1	stronomical calibration of upper Campanian–Maastrichtian carbon isotope events and	

- 2 calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C): implication for
- 3 the age of the Campanian–Maastrichtian boundary
- 4
- 5 Nicolas Thibault^{a*}, Dorothée Husson^b, Rikke Harlou^a, Silvia Gardin^c, Bruno Galbrun^b, Emilia

6 Huret^d, Fabrice Minoletti^b

- 7
- ^a Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10,
- 9 1350 Copenhagen C., Denmark.
- ^b Institut des Sciences de la Terre de Paris, UMR CNRS 7193, Université Pierre et Marie
- 11 Curie Paris 06, 4, place Jussieu, 75252 Paris cedex 05, France.
- ^c « Paléobiodiversité et Paléoenvironnements », UMR CNRS 5143, Université Pierre et Marie
- 13 Curie Paris 06, 4, place Jussieu, 75252 Paris cedex 05, France.
- ^d Andra, 1/7, rue Jean-Monnet, Parc de la Croix Blanche, 92298 Chatenay-Malabry cedex,
- 15 France.
- 16
- 17 * corresponding author, present address, nt@geo.ku.dk
- 18

19 Abstract

20

22

21 An integrated framework of magnetostratigraphy, calcareous microfossil bio-events,

cyclostratigraphy and δ^{13} C stratigraphy is established for the upper Campanian–Maastrichtian

of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate δ^{13} C 23 24 events and nannofossil bio-events have been recorded and plotted against 25 magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic 26 study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope 27 events and 40 nannofossil bio-events are recognized and calibrated with cyclostratigraphy, as 28 well as 14 previously published for aminifer events, thus constituting a solid basis for large-29 scale correlations. Results show that this site is characterized by a nearly continuous 30 sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation of the age-calibrated δ^{13} C profile of ODP Hole 762C to the 31 δ^{13} C profile of the Tercis les Bains section, Global Stratotype Section and Point of the 32 33 Campanian-Maastrichtian boundary (CMB), allowed a precise recognition and dating of this 34 stage boundary at 72.15±0.05 Ma. This accounts for a total duration of 6.15±0.05 Ma for the 35 Maastrichtian stage. Correlation of the boundary level with northwest Germany shows that 36 the CMB as defined at the GSSP is ~800 kyr younger than the CMB as defined by Belemnite 37 zonation in the Boreal realm. ODP Hole 762C is the first section to bear at the same time an 38 excellent recovery of sediments throughout the upper Campanian-Maastrichtian, a precise 39 and well-defined magnetostratigraphy, a high-resolution record of carbon isotope events and 40 calcareous plankton biostratigraphy, and a cyclostratigraphic study tied to the La2010a 41 astronomical solution. This section is thus proposed as an excellent reference for the upper 42 Campanian-Maastrichtian in the Indian Ocean. 43

- 44 Keywords: Late Cretaceous; calcareous nannofossils; planktic foraminifera; biostratigraphy;
- δ^{13} C stratigraphy, cyclostratigraphy

- **1. Introduction**

50	The Maastrichtian stage has been intensively studied the past 15 years after the
51	identification of several distinct climatic episodes (Barrera and Savin, 1999; Li and Keller,
52	1999) that impacted several biotic groups in the marine realm : Inoceramid bivalves
53	(MacLeod et al., 1996), rudist bivalves (Johnson et al., 1996), planktic foraminifera (Li and
54	Keller, 1998a, 1998b; Olsson et al., 2001; Abramovich and Keller, 2002, 2003) and
55	calcareous nannofossils (Friedrich et al., 2005, Thibault and Gardin, 2006, 2007, 2010). In the
56	pelagic realm, the correlation of these climatic episodes and associated biotic events mainly
57	relies on the confidence in planktic foraminifera and calcareous nannofossil biozonations,
58	along with magnetostratigraphy. Because polarity reversals are geologically rapid events that
59	are potentially recorded simultaneously in rocks all over the world, the use of
60	magnetostratigraphic divisions is the most reliable correlation tool, contrary to
61	lithostratigraphic and biostratigraphic divisions which are often time-transgressive. In Late
62	Cretaceous carbonates, magnetic properties are poorly recorded and good
63	magnetostratigraphic records along with calcareous microfossil events are only available for a
64	limited number of sections (Bralower et al., 1995 and references therein).
65	The climatic evolution of the latest Cretaceous is characterised by a long-term global
66	cooling trend that started in the late Campanian and led to increased bioprovinciality of
67	calcareous microfossil assemblages into distinct Tethyan, Intermediate (Transitional is rather
68	adopted here), Boreal and Austral Provinces that persisted to the end of the Maastrichtian
69	(Shafik, 1990; Huber, 1992a; Huber and Watkins, 1992; Burnett, 1998; Lees, 2002). This
70	seriously complicates the application of available biostratigraphical zonation schemes. Two
71	distinct Late Cretaceous Austral and Tethyan biozonal schemes exist for Planktic
72	foraminiferal assemblages (Premoli-Silva and Sliter, 1994; Huber, 1992b) whereas 3 distinct

biozonal schemes (TP for Intermediate and Tethyan provinces, BP for the Boreal Province
and AP for the Austral Province) were proposed by Burnett (1998) for Late Cretaceous
calcareous nannofossils. The BP and TP schemes have different nannofossil subzones but
similar zones.

