
timizing modularity locally. This is done by assigning
each node i in the network to a group (module) then cal-
culating the gain in modularity ∆Q of merging the node
i with each of its neighbor communities C, as shown in
Equation 2. Where

∑
in is the sum of the weights of

the links inside C,
∑

tot is the sum of the weights of the
links incident to nodes in C, ki is the sum of the weights
of the links incident to node i, ki,in is the sum of the
weights of the links from i to nodes in C, and m is the
sum of the weights of all the links in the network. Based
on the results, the node will be added to the module that
maximizes network modularity.

∆Q =

[∑
in+ki,in

2m −
(∑

tot+ki
2m

)2
]
−

[∑
in

2m −
(∑

tot
2m

)2
−

(
ki

2m

)2
]

(2)

Figure 9: Louvain Modularity Algorithm [Adopted form [15]].
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The second phase aggregates nodes within the same
community, to build a new network whose nodes are
communities that themselves are more densely intercon-
nected than the relatively more sparse connections be-
tween nodes in the new super-community. These steps
are repeated until a maximum modularity is achieved as
shown in Figure 9.

In our effort to detect scenes and sub-scenes, we ex-
ploited this hierarchy-generation feature by reversing
the process. We applied the method to the whole net-
work to discover the main scenes within it. Then we re-
cursively applied it to each of the identified main scenes
to discover sub-scenes within them

4.5.3. Louvain on a Simple Directed Graph
The Louvain method takes an adjacency matrix as

input; hence it can be applied to undirected graphs
whether or not they are weighted. In Method One we
applied the Louvain method quite conventionally to our
three similarity graphs: weighted undirected graphs that
grouped people, or topics, or locations into communi-
ties.

We also applied it quite unconventionally to our scene
graph, which was an unweighted directed graph. We
treated it as if it was an unweighted, undirected graphs
for the purposes of group the scene graph nodes into
communities, which immediately revealed scene struc-
ture. Then we applied fan-in and fan-out analysis using
directional information to identify types of nodes within
the discovered scenes.

These unconventional uses of the Louvain modularity
maximization algorithm generated necessary results for
us, and they constitute key contributions of our research.

4.6. Scene Analysis

Once the graph had been partitioned, and the bound-
aries of the scene were identified, depending on the type
of the graph, the following techniques were applied to
further reveal and analyse scene structure:

(a) Facet Filtering:
Facet filtering [61] is a multidimensional technique
that uses different data properties to organize infor-
mation into groups to facilitate its exploration and
navigation [62]. In our work, after our two differ-
ently produced graphs were clustered as described
above, we exported them and merged them with the
original dataset as new labels (facets). Each record
was thus described using four additional clustering
classes; namely, people clusters, topic clusters, lo-
cation clusters, and scene clusters (the clusters gen-
erated through scene graph partitioning).

Facet filtering could then be used to filter the
records based on commonalities and mutual exclu-
sions across the different clusters. This cluster over-
lapping would help find people who conducted ac-
tivities in the same places around the same topics of
interest. In other words, it could help identify peo-
ple, topics and locations that best represented the
scene core or center as shown in Figure 10. More-
over, facet filtering could be used to evaluate the
quality of clustering in both scene graph and simi-
larity based clustering.

(b) Fan-In Analysis: In directed graphs, fan-in anal-
ysis is a measure of the number of links that are
directed toward a node. In a scene graph, edges
connect people to their topics of interest and loca-
tions. Accordingly, fan-in analysis can help identify
the popularity of topics or locations within a scene.
This can reveal the main topics that specify a scene,
or its significant locations.

(c) Fan-Out Analysis: In directed graphs, fan-out
analysis is a measure of the number of links that are
directed out from a node. In scene graph, fan-out
analysis could help identify the most active people
in a scene.

Figure 10: The Scene Center is the Inner Join of People, Topics and
Locations Graphs

These simple techniques were essential for uncover-
ing the main scene facets for each of the identified parti-
tions. However, many additional network analysis tech-
niques could be usefully applied to these graphs, gener-
ating insights that might help investors frame, find and
answer questions about cultural scenes. Some of the rel-
evant network measures are discussed Section 7.
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Figure 11: Clustering With Open Refine

5. Application of the Methods and Experimental Re-
sults

5.1. Case Study Description

As explained earlier, the dataset used in this study
was crawled from Meetup.com using the process ex-
plained in Section 4.2. The data was collected and
reconciled based on shared keys between the different
datasets. In total, information about 150 groups were
collected. The collected groups were all located within
25 miles of Waterloo, Ontario, and distributed between
14 urban communities. Out of those 150 groups, 132
groups were open, 1 was closed and 7 had only recently
been approved. Out of the 132 open groups, only 123
groups were publically accessible. 813 topics within 28
categories were used to describe these groups with, an
average of six topics per group. The total number of
members including duplicates was 13,735 users; since a
user can be a member of several groups.

Table 1: The Data Set Summary

In addition to the main dataset, a subset of the crawled
data was created for validation. This subset was studied
thoroughly to make it serviceable as a ground truth for
qualitative evaluation of the clustering. Table 1 summa-
rizes the parameters of the two datasets. Table 2 shows
example of the crawled data.

5.2. Data preprocessing and refinement

Several decisions had to be made to prepare the data
for analysis. First, groups and users who made their
data private were filtered out. Then, topical dimension-
ality was reduced. After that, members with unusually
many topics of interest were removed. Finally, data in-
consistencies and special characters were treated.

