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Abstract In forests, soils contain at least twice as much carbon than plants that mostly grow 10 

in the upper layers. Litter at the interface between soils and the atmosphere regulates a 11 

variety of biogeochemical cycles, which are important for both plants and soils and have 12 

possible implications for other environmental components. We have compared leachates 13 

collected during an incubation experiment on: a) beech and oak leaves; b) organic 14 

subhorizons OLn, OLv, OF, and mineral A horizon; c) treated with litter removal (and 15 

untreated) plots, to assess the changes in the chemical composition of the litter layers and 16 

leachates during weathering and their influence on the underlying horizons. . Two different 17 

types of broadleaves –beech and oak– become indistinguishable when they experience 18 

weathering. As a litter horizon is altered, it becomes more stable and loses fewer elements, 19 

both in gaseous and liquid form. The annual removal of litter represents a net loss of biomass 20 

from the system. Nevertheless, the effect on soil in the medium term is not significant. 21 

Leaves and litter horizons were incubated in micro-lysimeters, leached, and characterised 22 

by different analytical approaches, from elementary analyses (dissolved organic carbon, 23 

CO2 production, nitrogen forms, UV absorptivity) to solid state NMR spectroscopy. The 24 

results reveal that the removal of the litter does not degrade the underlying soils, in direct 25 
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contrast to what was thought to be the case previously. Moreover, it extends previous 1 

knowledge that litter removal promotes an increase in fulvic acids activity in underlying 2 

horizons. The results demonstrate how this human disturbance, if not combined with other 3 

degradation factors, could promote podzolisation. In a wider outlook, if managed properly 4 

(for example, by burying litter removed after its use in animal husbandry), even the repeated 5 

removal of forest biomass contribute not negatively to the genesis of these soils.  6 
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1. Introduction 10 

In soil genesis, the alteration products of one individual horizon become reagents within 11 

the next horizon; this phenomenon is particularly evident in the case of podzolisation (Ugolini 12 

et al., 1988). Podzolisation consists of two main chemical components: i) mobile organic 13 

acids, which are the key proton donors that drive the soil processes in the O, E and Bhs 14 

horizons, and govern both soil pH and leaching; ii) these acids dissolve mineraIs and form 15 

metal–organic complexes that are nested at the Bhs/Bs interface (Ugolini et al., 1977). One 16 

or more plant litter horizons exist above these mineral horizons under natural conditions, at 17 

the interface between the forest plant biomass and soil, and represent one of the potential 18 

key compartments that serves as a C sink (Bellassen and Luyssaert, 2014; Janzen, 2004; 19 

Luyssaert et al., 2010). Fresh plant litter generally consists of distinguishable vegetal 20 

remains, leaves, needles, roots, bark, twig and wood pieces, either fragmented or whole. 21 

This organic material rapidly or slowly degrades, depending on the local climatic and 22 

biological conditions (Catoni et al. 2016). This thin, delicate layer of organic material can be 23 

easily affected by humans. For instance, forest litter raking as a replacement for straw in 24 

husbandry is an old non-timber practice in forest management that has been widespread in 25 
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Europe since the seventeenth century (Bürgi et al., 2006; Bürgi and Gimmi, 2007; Gimmi et 1 

al, 2008). At its peak in 1853, an estimated 50 Tg dry litter per year was raked at the 2 

European level (McGrath et al., 2015). Local historic forest litter-raking results in a long-term 3 

reduction in C pools in soils, which is relevant for C accounting on broader scales (Gimmi et 4 

al., 2013). After long-term raking, it has been calculated that mixed and deciduous forests 5 

show soil carbon depletion by up to 20% of the potential total soil carbon sink without 6 

gathering litter (Gimmi et al., 2013). Several studies have speculated that the influence of 7 

gathering forest litter might also play a key role in soil nutrient biogeochemical cycles 8 

(Glatzel, 1991); Glatzel (1990), Dzwonko and Gawronski (2002), and Vild et al. (2015) 9 

suggested that a progressive depletion of soil nutrients as a consequence of litter removal 10 

occurs . 11 

Several ecosystem models enable the impact of anthropogenic activities on ecosystems 12 

to be scaled up (e.g., Kaplan et al., 2012), although the timeframe within which soil carbon 13 

pools can reach equilibrium and/or fully recover remains unclear, as well as the effects on 14 

soil biogeochemical cycles. It is also unclear whether local soil biogeochemical cycles in 15 

individual specific circumstances can be realistically extrapolated, for instance, litter-raking. 16 

Human intervention in soil processes has a considerably greater effect than natural 17 

perturbations and thus, exceeds the resiliency of soil to recover to its original condition 18 

(Amundson et al., 2015). Questions include how a soil evolves, whether human intervention 19 

alters one soil horizon and whether the soil formation process becomes slower sensu 20 

Simonson (1959) or Runge (1973). The aim of this study was to compare the properties of 21 

two broadleaf litters, to understand whether soil organic matter (SOM) develops and to 22 

develop a framework by which SOM chemistry is altered as it passes through various litter 23 

horizons towards mineral soil. Here, we present results from two beech forests; one mixed 24 

(beech and oak) and a pure forest grown under very similar environmental conditions. The 25 

aim was to understand how species influence the soil upon which they develop, and to 26 



4 
 

evaluate the effect of the periodic removal of the forest litter. We postulate that litters of 1 

different composition, due to the diverse vegetation cover but built over similar soils have 2 

similar properties, and that litter removal, if not combined with other degradation factors, 3 

does not influence soil chemical quality, although can promote pedogenesis towards 4 

podzolisation. 5 

 6 

2. Materials and methods 7 

2.1. Study sites 8 

Litter material was collected from two mature forests in Switzerland. The first stand is at 9 

Irchel (47°32'19''N, 08°36'12''E; elevation 640 m a.s.l.) and is 70 years old and dominated 10 

by Fagus sylvatica (L.). The second forest is located in the vicinity of Bachs (47°32'02''N, 11 

