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In this paper, we consider the two-parameter Birnbaum-Saunders distribution proposed by Birn-
baum and Saunders [Birnbaum, Z.W. and Saunders, S.C., 1969a, A new family of life distributions.
Journal of Applied Probability, 6, 319–327], which is commonly used for modeling the lifetime
of materials and equipments. We consider different strategies of bias correction of the maximum
likelihood estimators for the parameters that index the distribution via bootstrap (parametric
and nonparametric). The numerical evidence favors a particular bootstrap estimator based on
parametric resampling. Finally, an example with real data is presented and discussed.
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1 Introduction

Birnbaum and Saunders [1] proposed a new family of life distributions for
modeling the lifetime of materials and equipments under the influence of dy-
namic loads. This two-parameter Birnbaum-Saunders distribution was derived
from a model in which failures happen due to the development and growth
of a dominant crack. Later, this distribution was derived in a more general
way by Desmond [3], based on a biological model. Desmond also extended the
physical justification for its use by relaxing some of the assumptions made in
Birnbaum and Saunders [1]. Moreover, Desmond [4] investigated the relation-
ship between the Birnbaum-Saunders distribution and the inverse Gaussian
distribution.

A random variable T is said to follow the two-parameter Birnbaum-Saunders
distribution with parameters α, β > 0, denoted by B-S(α, β), if its cumulative
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distribution function is given by

FT (t) = P (T ≤ t) = Φ

[
1
α

(√
t

β
−

√
β

t

)]
, t > 0, (1)

where Φ(·) denotes the standard normal cumulative distribution function; α is
a shape parameter and β is a scale parameter, i.e., T/β ∼ B-S(α, 1). β is also
the median of the distribution, since FT (β) = Φ(0) = 1/2. Additionally, for any
k > 0 it follows that kT ∼ B-S(α, kβ). The distribution B-S(α, β) has the well-
known reciprocal property, that is, T−1 ∼ B-S(α, β−1), which belongs to the
same family of distributions (for more details, see [5]). Furthermore, Mann et
al. [6, p. 155] showed that the distribution (1) is unimodal. Some recent papers
on the Birnbaum-Saunders distribution are Chang and Tang [7,8], Dupuis and
Mills [9], and Rieck [10,11]. For a detailed account of this distribution and its
main properties, see Johnson, Kotz and Balakrishnan [12].

Maximum likelihood estimation of the parameters that index the Birnbaum-
Saunders distribution was initially considered by Birnbaum and Saunders [13];
the asymptotic distribution of the maximum likelihood estimators (MLEs) was
derived by Engelhardt et al. [14]. The authors showed that the MLEs of α and
β are asymptotically independent. Therefore, confidence intervals for these
parameters can be constructed using their asymptotic joint distribution.

Recently, Monte Carlo simulation results presented by Ng, Kundu and Bal-
akrishnan [15] revealed that the MLEs of α and β are considerably biased.
They used a simple method of bias correction to reduce the bias of the MLEs,
and recommended the use of the adjusted estimators.

In this paper, we consider different schemes of bias correction in finite sam-
ples using parametric and nonparametric bootstrap resampling. Bootstrap is
a computationally intensive method, first introduced by Bradley Efron [16],
which can be used to achieve asymptotically refined inference without the
need for tedious algebra. Ferrari and Cribari-Neto [17] explored the relation-
ship between analytical bias correction, based on Edgeworth expansions, and
bootstrap bias adjustment.

The paper unfolds as follows: in Section 2, we present the two-parameter
Birnbaum-Saunders distribution; in Section 3, we present bootstrap meth-
ods for point estimation; Section 4 discusses the numerical results; Section 5
contains an empirical application; and, finally, in Section 6, we outline some
concluding remarks.
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Figure 1. Two-parameter Birnbaum-Saunders density plots (β = 1 and different values of α).

2 The Birnbaum-Saunders distribution

The Birnbaum-Saunders density function is given by

fT (t;α, β) =
1

2αβ
√

2π

[(
β

t

)1/2

+

(
β

t

)3/2]
exp

{
− 1

2α2

(
t

β
+

β

t
− 2

)}
, (2)

where t > 0 and α, β > 0. The expected value, variance, skewness and kurtosis
are given, respectively, by

E(T ) = β

(
1 +

1
2
α2

)
, Var(T ) = (αβ)2

(
1 +

5
4
α2

)
,
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µ3 =
16α2(11α2 + 6)

(5α2 + 4)3
and µ4 = 3 +

6α2(93α2 + 41)
(5α2 + 4)2

.

As noted before, if T ∼ B-S(α, β), then T−1 ∼ B-S(α, β−1). Therefore,

E(T−1) = β−1

(
1 +

1
2
α2

)
and Var(T−1) = α2β−2

(
1 +

5
4
α2

)
.

The density (2) is asymmetric to the right for large values of α, the asym-
metry decreasing with α. In Figure 1, we present the density (2) for different
values of α, considering β = 1. Note that, as α decreases, the density becomes
more symmetric around β, which is the median of the distribution. Note also
that the variance also decreases with α.