Data preprocessing and refinement was conducted us-
ing Open Refine (previously known as Google Refine).
Open Refine is an open source tool for refining messy
data, cleaning it up, and transforming it from one for-
mat into another [63]. It facilitates facet analysis and
provides a set of clustering techniques out of the box.
It also allows users to review clustering results before
reflecting them back into the original dataset as shown
in Figure 11.

Two clustering techniques were chosen based on their
performance in finding phonetically and syntactically
similar topics. The first was a key collision technique
based on the Metaphone3 phonetic algorithm [64]. The
second was based on a variation of the k nearest-
neighbor algorithm that uses Levenshtein distance [65]
to measure the similarity/difference between topics (i.e.,
strings). Combining both clustering techniques reduced
the number of topics by an average of 11.5%.

Figure 11 shows the manual part of the process, in
which users are given the choice to accept or reject
merging the suggested similar raws under the same
cluster. For example, based on Metaphone3, the algo-
rithm suggests that both the topics “Entrepreneur” and
“Entrepreneurship” should be clustered under the same
topic “Entrepreneur”. By accepting this suggestion, 441
raws will be merged with 310 raws to have a bigger clus-
ter of 751 raws.
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Member Id Topics 
ID 

Topics 
Name 

Member 
City 

Member 
Groups 

MGroups 
Cities 

MGroups 
CategoryID 

MGroup 
Category 
Name 

MGroup 
Topics 

12209746 1044 Event_Planning Waterloo Web Designers 
/Developers 

Waterloo 34 tech Web_Design 

  10290 Spirituality           Graphic_Design 

  4417 Consciousness           Web_Technology 

  15478 Holistic_Health           Internet_AND_Technology 

  15018 Music           Web_Development 

  1322 Meditation   Gamers Waterloo 11 games Boardgames 

  243 Alternative_Health           Dungeons_AND_Dragons 

  17866 Meeting_New_People           Live_Action_Role_Playing 

  10581 Social           Shadowrun 

  2278 Drum_Circle           War_Games 

  79103 Healing _Drum_Circle           Star_Wars_RPG 

  17570 Drumming           D20_Gaming 

  21309 Recreational_Drumming           White_Wolf 

  16733 Hand_Drumming           Roleplaying_Games_(RPGs) 

  496 Game_Development           Strategy_Games 

                Gaming 

                PC_Gaming 

                Computer_Gaming 

    Groovers Kitchener 21 Music Drummer 

        Alternative_Health 

        Meditation 

        Drum_Circle 

        Consciousness 

        Live_Music 

        Hand_Drumming 

        Meeting_New_People 

        African_drumming 

 

Data preprocessing and refinement: 
 

Several decisions have been made to prepare the data before start analyzing it. First, groups and users 
who made their data private have been filtered out. Then, topics dimensionality reduction has been 
applied to the dataset using Open Refine \cite{}.  Open Refine is a tool used to refining missy data, 
cleaning it up, and transforming it from one format into another \cite{}. It facilitates facet analysis and 
provides a set of clustering techniques out of the box. It also allow review clustering results before apply 
it to the dataset as shown in figure \ref{}. Two clustering techniques have been chosen based on their 
performance in finding phonetically and syntactically similar topics. The first is a key collision technique 
based on the well know Metaphone 3 \cite{} phonetic algorithm, while and the second is based on nearest 
neighbor algorithm and uses  Levenshtein distance \cite{} to measure the similarity/difference between 
topics (i.e., strings). 

Table 2: Example of The Crawled Data
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Figure 12: People Similarity Matrix and Its Corresponding People Graph

After applying facet filtering to the dataset, it became
apparent that a few members have very large numbers
of topics of interest (i.e., over 100 topics). A decision
was made to exclude those members by removing the
top 3% of members with highest topic counts. We sur-
mised that these members did not have focal interests,
but were rather Meetup trackers. Their presence in the
dataset would have been deleterious to the clustering al-
gorithms. Finally, all trailing spaces, inconsistencies,
symbols, and special characters were removed or re-
placed (e.g., replacing & with AND) in order to avoid
errors while transforming data from one format into an-
other throughout our multi-step prodcedures.

5.3. Scene Discovery Results
After data refinement, the dataset was transformed

into the four types of graphs our methods produce (peo-
ple, topic, location, and scene graphs) based on the two
techniques described in Section 4.4. The graphs were
then exported to the Gephi visualization and analysis
platform. Gephi is an open-source interactive visual-
ization and exploration platform for networks, complex
systems, dynamic and hierarchical graphs. It provides
powerful tools that implement several statistical anal-
ysis, filtering and visualization algorithms that can be
applied directly to graphs [59].

Figure 12 shows a sample of a people similarity ma-
trix and its corresponding people graph. Each node in
the graph represents a person; an edge between two peo-
ple indicates a similarity between them, while the edge
weight (thickness) corresponds to the strength of the re-
lationship. Location and topic graphs are similar to the
people graph; they consist of one type of nodes with

weights on the edges. The Louvain algorithm was ap-
plied to all of the graphs that were based on similarity
matrices (i.e., people, topics, locations). The result of
clustering was exported and reconciled with each record
in the dataset for evaluation.