08°26'45''E; elevation 589 m a.s.l.). The stand is dominated by Fagus sylvatica (L.) with 12 

Quercus petraea (Matt.) and some Pinus sylvestris (L.) present as a companion species. 13 

The potential natural vegetation is Luzulo silvaticae–Fagetum typicum (Zimmermann et al. 14 

2006) in both locations. 15 

The climate in both stands is characterised by mild winters and moderately warm 16 

summers. Mean January and July air temperatures are 0.3 and 18.6°C, respectively. The 17 

number of days with ground frost is 75 per year and the temperature exceeds 30°C on 18 

average for 4 days per year. The mean annual precipitation is 1,110 mm, of which two-thirds 19 

falls during the growing season, from May to October (Ahrends et al., 2008; Meteo Swiss, 20 

2015; Moser et al., 2010). The parent material is high-lying, consolidated plateau gravel and 21 

conglomerates in Irchel, and moraine in Bachs (Zimmermann et al., 2006). The soils 22 

beneath both stands are OL-OF-A-E/B-Bt-BC+ soils, Haplic Luvisols (Epidystric) (IUSS WG 23 

WRB, 2015) with a dysmoder organic layer with a Humus Index of 7, which is a numerical 24 
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expression of the humus form along a gradient of increasing litter thickness (Brêthes et al., 1 

1995; Ponge and Chevalier, 2006). 2 

Forest soil organic horizons are normally named on the basis of visual observations 3 

made directly in the field, thus, this is often subjective (Ponge, 1999). Therefore, to obtain a 4 

more objective basis for their classification, two studied stands (Bachs and Irchel) were 5 

compared after a morphological description according to Zanella et al. (2011). A minimum 6 

thickness of horizons for description, diagnosis and sampling purposes has been 7 

established at 3 mm; thinner horizons are considered to be discontinuous. The amount of 8 

organic carbon in dry samples of all litter horizons without living roots was not less than 20% 9 

by mass (ISO 10694:1995 method for carbon elementary analysis). The organic layers here 10 

were sampled according to their morphology. At the Irchel stand, the sequence of horizons 11 

was OLn-OLnv-OLv1-OLv2-OF-meA while at the Bachs stand was OLn-OLv-OFsz-meA 12 

(details in Supplementary Information). 13 

We investigated the influence of litter removal in four 100 m2-treated plots at each location, 14 

where raking occurs yearly in April as a part of a planned experiment and we sampled a few 15 

days before the annual removal. After raking, within one year a continuous litter layer is 16 

reformed. Control plots of a similar size were established next to these 100 m2-treated plots. 17 

We collected leaves from littertraps without soil contact, and from individual litter horizons. 18 

After carefully sampling the whole 1 m2 of the removed 100 m2-layers at both sites, the 19 

uppermost few centimetres of the A-horizon were sampled in both control and treated plots 20 

(five years of annual litter removal). Litter samples were taken at both sites: Fagus only at 21 

Irchel, mixed Fagus and Quercus at Bachs. The leaves, including bud scales, minuscule 22 

branches, seeds and other distinguishable material, collected from littertraps were then 23 

sorted manually in the laboratory. The rationale of this experiment was to compare a mixed 24 

beech litter and a pure beech litter; the collection of leaves via littertraps and their 25 

comparison aimed to determine which properties are species-specific. The collection of 26 
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individual samples of litter and their comparison aimed to determine which properties were 1 

correlated with depth (i.e., decomposition). 2 

2.2. Incubation experiment 3 

The 250 mL-micro-lysimeters (Stericup, Millipore), which allowed the simultaneous 4 

measurement of soil respiration and leaching (Hagedorn and Machwitz, 2007) were 5 

incubated at 20 °C in the dark for 12 weeks (twelve leaching cycles, 4 replicates). After nine 6 

weeks of incubation some of the measured parameters fell below the detection limit or 7 

became constant. Air dried not fragmented litter material (4.5 ± 0.8 g) was placed into the 8 

filter units that contained an acid-washed glass wool pre-filter (3 g) on top of 0.45 µm 9 

Durapore® membrane filters. Then, 1.5 g glass wool was placed on top of the soils to allow 10 

a homogeneous distribution of the leaching solution. As we kept constant volume in all 11 

micro-lysimeters, the corresponding weights for the organic layers and A-horizons were in 12 

the range of 2.8–15.2 g, and 3.2–19.8 g, respectively. 13 

All the analyses on leachates and emitted gas, including dissolved organic carbon 14 

(DOC), nitrogen forms, cation leaching, UV absorptivity, pH, electrical conductivity (EC) and 15 

CO2-production were measured every 7 days while solid-state 13C CP-MAS spectra on the 16 

solid phases were obtained at the beginning (time 0) and after 12 weeks. At each leaching 17 

cycle, 200 mL of a standard nutrient solution (2.5 µM H3BO3, 400 µM CaCl2, 100 µM 18 

K2HPO4, 50 µM K2SO4, 0.2 µM MnSO4, 5 µM CuSO4, 50 µM MgSO4 und 0.2 µM ZnCl2) was 19 

applied to the litter with a peristaltic pump for 2 h. The micro-lysimeters were evacuated with 20 

a low suction of 50 hPa using a vacuum-controlled pump (EcoTech). To avoid an uneven 21 

wetting of the litter material, we did not apply suction during the application. Aliquots of the 22 

leachates were stored at 2°C. Soil respiration was measured the following day by placing 23 

the filter units in 1.7-L PE containers, flushing them with CO2-free air and measuring the 24 

increase in CO2 with time. The concentrations of CO2 were determined by passing the air of 25 
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the containers through an infrared gas analyser (LI 6252, LI-COR) in a closed cycle for 1 1 

min. The production of CO2 was calculated by interpolating linearly between two 2 

measurements and integrating over the respective period. As rewetting might stimulate CO2 3 

production, this might lead to an overestimation of the total C-mineralisation. However, the 4 

overall mass balance of the 12-week experiment showed a close correlation between 5 

weighed mass loss and the total C losses from the litter as DOC by the weekly leaching and 6 

via respiration. The mean difference between the two independent estimates either based 7 

on C fluxes or on weight loss ranged between -12 to +8% for the different types of samples. 8 