3 Bootstrap methods

In what follows, we shall present different bootstrapping schemes that can be
used to reduce the bias of the MLE. Let y = (y1, . . . , yn)> be a random sample
of size n, where each element is a random draw from the random variable Y
which has the distribution function F = Fθ(y). Here, θ is the parameter that
indexes the distribution, and is viewed as a functional of F , i.e., θ = t(F ).
Finally, let θ̂ be an estimator of θ based on y; we write θ̂ = s(y).

The application of the bootstrap method proposed by Efron [16] consists
in obtaining, from the original sample y, a large number of pseudo-samples
y∗ = (y∗1, . . . , y

∗
n)>, and then extracting information from these samples to

improve inference. Bootstrap methods can be classified into two classes, de-
pending on how the sampling is performed: parametric and nonparametric.
In the parametric version, the bootstrap samples are obtained from F (θ̂),
which we shall denote as Fbθ, whereas in the nonparametric version they are
obtained from the empirical distribution function F̂ , through sampling with
replacement. Note that the nonparametric bootstrap does not entail paramet-
ric assumptions.

Let BF (θ̂, θ) be the bias of the estimator θ̂ = s(y), that is,

BF (θ̂, θ) = EF [θ̂ − θ] = EF [s(y)]− t(F ),

where the subscript F indicates that expectation is taken with respect to F .
The bootstrap estimators of the bias in the parametric and nonparametric
versions are obtained by replacing the true distribution F , which generated
the original sample, with Fbθ and F̂ , respectively, in the above expression.
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Therefore, the parametric and nonparametric estimates of the bias are given,
respectively, by

BFbθ(θ̂, θ) = EFbθ [s(y)]− t(Fbθ) and B bF (θ̂, θ) = E bF [s(y)]− t(F̂ ).

If B bootstrap samples (y∗1,y∗2, . . . ,y∗B) are generated independently
from the original sample y, and the respective boostrap replications
(θ̂∗1, θ̂∗2, . . . , θ̂∗B) are calculated, where θ̂∗b = s(y∗b), b = 1, 2, . . . , B, then it
is possible to approximate the bootstrap expectations EFbθ [s(y)] and E bF [s(y)]
by the mean θ̂∗(·) = 1

B

∑B
b=1 θ̂∗b. Therefore, the bootstrap bias estimates based

on B replications of θ̂ are

B̂Fbθ(θ̂, θ) = θ̂∗(·) − s(y) and B̂ bF (θ̂, θ) = θ̂∗(·) − s(y),

for the parametric and nonparametric versions, respectively.
An alternative bootstrap bias estimate was proposed by Efron [18]. His

approach is nonparametric and uses an auxiliary vector known as the re-
sampling vector, which records the proportions of the original observations
y = (y1, . . . , yn)> included in the bootstrap sample. We denote the resampling
vector by P∗ = (P ∗

1 , P ∗
2 , . . . , P ∗

n), where its components P ∗
j , j = 1, 2, . . . , n,

are defined with respect to a given bootstrap sample y∗ = (y∗1, . . . , y
∗
n)> as

P ∗
j = n−1

(
#{y∗k = yj}

)
, j = 1, 2, . . . , n. The vector P0 = (1/n, 1/n, . . . , 1/n)

corresponds to the original sample.
Note that a bootstrap replication θ̂∗ can be defined as a function of the

resampling vector. For instance, if θ̂ = s(y) = y, then

θ̂∗ =
y∗1 + y∗2 + · · ·+ y∗n

n
=

#{y∗k = y1}y1 + · · ·+ #{y∗k = yn}yn

n

=
(nP ∗

1 )y1 + · · ·+ (nP ∗
n)yn

n
= P∗y.

Suppose we can write the estimate of interest, obtained from y, as G(P0).
We can then obtain bootstrap estimates θ̂∗b using the resampling vectors P∗b,
b = 1, 2, . . . , B, as G(P∗b). The new bootstrap bias estimate, B̄ bF (θ̂, θ), is
defined as (Efron, [18])

B̄ bF (θ̂, θ) = θ̂∗(·) −G(P∗(·)), where P∗(·) =
1
B

B∑

b=1

P∗b,

which differs from B̂ bF (θ̂, θ), since B̂ bF (θ̂, θ) = θ̂∗(·) −G(P0).
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By using the three bootstrap bias estimates presented above, we arrive at
the following three bias-corrected estimators:

θ̃1 = s(y)− B̂ bF (θ̂, θ) = 2θ̂ − θ̂∗(·),

θ̃2 = s(y)− B̄ bF (θ̂, θ) = θ̂ − θ̂∗(·) + G(P∗(·)),

θ̃3 = s(y)− B̂Fbθ(θ̂, θ) = 2θ̂ − θ̂∗(·).

The corrected estimates θ̃1 and θ̃3 were called constant-bias-correcting (CBC)
estimates by MacKinnon and Smith [19].