Figure 13: Topics Graph After Applying Louvainś Modularity

Figure 13 shows an example where modularity par-
titioning was applied to a topic graph using dataset 2
and the people similarity analysis. As shown in the
figure, topic graphs express high modularity (i.e., Q =

0.713). Seven communities were identified; and within
each community the topics were ranked using the de-
gree of connectivity as a metric to show the importance
and centrality of the topics. For example, in Figure 13,
it is clear that the Drum Circle was a centralized topic
within the main community in dataset 2.
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(a) The Scene Graph Generated From Dataset 1 After Partitioning (b) Waterloo Technology Scene

(c) The Relationships Between The Generated Communities
Within The Technology Scene

(d) Mobile Development, Technology Start-Ups and Web Devel-
opment Communities

(e) Example of Waterloo Technology Startup Scene That Shows
How The Scene Graph Partitioning is Able To Capture All The
Scene Concepts (Topics, People, and Location) (f) Soft Clustering in Scene Graphs

Figure 14: Scene Detection and Analysis Process
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Now, given the fact that this dataset was built using
two groups; one of them is the Organic Groove Com-
munity Drummers, which was mainly a drumming cir-
cle meetup. It is apparent that the topic graphs can be
effectively be used to discover communities in cultural
web data. However, our goal was to discover scenes,
not topical communities. The goal was to cluster peo-
ple, location and topics all together. In order to create
scenes, the results of clustering topics, locations, and
people had to be merged. This was done by overlapping
the partitioning results using facet filtering. More about
this will follow in the evaluation section.

We proceeded as described earlier with applying
the Louvain algorithm , unconventionally, to the scene
graphs (directed unweighted graphs with different node
types) we generated from the dataset. Figure 14a shows
an example of applying the Louvain algorithm on the
scene graph generated from dataset 1. 1070 communi-
ties were identified. The maximum modularity was (Q
= 0.469) which can be considered adequate. Out of the
1070 communities identified, 14 communities represent
90% of the whole dataset. This is because in large social
networks, modularity optimization often fails to detect
clusters smaller than some scale [66]. For this reason,
we applied modularity optimization in iterations. How-
ever, the preliminary results of this clustering strategy
were already appealing. For example, when emphasiz-
ing fan-in analysis (by using it as a ranking factor to en-
large the node and label size), the main topics and top-
ics groups (e.g, 34 which refers to the technology topic
group) in each scene became visible. (Waterloo Region
is known to be a center for the technology scene in On-
tario). This was obvious in the result, which showed
technology as the topic category with highest fan-in.
The results of clustering via this method were also ex-
ported and reconciled with the records in the dataset for
further analysis and evaluation.

At this juncture, it is important to highlight the con-
crete advantages of applying the Louvain algorithm in
multiple iterations to discover sub-scenes. For example
in Figure 14b, the graph in Figure 14a was filtered to
show only the technology scene. The Louvain algorithm
was then applied to the technology scene alone, which
partitioned it into 9 technological communities with
maximum modularity of (Q = 0.456). Figure 14c shows
the relationships between the generated communities.
In this figure, the bigger is the community, the bigger
the size of the node. Figure 14d focuses on communities
3, 4, and 9, which refer to mobile development, technol-
ogy start-ups and web development, respectively. Note
that all these figures present fan-in analyses, revealing
the topical dimension of the scene. Nevertheless, these

scenes also include people and location nodes as shown
in Figure 14e. In which, we zoomed in to show the la-
bels of the different nodes that may not be apparent due
to its low raking based on fan-in analysis. On the other
hand Figure 14f shows the soft clustering characteristic
in scene graphs. “Entrepreneurship” lies between the
technology start-up scene and the business networking
scene. Soft clustering is one of the main characteristics
of scene graphs that facilitate discovering new scenes.

6. Evaluating the Scene Discovery Results

It is challenging to evaluate the results of scene dis-
covery efforts without any ground truth data. Evaluating
clustering approaches is known to be hard if no ground
truth data is available. In fact, this is considered an open
research problem. This section presents the techniques
we used to evaluate our scene clustering results.

Figure 15: An Example Shows How One Record Is Distributed Into
Different Partitions

After graph partitioning, each node belonged to one
cluster. For example, as shown in Table 3, the person
with member ID (12209746) belonged to cluster SG5
when the partitioning is done using the scene graph
method. The same person belonged to partition T2 in
the case of people graph partitioning, and P2 is the case
of topic graph partitioning.

The nodes with their corresponding partitions were
then reconciled with the original records information
(each record in the dataset was matched with its cor-
responding partition). As illustrated in Figure 15,
one record could be distributed across different parti-
tions depending on whether the reconciliation was done
based on the topic, location, or member ID. Table 3
shows a sample of records after reconciliation. The
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Table 3: A Sample of Records After Reconciliation.

evaluation case considered only topics and people; since
the location in the dataset was the same for all the scenes
(i.e., Kitchener/Waterloo).

The outcome of the scene discovery methods were
evaluated based on three evaluation criteria; namely, (1)
scene relevancy (i.e., precision, recall, F1-score) and
community size (2) Jaccard similarity, and (3) modu-
larity. The following subsections explains them in more
detail.

6.1. Scene Relevance and Community Size

The ability to discover and retrieve relevant scenes
depends on the quality of scene partitioning, which was
evaluated based on calculating the scene topics (i) preci-
sion, (ii) recall, (iii) F1-Score. In addition ,we assessed
(iv) the number of people within the scene (cluster size).
The evaluation relied on two hypotheses:

(a) Hypothesis 1: When a scene discovery approach
is applied to a dataset that consists of well-defined
cultural groups (e.g., Meetup groups), then the min-
imum number of scenes should be at least equal
the number of groups, with each scene centralized
around the topics that describe each group.