Throughout the Campanian-Maastrichtian interval, Northwestern Australia was part of 77 78 the Transitional Province (Huber, 1992a, Huber and Watkins, 1992). Microfossil assemblages 79 from this region show affinities to the warm Tethyan Province and to the cool Austral 80 Province (Shafik, 1990; Howe et al., 2003, Campbell et al., 2004). Several authors noted the 81 difficulties in applying standard planktic foraminiferal and nannofossil Tethyan 82 biostratigraphical zonal schemes to the Campanian-Maastrichtian interval of northwestern 83 Australia due to the absence of key markers or to variations in the ranges of these species (Apthorpe, 1979; Wonders, 1992; Bralower and Siesser, 1992; Shafik, 1998; Petrizzo, 2000; 84 85 Howe et al, 2003). Petroleum companies that operate in northwestern Australia use the 86 regional KCCM (Cretaceous Composite Calcareous Microfossil) zonation which integrates 87 nannofossil, planktonic foraminiferal and benthic foraminiferal bio-events. This zonation was 88 succesfully applied to numerous sites of Western Australian phanerozoic basins (Howe et al., 89 2003; Campbell et al., 2004). The example of the North Australian margin shows that 90 possible diachronism of key calcareous microfossil bio-events across latitudes needs to be 91 properly tested and eventually quantified in order to improve the correlation between AP, TP 92 and BP schemes.

In addition, high-resolution bulk carbonate δ^{13} C reference curves have started to be generated for the Maastrichtian stage (Voigt et al., 2010; Thibault et al., 2012, Voigt et al., 2012) but have not been tied to cyclostratigraphy so far. Because δ^{13} C is not dependent to temperature and more robust than δ^{18} O to diagenesis, the use of carbon stable-isotope profiles calibrated with detailed biostratigraphies have proved to be a powerful tool for correlating and

98 dating Cretaceous strata on a global scale (Gale et al., 1993; Jenkyns et al., 1994; Voigt, 2000;
99 Jarvis et al., 2002; Föllmi et al., 2006).

100 This paper presents new results on calcareous nannofossil biostratigraphy, carbon 101 stable isotopes and cyclostratigraphy throughout the upper Campanian–Maastrichtian section 102 of Hole 762C (Northwestern Australian margin) for which magnetostratigraphy was well 103 established (Galbrun, 1992) and recently updated (Husson et al., 2011, 2012). Using the 104 results obtained with the cyclostratigraphic study and the recent astronomical calibration of 105 the Maastrichtian (Husson et al., 2011), we calibrate all carbon isotopic and biotic events in 106 age and propose a new chronostratigraphic reference for the Indian Ocean. The calibrated 107 chronostratigraphic framework is then correlated and compared to reference sites in the 108 Tethyan and Boreal realms and allows a focus on the correlation and age of the Campanian-109 Maastrichtian boundary at the global scale.

110

111 **2. Exmouth Plateau : setting and previous work**

112

113 ODP Hole 762C (19°53.24'S, 112°15.24'E) was drilled at a water depth of 1360 m in 114 the western part of the central Exmouth Plateau, off NW Australia in the eastern Indian Ocean 115 (Fig. 1). Sediments were deposited in an upper bathyal setting (Zepeda, 1998). The estimated 116 palaeolatitude of this site is 43°S using Ocean Drilling Stratigraphic Network (ODSN) plate 117 tectonics reconstruction (Based on Hay et al., 1999). The studied interval almost spans the 118 whole Maastrichtian stage from the K-Pg boundary to magnetochron C33n downhole (Fig. 2). 119 This interval recovers Subunit IVA and the upper part of Subunit IVB which correspond to 120 nannofossil chalks with varying amounts of clays and foraminifers (Haq et al., 1992). 121 Sediments consist of white to very light green-gray nannofossil chalk (light beds) alternating 122 with intervals of light green-gray clayey nannofossil chalk (dark beds). These cyclic color