These values, similar to those obtained by Hagedorn and Machwitz (2007) in the same 9 

laboratory, have been validated for the current study. 10 

 11 

2.3. Laboratory analyses 12 

The C and N concentrations in the litter and in the fine earth of the A-horizons were 13 

analysed with a CHN analyser (Model 900, LECO Instruments). The concentrations of DOC 14 

and total nitrogen (TN) in the leachates were measured with a total organic carbon analyser 15 

(TOC-V, Shimadzu). The concentrations of K+, Mg2+, and Ca2+ in the leachates were 16 

measured using inductively coupled plasma optical emission spectroscopy (Optima 17 

7300DV, Perkin Elmer), that of ammonium was measured by flow injection analysis (FIAS 18 

300, Perkin Elmer) and that of NO3- with ion chromatography (DX-120, Dionex). Electrical 19 

conductivity (EC) and pH were measured using a pH/conductivity meter (Radiometer). Ionic 20 

strength was estimated as 13·EC expressed in µS cm-1 (Griffin and Jurinak, 1973; Lindsay, 21 

1979). 22 

The molar UV absorptivity of the DOC was measured using a spectrophotometer (Cary 23 

50 UV, Varian). The spectral absorbance of DOC is commonly used to discern a composition 24 

characteristic of dissolved organic matter. Light absorbance by DOC is strongest in the UV 25 



8 
 

region. A range of wavelengths has been related to compositional indicators to discriminate 1 

DOC of differing compositions and we used the measure of carbon normalised (specific) UV 2 

absorbance (SUVA). The SUVAX is defined as the UV absorbance at X nm divided by the 3 

DOC concentration (mg L−1) multiplied by 100. Specific UV absorptions normalised to the 4 

DOC concentration (SUVA) have been proposed as indicators of: (i) aromaticity, SUVA254 5 

(Chin et al. 1994; Weishaar et al. 2003; Sanderman et al., 2008), (ii) sparingly degradable 6 

matter SUVA260 (Dunalska et al., 2012), (iii) aliphaticity-aromaticity or the fraction of lignin-7 

derived ‘hydrophobic’ DOC, SUVA285 (Dilling and Kaiser, 2002; Rostan and Cellot 1995; 8 

Piirsoo et al., 2012; Stutter et al., 2012; Traina et al., 1990; Hernes et al., 2013), or (iv) 9 

humic-like C, SUVA335 (Cuss and Guéguen, 2013). The SUVA values derived from the UV 10 

absorbance region have been directly related to the aromatic contents associated with the 11 

contributions of humic substances, as determined directly using 13C-NMR (Weishaar et al., 12 

2003).  13 

Blank values for the standard nutrient solution were: pH = 6.84, the conductivity of the 14 

nutrient solution was 160.79 µS cm-1, TOC was 277.5 µg C L-1, TN was 15.98 mg N L-1 and 15 

the absorbances were Abs (335 nm) 0.0005, Abs (285 nm) 0.00375, Abs (260 nm) 0.00515, 16 

Abs (254 nm) 0.00605, respectively. 17 

Solid-state Nuclear Magnetic Resonance spectra were obtained using a 18 

spectrometer operating at 75.47 MHz (AV300, Bruker). The powdered samples were spun 19 

at 8 kHz in a 4 mm rotor. The spectra were acquired with 1 ms contact time, 4 s recycle time 20 

and 6,000 scans and were processed using 30 Hz line-broadening. The integration area, 21 

expressed as a percentage of the total area, was obtained by splitting the spectrum (Lorenz 22 

et al., 2000). To obtain quantitative results, a preliminary variable contact times experiment 23 

was performed using the following contact time values: 1 µs, 10 µs, 50 µs, 100 µs, 1 ms, 2 24 

ms, 5 ms, 6 ms, 8 ms, 12 ms and 16 ms. To overcome the problem that 13C CP-MAS is not 25 

usually a quantitative technique, we recorded the variable contact time experiment for one 26 
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sample to study the different NMR response as a function of the mobility of carbon atoms. 1 

We concluded that all the signals between 0 ppm and 110 ppm can be compared in intensity. 2 

Solid-state 13C CP-MAS investigation has been carried out by integrating spectra into the 3 

shift regions: 0–45 ppm (alkyl C; C14–C18 short chain), 45–60 ppm (N-alkyl C or methoxy; 4 

hydroxy- and epoxy acids), 60–93 ppm (O-alkyl), 93–112 ppm (di-O alkyl), 112–140 ppm 5 

(aromatic), 140–165 ppm phenolic C and 165–190 ppm (carboxyl and amide) (Preston et 6 

al., 1997; Simpson et al., 2008).  7 

 8 

 9 

2.4. Calculations and statistics  10 

The size, composition, and material (type of leaves, source horizon) of the collected 11 

samples are specified in Supplementary Information. Twelve samples (3 x 4) were used for 12 

comparison of leaves (Section 3.1), 48 (12 x 4) for comparison of depths (Section 3.2), and 13 

32 (8 x 4) for evaluation of litter removal (Section 3.3). 14 

Activity calculations and mass distributions of leachates were performed using the 15 

chemical speciation program MINTEQ 3.1 (Gustafsson, 2015) with input parameters: ionic 16 

strength, pH, DOC, NO3-, NH4+, Na+, K+, Ca2+, Mg2+. Temperature was imposed at 25°C, 17 

activity coefficient was estimated according to the Debye-Hückel theory, complexation 18 

model was the Non-Ideal Competitive Adsorption, NICA-Donnan (Milne et al., 2001). 19 

All analyses were performed using version 0.8.3-g2dab1e of GNU PSPP software (Free 20 