(b) Hypothesis 2: A scene discovery approach that
provides higher precision, recall and a larger clus-
ter size is better. Precision and recall are calculated
with respect to scene topics, while cluster size is
based on the number of people within the scene.

Cluster size is important for Sceneverse because a
new digital service aimed at enhancing scenes needs to
successfully engage the more peripheral participants in
any scene. Core/central participants are already well in-
formed of scene events and opportunities through word
of mouth, cultural news media, existing online social
media and the like. To add value within the existing
cultural media landscape, Sceneverse needs to detect
marginal participants and increase the frequency of their
participation in scene activities. That increased partic-
ipation will funnel more support towards the efforts of
scene activity organizers at the scene’s core.

To find the overlap between topics and people clus-
ters, and to analyse the results; facet analysis was per-
formed using the different clustering results on the rec-
onciled dataset. The dataset used in the evaluation pro-
cess is a subset of dataset 2. It was generated around the
“Organic Groove Community Drummers” group. Ac-
cordingly, and based on Hypothesis 1, the topics that
describe that group will definitely represent at least one
of the scenes within that group. Most of the time, it will
be the largest scene within that group.

Table 4 shows the clustering results after (1) convert-
ing the dataset into a topic graph, a people graph and
a scene graph, and (2) partitioning the graphs using the
Louvain algorithm. The first column shows the simi-
larity analysis results for the overlap of the topic and
people graphs (method one), while the second column
shows the results derived from the scene graph (method
two).
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Table 4: Clustering Results After Applying The Different Graph Partitioning to the “Organic Groove Community Drummers” Dataset

To calculate precision, the topics (TP) with the high-
est fan-in within the inner join of the largest topic (T)
and people (P) clusters were compared to the origi-
nal group topics (TPOriginal) (i.e., the Organic Groove
Community Drummers). Equation 3 shows how scene
precision has been calculated using Similarity Analy-
sis (SA). Similarly, the scene graph topics (ΠTP{SG}) of
the largest scene detected were compared with the origi-
nal group topics. Equation 4 shows how scene precision
has been calculated for the Scene Graph (SG) results. In
the equations, the Π symbol represents the topic projec-
tion, while on represents the join of the topic and people
graphs, i.e., the scene graph as derived by this method

PrecisionSA =
|ΠTP{TG on PG} ∩ {TPOriginal}|

|{TPOriginal}|
(3)

PrecisionSG =
|ΠTP{SG} ∩ {TPOriginal}|

|{TPOriginal}|
(4)

Equation 5 shows the formalism for assessing scene
recall. Scene recall was calculated by comparing the
number of records in the scene (RScene−Retrieved), where
a user indicated interest in any topics used to describe
the ground truth scene, to the number of records in the
dataset that refer to the same topics (RScene−Relevant).

Recall =
RScene−Retrieved

RScene−Relevant
(5)

RScene−Retrieved can be calculated by summing all the
fan-in values for all topics that constitute the scene, as
shown in Equation 6.

RScene−Retrieved =

n∑
i=1

TPi(FanIn) (6)

On the other hand, RScene−Relevant can be found by
searching the records for scene-specific topics as shown
in the following pseudo-code.

Input: Dataset
Output: Scene-Relevant
forall the Records r ∈ Dataset do

if RecordTopic rtp ∈ SceneTopic then
Scene-Relevant++;

end
end

Table 5 shows the main topics that described the “Or-
ganic Groove Community Drummers”. The table also
shows the fan-in analysis of these topics in both the
scene graph, as well as the inner join of both topic and
people similarity graphs.

As shown in Table 6. Both techniques provide 100%
precision with respect to the topics that describe the
“Organic Groove Community Drummers” group. How-
ever, the scene graph technique provides higher recall
with respect to the total number of records returned in
which a user indicated an interest in any of the top-
ics used to describe the Organic Groove Community
Drummers group. However, the scene graph technique
recalled more of the total number of records where
users indicated interest in topics describing the Organic
Groove Community Drummers group. Moreover, the
size of the scene community in terms of participants
identified is much higher using the scene graph tech-
nique; almost 92% higher.

Finally, to show the accuracy of the scene graph ap-
proach over the similarity analysis graph approach, the
harmonic mean of precision and recall, or F1 score, has
been calculated. The F1 score takes values between zero
and one; the closer the value to 1 the higher the accuracy
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Table 5: Topics of The Organic Groove Community Drummers

of the information retrieval approach. Equation 7 shows
how the F1 score is calculated. The results are shown
in Table 6,where the F1 score confirms higher accuracy
for the scene graph over the similarity analysis graph
technique.

F1 = 2 ·
Precision · Recall
Precision + Recall

(7)

6.2. Jaccard Similarity for Scenes with No Ground
Truth

A similar process that does not require ground truth
data was applied to all other clusters (other than the
main one which was used in the previous analysis). The
process began by finding all the inner joins of the differ-
ent combinations of people and topics graphs partitions.
Then, for each partition in the scene graph, similarity
was calculated to find the distance between each of the

inner join sets and the partition. As shown in Equa-
tion 3, the Jaccard Similarity Index was calculated by
finding the size of the intersection between the scene
topics (A) and each of the inner join combinations (B)
divided by the size of the union of the two sets. After
calculating the Jaccard Similarity Index, it was appar-
ent that more information was needed in order to reason
scientifically about the results. For this reason, another
similarity metric that also uses Jaccard Similarity was
used to refine and confirm the results of the first metric.