As proposed by Efron [18], the bias corrected estimator θ̃2 requires the orig-
inal estimator θ̂ to have closed form. However, θ̂ does not have closed form
in general. To circumvent this problem, Cribari-Neto, Frery and Silva [20]
proposed an adaptation of Efron’s method, which can be applied to estima-
tors that do not have closed form. Their proposal is to use the resampling
vector to modify the log-likelihood function, and then maximize the modi-
fied log-likelihood. The idea is to write the log-likelihood function in terms of
P0, replace this quantity by P∗(·), and then maximize the resulting modified
log-likelihood function.

This adaptation of Efron’s method is useful for performing inference in the
two-parameter Birnbaum-Saunders distribution since the MLEs of the param-
eters do not have closed form. Let t = (t1, . . . , tn)> be a random sample of size
n of the Birnbaum-Saunders distribution with parameters α and β. The log-
likelihood function can be written in terms of P0, apart from an unimportant
constant, as

`(α, β; t) = −n

(
log(αβ)− 1

α2

)
+ nP0A> − n

2α2β
P0B> − nβ

2α2
P0C>,

where A =
(
log[(β/t1)1/2 + (β/t1)3/2], . . . , log[(β/tn)1/2 + (β/tn)3/2]

)
, B =

(t1, . . . , tn), and C = (1/t1, . . . , 1/tn). One then replaces P0 by P∗(·) after
obtaining P∗(·) from a nonparametric bootstrapping scheme based on B repli-
cations, and maximizes the modified log-likelihood function. That is, we max-
imize

`(α, β; t) = −n

(
log(αβ)− 1

α2

)
+ nP∗(·)A> − n

2α2β
P∗(·)B> − nβ

2α2
P∗(·)C>,

instead of maximizing the original log-likelihood function.
MacKinnon and Smith [19] argue that the estimators θ̃1 and θ̃3, which they

call CBC, are designed to work well when the bias function B(θ) is flat, that
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is, when it does not depend on θ. They considered the situation when the bias
function is linear with respect to θ, that is,

B(θ) = a + cθ.

The estimation of the bias function now involves the estimation of two param-
eters, namely a and c. We need to obtain estimates of two points of the bias
line, and then use such points to obtain our estimates of a and c.

The procedure can be summarized as follows. Using the original sample y,
we compute the estimate θ̂ = s(y). In order to estimate the first point, we
use a parametric bootstrapping scheme to obtain a bootstrap estimate of the
bias of θ̂, denoted as B̂ and given by θ̂∗(·) − θ̂. Next, in order to estimate
the second point, we use another parametric bootstrapping scheme based on
θ̃, where θ̃ = 2θ̂ − θ̂∗(·), and, for each boostrap sample, we obtain the corre-
sponding replications θ̂∗bFeθ

, b = 1, . . . , B. Therefore, we estimate the bias of θ̃

by the quantity B̃, where B̃ = θ̂
∗(·)
Feθ

− θ̃, θ̂
∗(·)
Feθ

being the mean of the bootstrap

replications of θ̃. Note that here one needs to perform 2B bootstrap replica-
tions (instead of B). In other words, the number of replications required is the
double of that used in the case of CBC estimators. Finally, using the point
estimates θ̂ and θ̃, and their respective estimated biases, B̂ and B̃, we arrive
at the following system of two simultaneous equations:

{
B̂ = ă + c̆θ̂,

B̃ = ă + c̆θ̃,

whose solution is

ă = B̂ − B̂ − B̃

θ̂ − θ̃
and c̆ =

B̂ − B̃

θ̂ − θ̃
.

We now obtain the following bias-corrected estimator, known as the linear-
bias-correcting (LBC) estimator, MacKinnon and Smith [19], and denoted by
θ̃4:

θ̃4 =
1

1 + c̆
(θ̂ − ă).

Its variance is a function of the variance of θ̂:

Var(θ̃4) =
1

(1 + c̆)2
Var(θ̂).
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If the estimated value of c, c̆, belongs to the set A =
{
(−2, 0) \ {−1}}, then

the variance of θ̃4 will exceed that of θ̂.
A detailed discussion of bootstrap methods and their applications can be

found in Davison and Hinkley [21] and in Efron and Tibshirani [22].

4 Numerical results

The simulation of B-S(α, β) independent deviates can be performed using the
monotone mapping:

X =
1
2

(√
T

β
−

√
β

T

)
.

That is, from (1) we have that X ∼ N (
0, 1

4α2
)
. Therefore, from the equation

above, T can be written as

T = β
{
1 + 2X2 + 2X(1 + X2)1/2

}
. (3)

In other words, pseudo-random numbers from the two-parameter Birnbaum-
Saunders distribution can be obtained from pseudo-random normal numbers
using (3). The Monte Carlo simulations were performed using the object-
oriented matrix programming language Ox1 (Cribari-Neto and Zarkos [23];
Doornik [24]). We consider R = 5000 (number of Monte Carlo replications)
and B = 500 (number of bootstrap replications). The MLEs of α and β are
obtained by maximizing the log-likelihood function using the BFGS quasi-
Newton non-linear optimization algorithm with analytical derivatives. This
method is generally considered the best non-linear optimization method (Mit-
telhammer, Judge and Miller [25, p. 199]). Note that the simulations are com-
putationally intensive since each experiment requires millions of non-linear
maximizations.