Software Foundation). To distinguish modifications in leachate parameters, ANOVA and a 21 

post hoc Tukey’s test were used (a Kruskal–Wallis test and nonparametric Tukey-type test 22 

were used when the parameters did not conform to a normal distribution and homogeneity 23 

of variance). The whole dataset and the results of the statistical analyses were not presented 24 

due to the large number of data. The arrangement of data for statistical analyses was by 25 
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time (number of observations per parameter: min 6, max 12), by depth (respectively Bachs 1 

5 and Irchel 6 observations), or by comparison (type of leaves or litter removal treatment). 2 

The number of factors in each comparison was: 2 for comparison of leaves (Section 3.1), 5 3 

for comparison of depths (Section 3.2), and 2 for evaluation of litter removal (Section 3.3). 4 

Paired t-tests or Pearson correlation coefficients were calculated in the case of temporal 5 

comparisons only (14/18 degrees of freedom). 6 

 7 

3. Results 8 

3.1. Comparison of leaves (beech–oak) 9 

The initial pH for beech and oak was above 7. During leaching, the pH dropped to 6.6 10 

in both beech samples and to 5.5 in oak. The initial electrical conductivity was rather site-11 

specific: EC was 180 µS cm-1 at Bachs and 240 µS cm-1 at Irchel and decreased to 160 µS 12 

cm-1 within a couple of weeks, independently on the site or species (Figure 1, left). 13 

During leaching, the released carbon initially appeared to be relatively species-14 

unspecific but it changed during leaching cycles. Beech, on average, released half of the 15 

DOC compared to that released by oak (p < 0.05) during the experimental period (Figure 2, 16 

left). The amount of carbon released to the atmosphere as CO2 was species-specific but 17 

changed during leaching cycles. Oak released approximately one sixth less of the CO2 that 18 

beeches released (p < 0.01).   19 

Our SUVA patterns (Figure 3, left) are rather overlaid over time. The SUVA254 of oak 20 

leaves varied from 2 at the beginning of the leaching period to 4 L mg−1 m−1. No significant 21 

differences in SUVA254, SUVA260, and SUVA285 were observed and the values for all 22 

collected leachates were extremely similar, and were strictly species-specific. The SUVA335 23 

values did not change for oak, whereas they peaked after a couple of weeks for beech. In 24 

contrast, the SUVA254 of beech leaves was significantly (p < 0.01) lower than that of oak 25 
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leaves. The SUVA254 was strictly species-specific and changed during cycles, reaching a 1 

value close to 4 ± 0.2 L mg m-1. The values of SUVA254, SUVA260, and SUVA285 were 2 

correlated by time (p < 0.05), while SUVA260 and SUVA335 values were un-correlated. 3 

Nitrogen concentrations due to leaching were initially site-specific, and then reached 4 

a plateau concentration of 0.75 mg N L-1 during the leaching cycles. The cumulative TN 5 

release was stable and did not differ between species (Figure 4, left). Changes in the nitrate 6 

concentration was neither species- nor site-specific and nitrates were constantly released 7 

at a concentration of 0.035 mg N L-1. The ammonium concentration was species-specific, 8 

with that of oak being lower (2% TN, 0.07 mg N L-1) than that of beech (6% TN, 0.20 mg N 9 

L-1) (p < 0.5). During leaching, the Ca concentration increased, whereas that of Mg was 10 

stable and that of K decreased. Cumulatively, Ca and K release appeared to be more site-11 

specific than species-specific, although not significantly. The Mg and ammonium 12 

concentration was similar for all leaves (Figure 5, left).  13 

The resonance peaks were integrated according to the above-reported regions and the 14 

relative intensities are summarised in Table 1. After 12 weeks of leaching, the amount of 15 

surface waxes (alkyl signals at 0–45 ppm) and the major components of the leaf cuticle and 16 

short-chain (C14–C18) hydroxy- and epoxy acids decreased in beech, whereas 17 

carbohydrates increased. No differences between oak and beech species (Figure 6a) and 18 

no site-specific differences for beech leaves were observed (Figure 6b). The amount of 19 

tannins and lignin increased in beech, but decreased in oak; the alkyl/O-alkyl (0–45 ppm/60–20 

93 ppm) ratio decreased significantly after incubation in both species, due to the lower 21 

amounts of alkyl components (Table 1).  22 

 23 
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3.2. Depth comparison 1 

During leaching, the pH dropped by one unit on average, the mean difference between 2 

leaves and the first mineral horizons was two pH units (Figure 1, middle). Electrical 3 

conductivity was relatively stable in the surface horizons, but increased dramatically after 4 

one month of leaching in deeper horizons. 5 

The amount of carbon released during leaching was initially one-quarter of the carbon 6 

mineralised as CO2 on average (Figure 2, middle). Although no statistically significant 7 

differences with time were observed in individual litter horizons in terms of DOC release, 8 

sub-surficial litter horizons mineralised more carbon than lower horizons. No significant 9 

differences in the SUVA254, SUVA260, and SUVA285 were observed and all leachates 10 

collected showed extremely similar values that were strictly correlated (r > 0.98**). Although 11 

not significantly with depth, the values increased from the bottom throughout the profile and 12 

during cycles, reaching a common value close to 5 ± 0.5 L mg m-1 (Figure 3, middle). The 13 

SUVA335 showed no significant trend, either in depth or time. 14 

After leaching, the amount of alkyl-C groups increased in both OF horizons, although not 15 

homogeneously (Table 1; Figure 7a and 7b). The amount of N-alkyl-C groups, including 16 

lignin, (45–60 ppm) also increased, but to a similar degree at Bachs and Irchel. At the same 17 

time, the concentration of plant carbohydrates and their degradation products, which were 18 

in the ranges of 60–93 ppm and 93–112 ppm, respectively (Baldock et al., 1992), decreased 19 

markedly and similarly in both OF horizons. Although the composition of the A mineral 20 

horizons in Bachs and Irchel was similar, different NMR spectra were observed between two 21 

overlying OF litter horizons (Figure 7c), where the alkyl/O-alkyl ratios increased after 22 

leaching. This is because the concentration of alkyl- and methoxyl-C increased (respectively 23 