J (A, B) =
|A ∩ B|
|A ∪ B|

(8)

We call this metric scene theme similarity. As in-
dicated by the name, this metric focused on the main
scene topics; those shared by many Scene People.
Scene theme similarity was calculated by creating a list

 
Similarity Analysis Graphs Scene Graph 

Total Number of Records With Exact 

Topics Returned 
60 89 

Total Number of Records With Exact 

Topics In the Dataset 
122 122 

Precision (with respect to the original 

group topics list) 
100% 100 % 

Recall 49% 73% 

F1 Measure 65.77% 84.39% 

Number of people in the Scene 6 ppl 11 ppl 

 

 

 

  

Table 6: Precision, Recall and Scene Size Results

22



Table 7: Evaluation Results Using Jaccord and Theme Similarity

that consisted of the top five topics (highest in fan-in)
for each scene and topic people inner join cluster. Then,
the themes were compared using Jacquard Similarity.

As shown in Table 7, by combining both Jaccard and
theme similarity, better insight into clustering results
was attained. For example, if both Jaccard similarity
and theme similarity were high (i.e., above 0.5), this was
a good indication that the scene discovered had a well-
defined boundary. Examples of such scenes were SG1,
SG5 and SG4. In this case, the larger the size of the
scene, the better the scene. For example, even though
both similarity indices of SG 4 were high; it was con-
sidered to be a weak scene, because it was so small (2
people).

On the other hand, when Jaccard and theme similarity
were both low, or in cases when theme similarity was
higher than Jaccard similarity, manual data inspection
was performed. We adjudged that scene graph partition-
ing provided more rational results. In the case where
theme similarity was higher than Jaccard, the scenes
discovered using the inner join method were compos-
ite mixed scenes (i.e, contained more than one scene).
On the other hand, when both Jaccard and theme sim-
ilarity were low, the scene was not clearly identified in
the case of the inner join.

For instance, the SG6 theme contained the following
topics: Walking, Camping and Kayaking, Backpacking,
and Board Games. The (T5

⋂
P1) theme contained:

Board Games, Executive and Business Coaching, Psy-
chology, Yoga, Atheists. Clearly the topical theme of
SG6 is more coherent and makes more sense for clus-
tering as a scene than the one generated using the inner
join method (T5

⋂
P1).

It is worth mentioning that the results obtained us-
ing these metrics is aligned with the results obtained
when ground truth data were available. Both results
favor scene graph over the people-topic inner join for
scene discovery. Moreover, using either quantitative or
qualitative analysis, a good scene still evinced the same

properties; a cohesive community, strong central topics
and significant numbers of people participating.

6.3. Modularity Metric Q

Modularity is a widely used metric to show how well
a network is partitioned. Consequently, modularity was
calculated for the three graphs generated here. The re-
sults of applying the Louvain method to the people,
topic, and scene graphs are 0.647, 0.713, and 0.469 re-
spectively. Overall modularity was adequate, indicating
cohesive communities. The modularity of both people
and topic graphs separately was higher than that for the
scene graph. This result is expected since the more di-
mensions you add to the graph the less modularity you
have. However, it is this characteristic that gives the
scene graph its special property as a graph uniquely able
to reveal the cultural contours of the scene.

7. Discussion

Graphs with a single node type that are created using
similarity analysis play important roles in recommenda-
tion systems. Such graphs can achieve high modularity
when applying graph partitioning, and hence they delin-
eate coherent partitions or communities. Unfortunately,
communities identified in these graphs fail at represent-
ing cultural scenes. This is because a scene is a mul-
tidimensional concept, in which time, location, topics
and people all contribute to define the scene boundary.
A workaround can be devised by first creating a graph
for each of the dimensions, then partitioning (cluster-
ing) these graphs, and finally finding the inner join of
the different partitions. Unsurprisingly, the results of
this workaround are disappointing because of the size of
the communities generated. Overlapping the communi-
ties is a type of hard clustering. It assists in identifying
the scene center, but fails to capture the whole scene. In
order to be able to identify the boundaries of the scene
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efficiently, there is a need for either (1) efficient tech-
niques that can combine different similarity measures,
or (2) similarity measures that work the same way with
different types of objects.

The scene graph approach was created to address this
particular problem. It creates a graph that combines dif-
ferent types of nodes. Then it uses graph modularity to
partition the graph. From the graph partitioning algo-
rithm perspective, all nodes are the same, despite their
scene-dimension type. In order to preserve as much in-
formation about the node types in the graph as possi-
ble, the scene graph was constructed as a directed graph.
Moreover, a record reconciliation process, followed by
facet filtering, was used to merge the partitioning results
with the original records in order to further analyse the
clustering results.

7.1. The Main Findings
Scene graph partitioning is a soft clustering tech-

nique. That is designed specifically to discover scenes
in cultural data. It is easier faster and more suitable for
discovering cultural scenes than single facet graphs and
their overlaps. This is shown in the evaluation experi-
ment on the small Meetup dataset, in which the scene
graph method outperformed the method based on graph
similarity and overlap by almost 53% in terms of execu-
tion time. The 53% has been obtained by comparing the
time needed for scene detection using the scene graph,
and the sum of the time needed to partition and overlap
the people, location, and topics graph. Moreover, the
quality of the scenes generated using the scene graph
method demonstrated much more complete and repre-
sentative scene communities, with almost a 92% larger
community size and 18.62% higher accuracy, based on
the F1 measure.