We have evaluated, through Monte Carlo simulations, the performance of
the MLE θ̂ = (α̂, β̂)> of the vector of parameters θ = (α, β)> of the Birnbaum-
Saunders distribution and its corrected versions: θ̃1 = (α̃1, β̃1)> (nonparamet-
ric CBC), θ̃2 = (α̃2, β̃2)> (based on the resampling vector P∗(·)), θ̃3 = (α̃3, β̃3)>

(parametric CBC), and θ̃4 = (α̃4, β̃4)> (parametric LBC), in finite samples.
We also computed the corrected MLE proposed by Ng, Kundu and Balakrish-
nan [15], denoted in this paper as θ̄ = (ᾱ, β̄)>. The sample sizes considered

1Ox is freely distributed for academic purposes and available at http://www.doornik.com.
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were n = 10, 20, 40, and 60, and the values for the shape parameter α were α =
0.10, 0.25, 0.50, 0.75, and 1.00. Without loss of generality, the scale parameter
β was set at 1, that is, β = 1 in all experiments.

For each sample size, we computed the following quantities: relative bias
estimates (the relative bias of an estimator θ̂ of a scalar parameter θ is defined
as {E(θ̂)−θ}/θ, and the estimated relative bias is obtained by estimating E(θ̂)
via Monte Carlo) and the square root of the mean squared error (

√
MSE) based

on the 5000 estimates. In Tables 1 to 4, ‘NP’ denotes nonparametric bootstrap,
and ‘P’ denotes parametric bootstrap.

In Tables 1 and 2 we present the estimated relative biases. Note in Table
1 that the estimators α̃1, α̃2, α̃3, α̃4 and ᾱ displayed relative biases (in ab-
solute values) that are smaller than that of the usual MLE α̂ in all sample
sizes considered. Note also that the bias correction proposed by Ng, Kundu
and Balakrishnan [15] (estimator ᾱ) was the least effective amongst all bias
corrections considered. For instance, for n = 20 and α = 0.10, the estimated
relative bias of the estimator ᾱ was 0.01238, whereas the estimated relative
bias of the estimators α̃1, α̃2, α̃3, and α̃4 were, in absolute values, 0.00286,
0.00361, 0.00167, and 0.00430, respectively. Furthermore, note that, amongst
the bootstrap estimators, the estimator α̃3 (parametric CBC) displayed the
best finite-sample performance, followed by the estimator α̃1 (non-parametric
CBC). For instance, for n = 40, and α = 0.25, the relative biases of α̃1, α̃2,
α̃3, and α̃4 were, in absolute values, 0.00029, 0.00105, 0.00003, and 0.00483,
respectively.

The figures in Table 2 show that the estimators β̃1 and β̃3 were again the
most accurate for all sample sizes. For instance, for n = 10 and α = 0.25,
the estimated relative biases of the estimators β̃1 and β̃3 were nearly 10 times
smaller than that of the MLE β̂. Of these two bootstrap estimators, the one
with best performance was β̃3 (parametric CBC). In fact, this estimator was
the most accurate in samples of small sizes.

In Tables 3 and 4 we present the square root of the estimated mean square
error (

√
MSE) of the estimators of α and β, respectively. Note in Table 3 that

the estimates of
√

MSE of α̃1, α̃3 and ᾱ were similar to that of of the MLE
α̂. On the other hand, the estimates of

√
MSE of α̃2 and α̃4 were significantly

larger than that of α̂. For instance, for n = 60 and α = 0.10, the estimates of√
MSE of α̂, α̃2 and α̃4 were 0.00902, 0.01268, and 0.02113, respectively.
Note in Table 4, similarly to what happens in Table 3, that the estimates

of
√

MSE of β̃1, β̃3 and β̄ were close to that of β̂. On the other hand, the
estimates of

√
MSE of β̃2 and β̃4 were considerably larger than that of the

MLE β̂. For instance, for n = 60 and α = 0.75, the estimates of
√

MSE of β̂,
β̃2 and β̃4 were 0.08952, 0.12467, and 0.12026, respectively.

It is noteworthy that, as the shape parameter α increases, the estimates of
the scale parameter β become less accurate (see Tables 2 and 4). For instance,
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Table 1. Estimated relative bias (β = 1).