>15% and >5%), whereas that of O-alkyl and di-O-alkyl-C decreased (>15%). 24 
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The nitrogen concentration was relatively constant for leaves and the upper horizons, 1 

with a mean of 0.96 mg N L-1 throughout the whole leaching period. The TN increased 2 

considerably in the lower horizons and the highest release occurred in the A mineral 3 

horizons (Figure 4, middle). The Mg concentration remained relatively constant during the 4 

leaching cycles (0.2 ± 0.03 mM), whereas that of Ca increased and that of K decreased, 5 

reaching the same value (0.5 ± 0.08 mM), independently of the litter horizon. Cumulatively, 6 

Ca release from beech leaves in the mineral A horizons was significantly higher than that of 7 

the OF horizons (p < 0.01); K release from beech leaves in the mineral A horizons was 8 

significantly (p < 0.01) higher than that from the OLv and OF horizons and the Mg release 9 

in beech leaves and mineral A horizons was not significantly different. Ammonium was 10 

released prevalently from the mineral A and lower litter horizons significantly (p < 0.01) more 11 

than from beech leaves and the OLn horizons (Figure 5, middle). The intermediate litter 12 

horizons that were sandwiched between freshly deposed leaves and mineral soil horizons 13 

release less cations, indirectly demonstrating their inability to retain them. 14 

 15 

3.3. Influence of annual litter removal  16 

During leaching, the pH increased in the mineral horizons, but decreased in the litter 17 

horizons, reaching a mean value of 6.5 after one month (Figure 1, right), after which the pH 18 

in the mineral horizons decreased (less in treated plots than in control plots) and that of the 19 

litter horizons increased (without any significant difference between the treated and control 20 

plots). The electrical conductivity was relatively stable in the first litter horizons (170 µS cm-21 

1), increasing dramatically after one month of leaching in the litter horizons, but no significant 22 

difference between control and treatment plots was observed. 23 

The annual removal of litter results in a lower mineralisation as CO2 and less leaching of 24 

DOC from the treated plots compared to control plots, both in the mineral and the first litter 25 
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horizons (Figure 2, right). No significant differences in the SUVA254, SUVA260, and SUVA285 1 

were observed and all leachates collected showed similar and correlated values with time (r 2 

> 0.65*). The SUVA335 peaked after three weeks of leaching, and was significantly lower in 3 

the treated plots than in the control plots (Figure 3, right). Due to the small differences in the 4 

C content of the litter samples, no conclusions were possible from the NMR results. The 5 

nitrogen concentration increased in the mineral horizons, but was relatively constant for the 6 

litter horizons, at the end of the leaching periods and had a mean of 9.2 and 2.4 mg N L-1, 7 

respectively. The greatest release occurred in the control plots compared to the treated 8 

plots, although the difference was not significant (Figure 4, right). The release of K+, Ca2+, 9 

Mg2+ and NH4+ was always lower in the treated horizons than in the control plots, although 10 

not significantly (Figure 5, right). 11 

 12 

4. Discussion 13 

To compare two similar litters, consisting of pure beech and beech mixed with oak, we 14 

identified the differences independently. The small initial differences were highlighted via 15 

leaching: oak leaves produced a more acidic leachate (pH 5.5) than beech (pH 6.5), 16 

although both had relatively similar ionic strengths. We did not measure significant 17 

differences in the composition of beech and oak leaves, apart from relatively more cutins 18 

and waxes in oak leaves (Table 1, Figure 6a). The leaching homogenised the 19 

characteristics. Leaching of DOC represents an insignificant loss of C from soils, but a major 20 

input to ground and surface water. Climate and the type of tree species are the most 21 

important factors that regulate site-to-site variation in DOC concentrations and fluxes in 22 

temperate forests (Borken et al., 2011). In broadleaved forests, Hansen et al. (2009) found 23 

no significant differences between species in foliar or total nutrient fluxes, but nutrient fluxes 24 

were higher in oak and beech. The amount of methoxyl C groups, which had a concentration 25 
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of 45–60 ppm, increased in both species, whereas the alkyl/O-alkyl ratio decreased (Table 1 

1). Although alkyl C and O-alkyl C are both labile, easily degradable components (Albrecht 2 

et al., 2015), O-alkyl C (holocellulose) was lost during the initial decomposition phase of litter 3 

(Preston et al., 1994), whereas under these climatic conditions alkyl C (cutins and waxes) 4 

and aromatic C and phenolic C (lignin and condensed tannins) accumulated (Kögel-5 

Knabner, 2002; Lemma et al., 2007; Meentemeyer, 1978). The same aromatic-C content in 6 

DOC, as estimated by the SUVA254, was observed in beech and oak litter by Jaffrain et al. 7 

(2007). The SUVA254 of oak leaves from 2 at the beginning of the leaching period to 4 L 8 

mg−1 m−1 showed a similar pattern to that described in other studies (Chow et al., 2011). 9 

Rates of C turnover of beech and oak litter have been shown to be similar in other studies 10 

at higher latitudes, as well as concentrations of N, K, Ca and Mg (Vesterdal et al., 2012).  11 

Strobel et al. (2001) reported few differences in the soluble C originating from different 12 

species while here,the two species could be distinguished by C loss: oak lost more carbon 13 

than beech. Oak transformed comparable amounts of carbon into CO2 and DOC, whereas 14 

beech mineralised much more C (about three times more) than it converted into DOC. In 15 

general, DOC in the leachates was more aromatic in oak and more aliphatic in beech (Figure 16 

3, Figure 6a), but in the course of leaching, this became homogeneous and indistinguishable 17 

between the species. The amount of total N did not differ between species, but K was 18 

increasingly concentrated in the beech leachates, whereas Ca accumulated in oak. Oak 19 

species produce changes in soil nutrients, particularly N and Ca, affecting the soil microbial 20 

community, in terms of size and composition (Aponte et al., 2013). 21 

Plants are an important factor in the acidification of soils through several pathways. 22 