7.2. Dependency on Louvain Graph Partitioning
Both methods proposed in this paper depend on Lou-

vain graph partitioning. In fact, the performance bottle-
neck for the scene graph approach stems from its de-
pendency on Louvain graph partitioning for commu-
nity detection. The scene graph calls the partition-
ing algorithm recursively; and this has obvious impli-
cations for the efficiency and scalability of the parti-
tioning algorithm in large datasets. In a recent study,
Papadopoulos et al. [26] have compared the perfor-
mance of existing community detection techniques, and
they favoured the Louvain method over other methods
for large scale graphs such as social networks. This
study supports Papadopoulos findings. We compared
six different community detection techniques(i.e., Lou-
vain [15], Fast Greedy [67], Leading Eigen Vector [68],

Table 8: Comparison of community detection algorithms in terms of
complexity

Method Actual Com-
plexity

Sparse Graphs
Complexity

Louvain [15] O(n2) O(n)
Fast Greedy
[67]

O(n2d log n) O(n log2 n)

Leading
Eigen Vector
[68]

O(n3d) O(n2 log n)

Walktrap O(n4) O(n2 log n)
Label Propa-
gation [69]

O(n2) O(n)

Infomap [70] O(n2 log n) O(n log n)

Walktrap [71], Label Propagation [69], and Infomap
[70]) in terms of complexity, performance, modularity
and the number, the size and structure of the generated
communities. We applied the different techniques on the
first Meetup dataset used for scene detection (i.e, 10781
vertices and 61151 edges).

Table 8 compares the complexity of each of the afore-
mentioned methods. The first column in the table repre-
sents the complexity obtained without any assumptions
about the underlying graph, while the second assumes a
sparse graph, in which the number of vertices is approx-
imately equal the number of edges. The complexity of
community detection algorithms is usually expressed in
terms of the number of vertices (n), number of edges
(m), as well as the depth of the tree (d) when hierar-
chical methods are used. Complexity gives a good in-
dication of how well the algorithms will perform as the
dataset size reaches infinity. The results of comparing
complexity shows us that the Louvain method is one of
the best candidates in terms of complexity. Other possi-
ble candidates include Label Propagation and Infomaps.

Complexity analysis helps us understand the scalabil-
ity of the algorithm. However, the experimental results
better illuminate the performance of the algorithm with
respect to the different dataset types, sizes, and other
factors that can impact the algorithm performance (e.g.,
memory consumption).

The radar chart in Figure 16 shows a multivariate
comparison between the aforementioned community
detection algorithms, in terms of modularity and exe-
cution time. Figure 16 shows the results of applying the
different algorithms on the Meetup dataset. The results
show that the Louvain method has the highest modu-
larity and the lowest execution time over all other tech-
niques for this specific data-set. The Label Propagation
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A radar chart displaying a comparison between six different community detection algorithms in terms of 

modularity and execution time  
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Figure 16: A radar chart displaying a comparison between six differ-
ent community detection algorithms in terms of modularity and exe-
cution time

method, which shares the same complexity metrics as
the Louvian method, performs more poorly by compar-
ison, and hence it has been eleminated.

The suitability of the Louvian method for this task
has been further confirmed by comparing the methods
in terms of communities size and structure as shown in
Figure 17.
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Figure 17: Number of Communities Detected Based on Community
Size

The Figure shows the number of communities de-
tected by each method with respect to the size of the
community. It is clear from the figure that the Lou-
vian method tends to generate more structured commu-
nities of significant size. Conversely, Infomap gener-
ates large number of very small communities. These
Infomap-derived communities are not very representa-
tive of scenes, as explained in the evaluation section.

By applying the Louvain method recursively on the
detected communities, more sub-communities can be
revealed in a meaningful hierarchical structure. For ex-

ample, when applying the Louvain method in two steps
on the Meetup dataset, 128 sub communities were de-
tected. The whole process took around 1.78 seconds an
average modularity of 0.62. This result is comparable to
the one achieved by Infomap. However, the communi-
ties here are more meaningful and follow a hierarchical
order that preserves the consistency of topic informa-
tion.

Moreover the recursive Louvain method outperforms
Infomap. It is 3442 times faster on this dataset. The
number itself rapidly scales in a linear relationship with
the scale of the graph.

7.3. Analysis Techniques
Once scenes have been discovered, and their topics

and key people have been identified, a second round
of analysis is needed to rank people within each scene
based on centrality. In this paper fan-in and fan-out
analysis was used. However, more factors and many ad-
ditional analytical techniques could be applied to reveal
these scene relationships.

For example, factors such as the distance between a
person’s place of residence and the scene’s central loca-
tion, or the duration in time of a person’s connection to a
topic, could significantly affect the assessed strength of
the connection between the person and the scene. Sev-
eral other analytical techniques could also be used; for
example:

(i) Centrality: Roughly indicates the social power
of a node based on how much the connectivity of
a network depends on it (i.e. how disconnected
the graph would be if that node were removed).
Betweenness, Closeness, and Degree are all cen-
trality measures.

(ii) Betweenness: The extent to which a node lies be-
tween other nodes in the network. This takes into
account the connectivity of the node’s neighbours,
giving a higher value for nodes which bridge clus-
ters. The measure reflects the number of people
a person is connected to indirectly through their
direct links.