α estimates

n α α̂ α̃1 α̃2 α̃3 α̃4 ᾱ

10 0.10 −0.07693 −0.00894 0.00979 −0.00546 0.00461 0.02563

0.25 −0.07746 −0.00925 −0.01199 −0.00549 0.00455 0.02504

0.50 −0.07933 −0.01041 −0.01428 −0.00582 0.00302 0.02297

0.75 −0.08177 −0.01188 −0.01748 −0.00625 0.00637 0.02025

1.00 −0.08444 −0.01348 −0.01982 −0.00686 0.00525 0.01729

20 0.10 −0.03824 −0.00286 −0.00361 −0.00167 0.00430 0.01238

0.25 −0.03857 −0.00301 −0.00378 −0.00173 0.00066 0.01203

0.50 −0.03964 −0.00349 −0.00439 −0.00191 0.01827 0.01091

0.75 −0.04092 −0.00399 −0.00507 −0.00202 0.00636 0.00956

1.00 −0.04225 −0.00452 −0.00579 −0.00217 0.00171 0.00816

40 0.10 −0.01848 −0.00023 −0.00093 0.00005 0.00314 0.00669

0.25 −0.01866 −0.00029 −0.00105 0.00003 −0.00483 0.00651

0.50 −0.01922 −0.00047 −0.00141 −0.00007 0.01841 0.00593

0.75 −0.01988 −0.00062 −0.00173 −0.00010 −0.00059 0.00525

1.00 −0.02055 −0.00079 −0.00210 −0.00014 0.00212 0.00456

60 0.10 −0.01233 −0.00014 −0.00053 0.00004 0.00158 0.00441

0.25 −0.01246 −0.00019 −0.00061 0.00001 0.00248 0.00428

0.50 −0.01281 −0.00026 −0.00074 −0.00002 −0.00178 0.00392

0.75 −0.01323 −0.00031 −0.00083 −0.00001 −0.00130 0.00350

1.00 −0.01367 −0.00037 −0.00095 −0.00001 0.00090 0.00305

Bootstrap — NP NP P P —

when n = 20, the estimated relative bias of the MLE β̂ was 0.00039 for α =
0.10, and 0.02150 for α = 1.00, an increase of relative bias of almost 56 times.

Table 5 contains the mean of the 5000 estimates of c, denoted as c̄, as well as
the proportion of the 5000 estimates c̆ which belonged to the set A, previously
defined. Note that all c̄ values for the shape parameter α belonged to A.
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Table 2. Estimated relative bias (β = 1).

β estimates

n α β̂ β̃1 β̃2 β̃3 β̃4 β̄

10 0.10 0.00046 0.00002 0.00053 0.00002 0.00025 0.00018

0.25 0.00304 0.00032 0.00189 0.00030 0.00141 0.00130

0.50 0.01185 0.00150 0.00503 0.00124 −0.17898 0.00491

0.75 0.02510 0.00355 0.00931 0.00260 0.01349 0.00956

1.00 0.04116 0.00619 0.01333 0.00409 0.01295 0.01368

20 0.10 0.00039 0.00018 0.00004 0.00014 −0.00038 0.00026

0.25 0.00195 0.00054 0.00025 0.00045 0.00012 0.00112

0.50 0.00669 0.00126 0.00088 0.00104 0.00314 0.00341

0.75 0.01357 0.00226 0.00190 0.00174 −0.00091 0.00618

1.00 0.02150 0.00333 0.00297 0.00234 0.02775 0.00837

40 0.10 0.00024 0.00011 0.00022 0.00011 0.00015 0.00017

0.25 0.00107 0.00029 0.00057 0.00030 0.00073 0.00066

0.50 0.00348 0.00058 0.00126 0.00059 0.00023 0.00188

0.75 0.00691 0.00093 0.00211 0.00088 0.00527 0.00330

1.00 0.01081 0.00131 0.00309 0.00114 0.01127 0.00440

60 0.10 0.00004 −0.00003 −0.00023 −0.00004 0.00008 0.00000

0.25 0.00042 −0.00007 −0.00057 −0.00010 0.00031 0.00015

0.50 0.00171 −0.00016 −0.00121 −0.00023 0.00056 0.00065

0.75 0.00367 −0.00024 −0.00174 −0.00037 0.00008 0.00129

1.00 0.00595 −0.00031 −0.00217 −0.00052 0.00097 0.00172

Bootstrap — NP NP P P —

Furthermore, note that these values are close to zero, especially in samples
of small size (less than 40 observations). This suggests that the parameter
c may be approximated by zero when estimating α, which corresponds to a
constant bias function. Note also that the c̄ values for α were similar in all
sample sizes. For instance, for n = 20, the values of c̄ were −0.0779, −0.0781,
−0.0786, −0.0790, and −0.0793, respectively, for α = 0.10, 0.25, 0.50, 0.75,
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Table 3. Square root of the estimated mean square error (β = 1).