These include the leaching of organic acids from litter and imbalances in the ion uptake by 23 

plants (Ehrenfeld et al., 2005). Augusto et al. (2002) grouped tree species in the order of 24 

decreasing acidifying ability: 1 (Picea and Pinus) > 2 (Abies and Pseudotsuga) > 3 (Betula, 25 

Fagus and Quercus) > 4 (Acer, Carpinus, Fraxinus, and Tilia). It is generally presumed that 26 
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the pathways of soil acidification involve feedbacks but species-related pH patterns are 1 

attenuated with depth: the differences among species prevail in the forest floors, less evident 2 

respectively in the first soil horizon and in sub-soil horizons (Finzi et al., 1998). The pH (t = 3 

5.09***), the K:Ca ratio (t = 4.52***) and the ratio between C mineralised as CO2 and 4 

solubilised as DOC (t = 6.24***) were higher in beech, whereas the C:N ratio (t = 12.23***) 5 

was higher in oak. The two deciduous leaves, beech and oak showed no statistically 6 

significant differences measured in leachates for most of the measured parameters, 7 

including the optical properties of dissolved organic carbon. The C:N ratio was lower than 8 

that reported in other studies (Cools et al., 2014). Litters with low C:N ratios, (low ratios of 9 

N:lignin or low concentrations of polyphenols) decompose more rapidly and completely 10 

whereas litters with the opposite qualities tend to decompose slowly; these patterns are then 11 

paralleled by vegetation patterns (Ehrenfeld et al., 2005; Lavorel and Garnier, 2002). 12 

In plant tissues, K is only electrostatically bound to membranes, and is thus rapidly 13 

leached when these are destroyed; Ca is essentially structurally bound and is usually less 14 

soluble than Mg (Joergensen and Meyer, 1990), which is not what was observed for the 15 

leaves here. Nevertheless the concentrations of Ca, Mg and K were similar to those 16 

described elsewhere (e.g., Labaz et al., 2014). Similar findings have been described by 17 

other authors (Joergensen and Meyer, 1990; Hristovski et al., 2014), such as an increased 18 

Ca concentration in beech as a linear function vs. accumulated mass loss. Here, the 19 

concentration of K was correlated with the pH*** and was negatively correlated with the 20 

concentration of Ca** and Mg*. The Ca and Mg** concentrations were correlated in both 21 

leaves and sites. The paired correlations of beech patterns show this strong relationship 22 

between pH and Ca** or K***.  23 

When leaves fall to the ground, they begin to interact with the soil ecosystem. Leaves 24 

decompose in the litter and together with other (organo-)mineral components, release more 25 

ions, but also buffer the pH changes during decomposition (Figure 1, middle). Freshly 26 
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senesced litter produces DOC, which can be leached from the soil profile, respired, or 1 

contributes to soil organic matter accumulation. According to some authors, organic matter 2 

originating from leaf litter contributes more to respiration (e.g., Uselman et al., 2012). When 3 

leaves are transformed into litter organic horizons, less carbon is lost. In general, much more 4 

C is respired than is lost through leaching. The deeper litter horizon OF loses less C than all 5 

other horizons, including the A mineral horizon. The quality of DOC is initially very different 6 

between individual litter horizons, but is homogenised during weathering (Figure 3, middle), 7 

indicating that a potentially rapid pedogenesis of these organic horizons occurs. The first 8 

surface horizons release more than half of the nitrogen compared to deeper horizons (p < 9 

0.001) (Figure 8). Over time, N is released from deeper horizons; the concentration of nitrate 10 

and ammonium exceeds 1 mg L−1. The C:N ratio of the beech leaves is always higher than 11 

that in the first horizon of litter, and exceeds 25. Compared to in the leaves and the first OLn 12 

horizon, the lower horizons show a ratio below 10. Carbon is sequestered in soil when a low 13 

soil C:N ratio promotes microbial C-use efficiency, new SOM formation and stabilisation 14 

(Alberti et al., 2015). Unaltered leaves and the A horizon leach more K and Ca compared to 15 

all other horizons, whereas OF, the more altered organic horizon, leaches fewer cations 16 

than all the other horizons. Labile organic fractions, for example sugars, are typically not 17 

highly concentrated in solution as they are initially produced by fresh litter as an energy 18 

source for microbial activity (Uselman et al., 2012). After leaching (Table 1, Figure 7a, Figure 19 

7b), both OF horizons showed an increase in the alkyl/O-alkyl ratio as a consequence of a 20 

decrease in the amount of alkyl C, carbohydrates, hemicellulose and cellulose. We observed 21 

no increase in aromatic C at Irchel (pure beech), in contrast to an increase at Bachs, where 22 

beech leaves were mixed with a small quantity of oak leaves. These findings agree with 23 

those reported by Quideau et al. (2005). In temperate forests, humus forms are more 24 

affected by soils, pedoclimatic conditions and climate than by forest canopies (Ponge et al., 25 
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2011; Ponge, 2013), which is demonstrated by the results here by the comparison of two 1 

beech stands. 2 

Intuitively, the removal of forest litter should have consequences, including negative 3 

effects on soil biogeochemical cycles (Bürgi, 1999; Dzwonko and Gawronski, 2002). The 4 

evidence, however, is variable; in some cases, the collection of forest litter was shown to 5 

have no significant consequences (Mariani et al., 2006), but a positive feedback effect on 6 

soil fertility was also demonstrated (Matsushima et al., 2014). The annual removal of litter 7 

lowers the value of many parameters in the case of mineral A horizons, except for the pH, 8 

which is unaffected, or the Ca:K ratio, which is reversed during leaching. Total nitrogen and 9 

cations were less concentrated in the leachates of the A horizons following litter removal. 10 