(iii) Closeness: The degree an individual is near all
other individuals in a network (directly or indi-
rectly). It indicates the node’s ability to access in-
formation through the grapevine of network mem-
bers.

(iv) Bridging: A relationship is a bridge if deleting it
would cause its endpoints to lie in separate com-
ponents of a graph.

(v) Density: The degree a respondent’s ties know
each other, i.e. the proportion of ties among an
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individual’s group of contacts. Network-wide or
global density is the proportion of ties in a net-
work relative to the total number possible. There
can be sparse versus dense networks.

(vi) Ego-effect: The degree an individual’s network
reaches out into the network and provides it with
novel information and influence.

(vii) ) Structural cohesion: The minimum number of
members who, if removed from a group, would
disconnect the group.

In the context of scene discovery, the output from
these social network analysis techniques would have to
be combined and mapped to scene concepts. For ex-
ample, a combination of fan-out, bridge and centrality
analysis might reveal different ontological roles for peo-
ple within a scene.

The application of these additional social network
analysis techniques is out of scope for this paper. A
later paper will be dedicated to discussing their use in
the context of scene discovery.

8. Conclusions and Future Directions

In this paper, we argued the need for a platform ded-
icated to facilitate engaging its users in socio-cultural
activities, and the need for tools and techniques that can
reveal socio-cultural communities in existing datasets.
We introduced Sceneverse, a proposed platform for sup-
porting the creation and analysis of an online sociocul-
tural universe. The proposed Sceneverse platform con-
sists of several components. This paper focused on the
concepts, techniques and methods used to implement
the scene extraction engine component. Accordingly,
we first created a scene ontology to provide a crisp un-
derstanding of the scene concept, and to enable building
scene representations from the cultural and social data
available on the web. We then devised an approach for
automatic scene discovery in that data.

Scene discovery depends on the ability to cluster
similar people, who have similar interests, expressed
around similar events and venues, in certain locations,
within a general span of time. This is challenging, since
most clustering techniques work on single facet, and the
scene is a multifaceted concept. To deal with this chal-
lenge, two techniques were examined. In the first tech-
nique, social and cultural data were first converted into
three types of single faceted socio-cultural graphs; one
for people, one for topics and one for locations. Each
of these graphs were then partitioned into groups based
on Louvain modularity optimization, and the resultant
communities were overlapped to create scenes. In the

second technique, a scene graph, which is a multifaceted
directed graph, was created. Then it was partitioned di-
rectly into scenes using Louvain modularity optimiza-
tion.

The two proposed methods were empirically evalu-
ated using data crawled from the cultural and social net-
work Meetup.com. Preliminary results demonstrate the
superiority of the scene graph technique over the over-
lapping of single-faceted graphs in identifying the scene
boundaries. While both techniques were able to detect
the scene center in terms of the key people, main topics
and central locations for a scene, the size of the commu-
nity in terms of number of people identified was larger
with scene graph partitioning. This is because a scene
graph partitioning is a softer clustering technique than
community overlapping.

The scene graph technique proposed in this paper
overcomes two of the main drawbacks associated with
graph partitioning. The first drawback is the informa-
tion lost when converting a multifaceted dataset into
graphs. We overcame this problem by preserving rela-
tional information in directed graphs, then using fan-in
and fan-out analysis to highlight the different nodes in
each partition. The second drawback is specifically re-
lated to modularity optimization techniques, in which
modularity at a large scale fails to reveal small commu-
nities. This problem has been addressed by applying
the Louvain algorithms in iterations. In fact, taking this
approach proved ideal for scene discovery, since it or-
ganizes scenes in hierarchical order (scene, sub-scene),
which fits the natural social topology of scene. Scene
graphs are designed specifically to discover scenes in
cultural data. Scene graph analysis using reverse Lou-
vain optimization is easier, faster and more suitable
for discovering cultural scenes than overlapping single
facet graphs.

In addition to our scene discovery procedure, this pa-
per also briefly discussed scene analysis techniques. We
used fan-in, fan-out and facet filtering to discover im-
portant scene graph nodes. Future efforts will focus on
investigating other analysis techniques to rank people,
topics and locations within each scene (e.g., based on
centrality or other social network analysis measures).
The results will be used in prototypes of the Scenev-
erse platform to enhance scene experience and to pro-
vide scene participants with better choices. Moreover,
the scene discovery approach proposed in this paper is
potentially generalizable to other domains. Hence, we
are planning to apply this technique to other domains
where multifaceted recommenders are needed.
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Subject Predicate Object

http://www.sceneverse.com/CW/scene/ http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Ontology

http://www.sceneverse.com/CW/scene/ http://www.w3.org/2000/01/rdf-schema#comment  "This ontology describes the cutural scene based on Seneverse Inc. defenition"

http://www.sceneverse.com/CW/scene/ http://www.w3.org/2002/07/owl#imports http://purl.org/vocab/bio/0.1/

http://www.sceneverse.com/CW/scene/ http://www.w3.org/2002/07/owl#imports http://www.isi.edu/~pan/damltime/time-entry.owl

http://www.sceneverse.com/CW/scene/ http://www.w3.org/2002/07/owl#imports http://xmlns.com/foaf/0.1/

http://www.sceneverse.com/CW/scene/associatedWith http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/associatedWith http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#FunctionalProperty

http://www.sceneverse.com/CW/scene/associatedWith http://www.w3.org/2000/01/rdf-schema#subPropertyOf http://www.w3.org/2002/07/owl#topObjectProperty