α estimates

n α α̂ α̃1 α̃2 α̃3 α̃4 ᾱ

10 0.10 0.02333 0.02371 0.03080 0.02378 0.02420 0.02460

0.25 0.05833 0.05929 0.07519 0.05949 0.06061 0.06145

0.50 0.11684 0.11875 0.15117 0.11936 0.13545 0.12265

0.75 0.17576 0.17858 0.22726 0.17979 0.18978 0.18365

1.00 0.23552 0.23918 0.30435 0.24103 0.24527 0.24490

20 0.10 0.01594 0.01607 0.02161 0.01608 0.02053 0.01633

0.25 0.03984 0.04019 0.05400 0.04022 0.08043 0.04080

0.50 0.07972 0.08043 0.10788 0.08054 0.47666 0.08147

0.75 0.11976 0.12081 0.16176 0.12107 0.17284 0.12206

1.00 0.16010 0.16145 0.21583 0.16187 0.39681 0.16275

40 0.10 0.01116 0.01123 0.01530 0.01124 0.01487 0.01131

0.25 0.02790 0.02807 0.03825 0.02809 0.12112 0.02826

0.50 0.05579 0.05614 0.07635 0.05619 0.59965 0.05644

0.75 0.08375 0.08429 0.11441 0.08439 0.18762 0.08461

1.00 0.11182 0.11253 0.15251 0.11269 0.27302 0.11283

60 0.10 0.00902 0.00904 0.01268 0.00906 0.02113 0.00909

0.25 0.02254 0.02261 0.03168 0.02265 0.04589 0.02273

0.50 0.04506 0.04521 0.06330 0.04530 0.07546 0.04540

0.75 0.06761 0.06784 0.09488 0.06799 0.13039 0.06806

1.00 0.09020 0.09051 0.12647 0.09072 0.12946 0.09073

Bootstrap — NP NP P P —

and 1.00. Yet, most of the estimates c̆, corresponding to the shape parameter
α, belonged to A (more than 50% in all considered cases), thus explaining the
large variability of the estimator α̃4 relative to the MLE α̂ (see Table 3).

Note in Table 5 that the c̄ values for the scale parameter β vary considerably.
For instance, for n = 20, the c̄ values were −2.0242, 3.6810, 0.7426, 0.0686
and −0.3013, for α = 0.10, 0.25, 0.50, 0.75, and 1.00, respectively. As a result,
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Table 4. Square root of the estimated mean square error (β = 1).

β estimates

n α β̂ β̃1 β̃2 β̃3 β̃4 β̄

10 0.10 0.03176 0.03175 0.04413 0.03177 0.03287 0.03175

0.25 0.07925 0.07898 0.11042 0.07906 0.10503 0.07907

0.50 0.15720 0.15526 0.22005 0.15539 11.68536 0.15584

0.75 0.23250 0.22701 0.32574 0.22685 0.72599 0.22823

1.00 0.30394 0.29346 0.42732 0.29222 0.74609 0.29474

20 0.10 0.02251 0.02253 0.03131 0.02255 0.05065 0.02251

0.25 0.05602 0.05598 0.07791 0.05601 0.10928 0.05595

0.50 0.11024 0.10958 0.15300 0.10964 0.13444 0.10973

0.75 0.16082 0.15873 0.22254 0.15875 0.23888 0.15923

1.00 0.20629 0.20207 0.28485 0.20191 1.37750 0.20284

40 0.10 0.01577 0.01578 0.02229 0.01580 0.01766 0.01576

0.25 0.03921 0.03920 0.05548 0.03926 0.04261 0.03919

0.50 0.07693 0.07670 0.10896 0.07683 0.11120 0.07675

0.75 0.11165 0.11090 0.15834 0.11108 0.20490 0.11109

1.00 0.14222 0.14068 0.20203 0.14089 0.89815 0.14101

60 0.10 0.01275 0.01276 0.01774 0.01278 0.01309 0.01275

0.25 0.03169 0.03169 0.04407 0.03173 0.03341 0.03168

0.50 0.06196 0.06186 0.08622 0.06194 0.06757 0.06187

0.75 0.08952 0.08916 0.12467 0.08927 0.12026 0.08924

1.00 0.11348 0.11271 0.15815 0.11285 0.24111 0.11286

Bootstrap — NP NP P P —

we do not recommend the use of the estimator β̃4, for it is possible that
such oscillations lead to poor estimates of the slope of the bias function, thus
yielding poor estimates of β. For instance, note in Table 2 that, for n = 10
and α = 0.50, the estimated relative bias of the estimators β̂ and β̃4 were, in
absolute values, 0.01185, and 0.17898, respectively. Still, as the value of the



May 30, 2006 13:2 Journal of Statistical Computation & Simulation bs2˙jscs˙v2

14 A.J. LEMONTE, A.B. SIMAS and F. CRIBARI-NETO

Table 5. Linear parametric bootstrap (β = 1).

c̄ % in A
n α α β α β

10 0.10 −0.0925 1.3077 67.50 28.54

0.25 −0.0939 −0.2799 67.76 37.56

0.50 −0.0979 −1.1699 69.08 50.78

0.75 −0.1026 −1.0142 70.46 56.44

1.00 −0.1064 −0.3078 71.62 57.60

20 0.10 −0.0779 −2.0242 56.62 26.92

0.25 −0.0781 3.6810 56.80 31.08

0.50 −0.0786 0.7426 57.22 41.32

0.75 −0.0790 0.0686 58.10 47.64

1.00 −0.0793 −0.3013 58.78 50.54

40 0.10 −0.1236 2.0441 52.74 25.12

0.25 −0.1197 2.5700 52.84 27.62

0.50 −0.1127 −2.8554 52.86 33.98

0.75 −0.1056 1.1646 53.02 39.50

1.00 −0.0998 0.3012 53.36 44.12

60 0.10 −0.1359 −1.1559 52.10 25.42

0.25 −0.2307 1.1046 52.16 27.00

0.50 −0.1562 1.5288 52.36 32.28

0.75 −0.1927 −3.0283 52.56 37.74

1.00 −0.1596 1.1644 52.74 41.48

shape parameter α increases, the proportions of the estimates c̆ which belonged
to A, corresponding to the scale parameter β, also increased significantly. For
instance, for n = 10, the percentage was 28.54% with α = 0.10, and 57.60%
with α = 1.00.