The first disturbed litter horizons are removed annually but actually are not very different 11 

from those in undisturbed conditions that evolve on other organic horizons and not directly 12 

in contact with the mineral A horizons. The only anomalies are the SUVA335 and the 13 

concentration of ammonium. Collecting and removing biomass removes carbon from the 14 

system, so that as a result of raking, less carbon is lost by treated litter horizons during 15 

leaching, due to their lower initial total amount. In addition to differences in the initial C 16 

content, differences also exist in the organic matter quality. Similar findings have also been 17 

reported by Fuentes et al. (2014), although their study concluded that the SUVA254 was not 18 

affected by litter removal. The only exception is humic-like C (as inferred by the SUVA335), 19 

which was significantly less abundant in the plots where litter was removed annually.  20 

Modelling the liquid phase by estimating the speciation of ions in leachates, we observed 21 

the greatest changes in the OLn and OLv horizons, where dissolved carboxylic fulvic acids 22 

(FAs) exceed phenolic FAs in the calculated equilibrated mass distribution (Figure 9). In 23 

particular, modelled carboxylic groups on FAs increase both as a consequence of leaching 24 

and as a result of the annual removal of litter. When a cation, in particular Ca, is bound to 25 

SOM, it is not lost as a result of litter removal, and the A mineral horizon is also not affected. 26 
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So, the mobile organic acids, which are the key proton donors that drive the processes of 1 

upper horizons, can become reagents within the next horizon governing both pH and 2 

leaching, in other words promoting podzolisation. These mechanisms are well known 3 

occurring under coniferous species that per se promote podzolisation (Augusto et al., 2002; 4 

Miles, 1985; Nielsen et al., 1999; Sohet et al., 1988) while were not documented yet under 5 

deciduous species. Deciduous species in fact grow up only after soil diverged from podzolic 6 

soils had taken place (Willis et al., 1997). Here litter raking becomes one of the triggering 7 

mechanisms responsible for this type pedogenesis. 8 

Many opinions have been proposed regarding how trees affect soils. Plant–soil reactions 9 

arise each time plants provoke species-specific modifications to soil properties that in turn 10 

affect the growth of the plants (Bever, 1994; Ehrenfeld et al., 2005). Plant–soil feedbacks 11 

impact on species coexistence (Brandt et al., 2013; van der Putten et al., 2013) so changes 12 

in tree species may lead to the changes in soil conditions (Augusto et al. 2002; Finzi et al., 13 

1998; Willis et al., 1997) altering soil fertility through different litter quality (Aponte et al., 14 

2013). In fact, litterfall mass and quality commonly differs for different species growing on 15 

the same site (Binkley and Giardina, 1998). Leachates from different litters are important to 16 

weathering processes, soil pH, microbial community composition and nutrient cycling 17 

(McDowell and Likens, 1988; Qualls et al., 1991), but there have been few suggestions in 18 

the Literature that the leached dissolved organic carbon creates feedbacks. The main issue 19 

is that the key differences in terms of plant-soil feedback between species have been 20 

demonstrated between conifers and deciduous, while within the individual group (coniferous 21 

or deciduous) the differences are difficult to isolate. Our results confirm that although the 22 

litter of the two species differ enough (e.g. oak leaves produced a more acidic leachate than 23 

beech) their final impact on similar soils does not discriminate them detectably. This confirms 24 

that although the stock of ions would increase under coniferous compared to deciduous 25 

species, such as Fagus or Quercus (Augusto et al., 2002; Bonneau et al., 1979), both of 26 
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them have a plant–soil feedback balance close to equilibrium (Bauzon et al., 1969). The 1 

interface between litter and mineral horizons, in the long-term, remains a challenging task 2 

for further studies on the mechanism-specific of stabilized OM (Kaiser et al., 2016), including 3 

morphometric approaches (Bryk, 2016). 4 

 5 

 6 

Conclusions 7 

We investigated two broadleaved litters; beech and oak, and observed some differences 8 

in carbon losses during decomposition, in leachates in particular. However, the initial 9 

dissimilarities between the two leaves became homogenised over time and the litters 10 

became indistinguishable. When leaves fall on the soil ecosystem, they become litter and 11 

alter rapidly. As a litter horizon is altered, it becomes more stable and loses fewer elements, 12 

in gaseous or liquid form. In these stands, similar soils affect litter more than different leaves 13 

influence litter. 14 

The annual removal of litter represents a net loss of biomass from the system. 15 

Nevertheless, the effect on soil in the medium term is not relevant. However, an increase in 16 

the concentration of small fulvic molecules is easily absorbed by the rhizosphere, which is 17 

less resistant to microbial activity. Therefore, more microbial activity causes more CO2 to be 18 

released, but nutrients become more available. This human disturbance could promote 19 

pedogenesis towards podzolisation. 20 
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Table 1. Relative intensities (percent of total area) of the 13C CP-MAS. Samples before 1 

leaching, in italics, and after leaching, in bold. 2 

 3 

Type  Site 0- 

45 

ppm 

45- 

60 

ppm 

60- 

93 

ppm 

93- 

112 

ppm 

112-

140 

ppm 

140-

165 

ppm 

165-

190 

ppm 

Alkyl/ 

O-

Alkyl 

leaves beech Irchel 19.4 4.6 51.4 11.3 7.5 3.6 2.1 0.38 

  Irchel 17.6 6.2 51.9 10.6 4.9 4.4 4.4 0.34 

  Bachs 18.3 4.3 52.6 11.7 7.2 3.7 2.2 0.35 

  Bachs 15.1 6.9 50.0 12.4 8.4 3.9 3.2 0.30 

 oak Bachs 23.0 3.7 46.2 9.9 7.6 4.6 4.3 0.50 

  Bachs 21.9 8.3 46.9 10.0 7.1 2.8 2.8 0.47 

OF  Bachs§ 20.6 7.7 48.4 10.7 7.2 2.2 2.5 0.43 

  Bachs§ 23.8 8.1 38.0 9.0 10.7 5.5 4.9 0.63 

  Irchel 19.7 6.8 46.8 11.0 8.1 4.1 3.5 0.42 

  Irchel 28.0 7.3 40.1 8.8 8.1 3.9 3.6 0.70 
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Figure 1. Electrical conductivity (below) and pH (above) through the 12 weeks period of 1 