http://www.sceneverse.com/CW/scene/centralizedArround http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/centralizedArround http://www.w3.org/2000/01/rdf-schema#subPropertyOf http://www.w3.org/2002/07/owl#topObjectProperty

http://www.sceneverse.com/CW/scene/describeScene http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/hasActivePeriod http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/hasActivePeriod http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#FunctionalProperty

http://www.sceneverse.com/CW/scene/hasActivePeriod http://www.w3.org/2000/01/rdf-schema#domain http://www.sceneverse.com/CW/scene/Scene

http://www.sceneverse.com/CW/scene/hasActivePeriod http://www.w3.org/2000/01/rdf-schema#range http://www.sceneverse.com/CW/scene/SceneActivePeriod

http://www.sceneverse.com/CW/scene/hasActivePeriod http://www.w3.org/2002/07/owl#inverseOf http://www.sceneverse.com/CW/scene/associatedWith

http://www.sceneverse.com/CW/scene/hasEvent http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/hasEvent http://www.w3.org/2000/01/rdf-schema#domain http://www.sceneverse.com/CW/scene/Scene

http://www.sceneverse.com/CW/scene/hasEvent http://www.w3.org/2000/01/rdf-schema#range http://www.sceneverse.com/CW/scene/SceneEvent

http://www.sceneverse.com/CW/scene/hasEvent http://www.w3.org/2002/07/owl#inverseOf http://www.sceneverse.com/CW/scene/sceneEvent

http://www.sceneverse.com/CW/scene/hasLocation http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/hasLocation http://www.w3.org/2000/01/rdf-schema#domain http://www.sceneverse.com/CW/scene/Scene

http://www.sceneverse.com/CW/scene/hasLocation http://www.w3.org/2000/01/rdf-schema#range http://www.sceneverse.com/CW/scene/SceneLocation

http://www.sceneverse.com/CW/scene/hasLocation http://www.w3.org/2002/07/owl#inverseOf http://www.sceneverse.com/CW/scene/centralizedArround

http://www.sceneverse.com/CW/scene/hasPeople http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/hasPeople http://www.w3.org/2000/01/rdf-schema#domain http://www.sceneverse.com/CW/scene/Scene

http://www.sceneverse.com/CW/scene/hasPeople http://www.w3.org/2000/01/rdf-schema#range http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/hasPeople http://www.w3.org/2002/07/owl#inverseOf http://www.sceneverse.com/CW/scene/participateIn

http://www.sceneverse.com/CW/scene/hasTopic http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/hasTopic http://www.w3.org/2000/01/rdf-schema#domain http://www.sceneverse.com/CW/scene/Scene

http://www.sceneverse.com/CW/scene/hasTopic http://www.w3.org/2000/01/rdf-schema#range http://www.sceneverse.com/CW/scene/SceneTopic

http://www.sceneverse.com/CW/scene/hasTopic http://www.w3.org/2002/07/owl#inverseOf http://www.sceneverse.com/CW/scene/describeScene

http://www.sceneverse.com/CW/scene/participateIn http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/sceneEvent http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.sceneverse.com/CW/scene/sceneEvent http://www.w3.org/2000/01/rdf-schema#subPropertyOf http://www.w3.org/2002/07/owl#topObjectProperty

http://www.w3.org/2002/07/owl#topObjectProperty http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#ObjectProperty

http://www.w3.org/2002/07/owl#topObjectProperty http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#TransitiveProperty

http://www.sceneverse.com/CW/scene/MultiPersonaScenester http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/MultiPersonaScenester http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/Personage http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/Personage http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/Scene http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/Scene http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/Scene

http://www.sceneverse.com/CW/scene/SceneActivePeriod http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneActivePeriod http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.isi.edu/~pan/damltime/time-entry.owl#IntervalThing

http://www.sceneverse.com/CW/scene/SceneEvent http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneEvent http://www.w3.org/2000/01/rdf-schema#subClassOf http://linkedevents.org/ontology/Event

http://www.sceneverse.com/CW/scene/SceneEvent http://www.w3.org/2000/01/rdf-schema#subClassOf http://purl.org/NET/c4dm/event.owl#Event

http://www.sceneverse.com/CW/scene/SceneEvent http://www.w3.org/2000/01/rdf-schema#subClassOf http://purl.org/dc/dcmitype/Event

http://www.sceneverse.com/CW/scene/SceneEvent http://www.w3.org/2000/01/rdf-schema#subClassOf http://sw.opencyc.org/2009/04/07/concept/en/Event

http://www.sceneverse.com/CW/scene/SceneFollower http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneFollower http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/SceneLocation http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneLocation http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

http://www.sceneverse.com/CW/scene/SceneOrganizer http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneOrganizer http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/ScenePerson http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneTopic http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SceneTopic http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/SceneTopic

http://www.sceneverse.com/CW/scene/Scenester http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/Scenester http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/ScenesterFriend http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/ScenesterFriend http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/SecludedScenester http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/SecludedScenester http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/Silhouette http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.sceneverse.com/CW/scene/Silhouette http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.sceneverse.com/CW/scene/ScenePerson

http://www.sceneverse.com/CW/scene/Sponsor http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Class

http://www.w3.org/2000/10/swap/pim/contact#Person http://www.w3.org/2000/01/rdf-schema#subClassOf http://xmlns.com/foaf/0.1/Agent
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