In order to further understand some of the results presented above, we have
produced two figures (Figures 2 and 3). The figures include estimated density
plots and box plots. Density estimation was performed using kernel methods.
(A Gaussian kernel was used.) Figure 2 corresponds to the estimation of α
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Table 6. Real data from application.

152.7 172.0 172.5 173.3 193.0 204.7 216.5 234.9 262.6 422.6

whereas Figure 3 corresponds to the estimation of β. Two values of α were
used, namely: α = 0.25, 0.75. We note from these figures that the distributions
of α̃2 and β̃2 (weighted bootstrap estimators) are clearly less peaked than the
remaining ones, thus resulting in larger variance. The box plots also show the
existence of atypical values, especially in the upper tail. The larger variability
of α̃4 and β̃4 (linear parametric bootstrap estimators) stems from a few very
atypical realizations in the upper tail of the distribution; their densities are
not markedly less peaked than that of the parameteric and nonparametric
bootstrap estimators.

It is noteworthy that the weighted nonparametric bootstrap estimator, i.e.,
θ̃2 = (α̃2, β̃2)> (based on the resampling vector P∗(·)), was clearly outper-
formed by other bootstrap-based estimators. This contrasts with the numerical
results in Cribari-Neto, Frery and Silva [2], in the context of processing radar
image data, where this estimator was the best performing amongst several
bootstrap-based estimators.

The MLEs α̂ and β̂ of α and β are considerably biased (see Tables 1 and
2), especially in small samples. We thus strongly recommend their bias cor-
rection. To that end, we recommend the use of the bias-adjusted parametric
bootstrap estimator (CBC estimator), which displayed the best finite-sample
perfomance.

5 Application to real data

The source of the data is McCool [26]. The data describe the lifetime, in
hours, of 10 sustainers of a certain type. They were used as an illustration
of the three-parameter Weibull distribution in Cohen, Whitten and Ding [27]
and are given in Table 6.

The maximum likelihood estimates of the parameters α and β, and their cor-
rected versions, together with their respectives standard errors (in parentheses)
are presented in Table 7, where ‘NP’ stands for nonparametric bootstrap and
‘P’ stands for parametric bootstrap. Note that the corrected estimates α̃1, α̃2,
α̃3, α̃4, and ᾱ are larger than the maximum likelihood estimate α̂ and that the
corrected estimates β̃1, β̃2, β̃3, β̃4, and β̄ are smaller than the maximum like-
lihood estimate β̂. Note also that the estimates α̃2 and β̃2 have large standard
errors relative to α̂ and β̂, respectively.

In Figure 4 we present the density (2) with α and β replaced by their cor-
responding estimates, which are given in Table 7. Note that the densities
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Table 7. Point estimates of the parameters.

Parameters

Estimator α β Bootstrap

(α̂, β̂) 0.28249 (0.06317) 212.04910 (18.75291) —

(α̃1, β̃1) 0.30942 (0.08319) 211.83562 (18.47368) NP

(α̃2, β̃2) 0.32455 (0.10493) 209.74397 (25.96065) NP

(α̃3, β̃3) 0.30578 (0.06373) 210.84103 (19.55948) P

(α̃4, β̃4) 0.31112 (0.06708) 210.89152 (19.75174) P

(ᾱ, β̄) 0.31388 (0.07018) 211.52811 (20.73594) —

obtained using the corrected estimates (α̃1, β̃1), (α̃2, β̃2), (α̃3, β̃3), (α̃4, β̃4) and
(ᾱ, β̄) are close to each other. It is also noteworthy that the density obtained
using the maximum likelihood estimates (α̂, β̂) is the ‘most peaked’; this hap-
pens due to underestimation of the shape parameter α.

6 Concluding remarks

This paper considered different bootstrapping schemes (parametric and non-
parametric) for correcting the biases of the maximum likelihood estimators
of the parameters that index the two-parameter Birnbaum-Saunders distribu-
tion, as well as the corrected estimators proposed by Ng, Kundu and Balakr-
ishnan [15]. The numerical evidence showed that the bias correcting schemes
are generally effective, even when the sample size is small.

The best performing estimator was the CBC parametric bootstrap estima-
tor. We, therefore, strongly recommend that practitioners use this estimator
when modeling data using the Birnbaum-Saunders distribution.

Acknowledgments

The authors gratefully acknowledge the financial support from CAPES and
CNPq. We also thank an anonymous referee for comments and suggestions.

References

[1] Birnbaum, Z. W. and Saunders, S. C., 1969a, A new family of life distributions. Journal of
Applied Probability, 6, 319–327.