leaching. Symbols indicate means while whiskers indicate standard deviations. Dotted lines 2 

indicate respectively pH and EC of the inlet leaching solution. 3 

Leaves comparison: diamonds indicate beech leaves (beechIr and beechBa) while circles 4 

indicate oak leaves (oakBa); open symbols indicate Irchel while filled symbols indicate Bachs 5 

stand respectively [four replicates].  6 

Litter profile: diamonds indicate beech leaves, squares indicate the first mineral A horizons, 7 

while triangles indicate individual litter horizons (the progressively paler colors indicate the 8 

progressively more surficial horizons) [eight replicates (4 replicates • 2 sites)]. 9 

Litter removal: triangles indicate first litter horizons while squares indicate first mineral 10 

horizons (open symbols indicate control plots) [eight replicates (4 replicates • 2 sites)]. 11 

 12 
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Figure 2. Cumulative C mineralization as CO2 (red symbols) and DOC release (blue 1 

symbols) through the 12 weeks period of leaching (9 weeks only are shown in the case of 2 

CO2 as the further increases were below the detection limit). Symbols indicate means while 3 

whiskers indicate standard deviations. 4 

Leaves comparison: diamonds indicate beech leaves (beechIr and beechBa) while circles 5 

indicate oak leaves (oakBa); open symbols indicate Irchel while filled symbols indicate Bachs 6 

stand respectively [four replicates].  7 

Litter profile: diamonds indicate beech leaves, squares indicate the first mineral A horizons, 8 

while triangles indicate individual litter horizons (the progressively paler colors indicate the 9 

progressively more surficial horizons) [eight replicates (4 replicates • 2 sites)]. 10 

Litter removal: triangles indicate first litter horizons while squares indicate first mineral 11 

horizons (open symbols indicate control plots) [eight replicates (4 replicates • 2 sites)]. 12 

 13 
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Figure 3. Temporal trends of specific ultraviolet absorbances (SUVAx) of leachates. 1 

Symbols indicate means while whiskers indicate standard deviations. 2 

Leaves comparison: diamonds indicate beech leaves (beechIr and beechBa) while circles 3 

indicate oak leaves (oakBa); open symbols indicate Irchel while filled symbols indicate Bachs 4 

stand respectively [four replicates].  5 

Litter profile: green diamonds indicate beech leaves, brown squares indicate the first mineral 6 

A horizons, while triangles indicate individual litter horizons (the progressively paler colors 7 

indicate the progressively more surficial horizons) [eight replicates (4 replicates • 2 sites)]. 8 

Litter removal: brown triangles indicate first litter horizons while brown squares indicate first 9 

mineral horizons (open symbols indicate control plots) [eight replicates (4 replicates • 2 10 

sites)]. 11 
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Figure 4. Cumulative TN release through the 12 weeks period of leaching. Symbols indicate 1 

means while whiskers indicate standard deviations. 2 

Leaves comparison: green diamonds indicate beech leaves while circles indicate oak 3 

leaves; open symbols indicate Irchel while filled symbols indicate Bachs stand respectively 4 

[four replicates].  5 

Litter profile: green diamonds indicate beech leaves, brown squares indicate the first mineral 6 

A horizons, while triangles indicate individual litter horizons (the progressively paler colors 7 

indicate the progressively more surficial horizons) [eight replicates (4 replicates • 2 sites)]. 8 

Litter removal: brown triangles indicate first litter horizons while brown squares indicate first 9 

mineral horizons (open symbols indicate control plots) [eight replicates (4 replicates • 2 10 

sites)]. 11 

 12 
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Figure 5. Cumulative cations release through 9 weeks period of leaching. Symbols indicate 1 

means while whiskers indicate standard deviations. 2 

Leaves comparison: diamonds indicate beech leaves while circles indicate oak leaves; open 3 

symbols indicate Irchel while filled symbols indicate Bachs stand respectively [four 4 

replicates].  5 

Litter profile: diamonds indicate beech leaves, squares indicate the first mineral A horizons, 6 

while triangles indicate individual litter horizons (the progressively paler colors indicate the 7 

progressively more surficial horizons) [eight replicates (4 replicates • 2 sites)]. 8 

Litter removal: triangles indicate first litter horizons while squares indicate first mineral 9 

horizons (open symbols indicate control plots) [eight replicates (4 replicates • 2 sites)]. 10 
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Figure 6. 13C CPMAS spectra. a) Bachs leaves: beech and oak b) beech leaves: Bachs 1 

and Irchel 2 
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Figure 7. OF horizons 13C CPMAS spectra. a) Bachs: before and after leaching; b) Irchel 1 

spectra: before and after leaching; c) Bachs and Irchel. 2 

 3 
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Figure 8. Depth comparison: N concentration release through the first six cycles of 1 

leaching. Blue histograms indicate N-NO3-, red N-NH4+ while greens represent residual N, 2 

calculated as TN-(NO3-+NH4+). Bars indicate molar concentrations of nitrogen in leachates 3 

and are the average of eight replicates, 4 replicate • 2 sites (whiskers indicate standard 4 

deviation). 5 
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Figure 9. Calculated mass distributions of species from leachates. Bars indicate total 1 

dissolved species, filled portions indicate the portions bound to DOM. Black bars indicate 2 

control samples at time 0 of leaching (C), while blue and red bars indicate respectively 3 

control (63) and treated with annual litter removal (T) plots after 63 days of leaching. 4 

Nomenclature: HFA16- and HFA26- signify respectively H+-dissolved carboxylic and phenolic 5 

fulvic acids with -6 net charge. Average molal concentrations, standard errors not shown 6 

(always <10%). 7 
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