May 30, 2006 13:2 Journal of Statistical Computation & Simulation bs2˙jscs˙v2

Improved bootstrap estimators for the Birnbaum-Saunders distribution 19

100 200 300 400 500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

t

f(
t)

Maximum Likelihood
NP Bootstrap
Weighted NP Bootstrap
P Bootstrap
Linear P Bootstrap 
Ng et al. (2003)

Figure 4. Estimated densities.

[2] Cribari-Neto, F., Frery, A. C. and Silva, M. F., 2002, Improved estimation of clutter properties
in speckled image. Computational Statistics and Data Analysis, 40, 801–824.

[3] Desmond, A. F., 1985, Stochastic models of failure in random environments. Canadian Journal
of Statistics, 13, 171–183.

[4] Desmond, A. F., 1986, On the relationship between two fatigue-life models. IEEE Transactions
on Reliability, 35, 167–169.

[5] Saunders, S. C., 1974, A family of random variables closed under reciprocation. Journal of the
American Statistical Association, 69, 533–539.

[6] Mann, N. R., Schafer, R. E. and Singpurwalla, N., 1974, Methods for Statistical Analysis of
Reliability and Life Data. John Wiley and Sons, New York.

[7] Chang, D. S. and Tang, L. C., 1993, Reliability bounds and critical time for the Birnbaum–
Saunders distribution. IEEE Transactions on Reliability, 42, 464–469.

[8] Chang, D. S. and Tang, L. C., 1994, Percentile bounds and tolerance limits for the Birnbaum-
Saunders distribution. Communications in Statistics – Theory and Methods, 23, 2853–2863.

[9] Dupuis, D. J. and Mills, J. E., 1998, Robust estimation of the Birnbaum-Saunders distribution.
IEEE Transactions on Reliability, 47, 88–95.

[10] Rieck, J. R., 1995, Parametric estimation for the Birnbaum–Saunders distribution based on



May 30, 2006 13:2 Journal of Statistical Computation & Simulation bs2˙jscs˙v2

20 A.J. LEMONTE, A.B. SIMAS and F. CRIBARI-NETO

symmetrically censored samples. Communications in Statistics – Theory and Methods, 24, 1721–
1736.

[11] Rieck, J. R., 1999, A moment-generating function with application to the Birnbaum-Saunders
distribution. Communications in Statistics – Theory and Methods, 28, 2213–2222.

[12] Johnson, N., Kotz, S. and Balakrishnan, N., 1995, Continuous Univariate Distributions – Vol.
2 , 2nd ed. John Wiley and Sons, New York.

[13] Birnbaum, Z. W. and Saunders, S. C., 1969b, Estimation for a family of life distributions with
applications to fatigue. Journal Applied Probability, 6, 328–347.

[14] Engelhardt, M., Bain, L. J. and Wright, F. T., 1981, Inferences on the parameters of the
Birnbaum–Saunders fatigue life distribution based on maximum likelihood estimation. Tech-
nometrics, 23, 251–255.

[15] Ng, H. K. T., Kundu, D. and Balakrishnan, N., 2003, Modifiel moment estimation for the two-
parameter Birnbaum–Saunders distribution. Computational Statistics and Data Analysis, 43,
283–298.

[16] Efron, B., 1979, Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.
[17] Ferrari, S. L. P. and Cribari-Neto, F., 1998, On bootstrap and analytical bias corrections. Eco-

nomics Letters, 58, 7–15.
[18] Efron, B., 1990, More efficient bootstrap computations. Journal of the American Statistical

Association, 85, 79–89.
[19] MacKinnon, J. G. and Smith, J. A. A., 1998, Approximate bias correction in econometrics.

Journal of Econometrics, 85, 205–230.
[20] Cribari-Neto, F., Frery, A. C. and Silva, M. F., 2002, Improved estimation of clutter properties

in speckled imagery. Computational Statistics and Data Analysis, 40, 801–824.
[21] Davison, A. C. and Hinkley, D. V., 1997, Bootstrap Methods and Their Application. Cambridge

University Press, New York.
[22] Efron, B. and Tibshirani, R. J., 1993, An Introduction to the Bootstrap. Chapman and Hall,

New York.
[23] Cribari-Neto, F. and Zarkos, S. G., 1999, Econometric and statistical computing using Ox.

Computational Economics, 21, 277–295.
[24] Doornik, J. A., 2001, Ox: An Object-Oriented Matrix Language, 4th ed. Timberlake Consultants

Press, London; Oxford, http://www.doornik.com.
[25] Mittelhammer, R. C, Judge, G. G. and Miller. D. J., 2000, Econometric Foundations, New York:

Cambridge University Press.
[26] McCool, J. I., 1974, Inferential techniques for Weibull populations. Aerospace Research Labo-

ratories Report ARL TR74-0180. Wright–atterson Air Force Base, Dayton, OH.
[27] Cohen, A. C., Whitten, B. J. and Ding, Y., 1984, Modified moment estimation for the three-

parameter Weibull distribution. Journal of Quality Technology, 16, 159–167.