123	changes of light and dark beds without distinct limits reflect the relative abundance of clay
124	and calcium carbonate (Haq et al., 1992). These cycles were deposited under a Milankovitch
125	control (Golovchenko et al., 1992; Huang et al., 1992). The biostratigraphy of planktonic
126	foraminifera was first established by Wonders (1992) and revised by Zepeda (1998). The
127	biostratigraphy of calcareous nannofossils was established by Bralower & Siesser (1992) and
128	refined in this study with a higher resolution. Howe et al. (2003) and Campbell et al. (2004)
129	provided a detailed regional, composite biostratigraphic zonation of this site using numerous
130	calcareous nannofossil, planktic and benthic foraminiferal bio-events. The
131	magnetostratigraphy was first established by Galbrun (1992) and refined in Husson et al.
132	(2011, 2012). All the magnetochrons of the standard magnetic polarity time scale (Gradstein
133	et al., 2004) have been retrieved with a high precision and very few uncertainties across
134	boundary reversals (Appendix 1). Hole 762C bears one of the best defined
135	magnetostratigraphic signals throughout the upper Campanian-Maastrichtian along with Site
136	525A in the South Atlantic (Chave, 1984) and the Bottaccione and Contessa sections in
137	central Italy (Gardin et al., 2012). The lower half of the astronomical calibration of the
138	Maastrichtian also relies on this site (Husson et al., 2011) and the detailed cyclostratigraphic
139	analysis of this section is presented here. ODP Hole 762C thus constitutes the only section
140	that bears at the same time (1) an excellent recovery of sediments throughout the upper
141	Campanian–Maastrichtian, (2) a very precise and well-defined magnetostratigraphy with all
142	magnetochrons and subchrons of this period identified, (3) a record of calcareous nannofossil
143	and planktonic foraminifera bio-events and (4) a high potential for a cyclostratigraphic study
144	tied to the recent astronomical calibration of the Maastrichtian.
1.45	

146 Figure 1 about here: format one column, 8 cm wide

147 Figure 2 about here: format landscape on full page

148	
149	3. Materials and methods
150	
151	3.1. Micropaleontological analysis
152	
153	167 samples of ODP Hole 762C were processed as follows : sediments were gently
154	disaggregated in a mortar and 50 mg of dried sediment were weighed and dispersed in 50 ml
155	of distilled water. The suspension was ultrasonicated for 15 sec and homogenized with a
156	magnetic stirrer. Then 1mL of this suspension was extracted with a finnpipette and
157	homogeneously dropped on a microscopic slide. Particles are therefore evenly distributed on
158	the slide.
159	Semi-quantitative counts were performed on key and other potential additional
160	stratigraphic markers (Appendix 2) at a magnification of x1600 (x100 oil objective with a
161	x1.6 additional lense). Counts were determined in the following fashion: a species was
162	determined as abundant (A) if, on average, more than 10 specimens could be observed in a
163	field of view; common (C) if one to 10 specimens could be observed in each field; few (F) if
164	one specimen or more could be observed in every 10 fields of view, rare (R) if, on average,
165	only one specimen could be observed in 11 to 100 fields, single (S) if only one specimen was
166	observed during the investigation. Preservation of nannofossils ranges from moderate (M) to
167	poor (P) in the investigated section.
168	The biozonation of Burnett (1998) was applied. Calcareous nannofossil species
169	considered in this paper followed taxonomic concepts of Perch-Nielsen (1985) and Young &
170	Bown (1997). Bibliographic references for the determined taxa are given in Perch-Nielsen
171	(1985), Bown (1998) and Howe et al. (2003).
172	

3.2. Cyclostratigraphic analysis

175	As many of Deep Sea Drilling Project (DSDP) and ancient Ocean Drilling Program
176	(ODP) sections, Hole 762C lacks high-resolution geophysical measurements that could be
177	used for a cyclostratigraphic analysis. However, it has been shown that high-resolution core
178	photographs can be used for such a purpose (Cramer, 2001). A Gray-scale log was generated
179	on core photographs from the upper Campanian-Maastrichtian interval of this hole, available
180	on the ODP website (<u>http://www-odp.tamu.edu/publications/122_IR/122TOC.HTM</u>). Each
181	photograph displays one ODP core, with sections of the core arranged parallel to one another
182	(Fig. 3). For each section, gray-scales logs were processed using the free open-source
183	software Image-J (<u>http://rsb.info.nih.gov/ij/</u>) with a scaling of 2100 pixels for each 1.5 m long
184	section (Fig. 3). Gray-scale logs reflect the values of pixels along a line traced in the centre of
185	each section with a corresponding sampling interval of about 0.7 mm. Gray-scale values were
186	then smoothed and resampled at 1 cm intervals (Appendix 4).
187	Contrary to Cramer (2001) who adjusted core depths by removing all voids and
188	contracting cores for which the measured length was longer than the drilled length, we chose
189	to consider intervals of no recovery which can either represent a void or loss of recovered
190	material, and to keep additional lengths, in order not to potentially contract sedimentary
191	cycles. Adjusted depths were generated and are given in 'ambsf' units.
192	Fractures present on the core photographs, characterized by very low gray-level
193	values, close to 0, were removed from the original signal using a MATLAB script as
194	explained in Husson et al. (2011).
195	The effects of lighting on the photographs were treated by the recognition and filtering
196	of cycles with a period of 1.5 m (length of a section), 6.5 and 8.5 to 9.5 m (lengths of distinct
197	cores).

198	The resulting data were then analyzed via spectral analysis using the multitaper
199	method (MTM, Thomson, 1982). More detailed methodology for the cyclostratigraphic
200	analysis is given in Husson et al. (2011).
201	
202	Figure 3 about here: format one column, 8 cm wide
203	
204	3.3. Stable isotope analysis
205	
206	A total of 200 stable isotope analyses has been performed throughout the late
207	Campanian–Maastrichtian of ODP Hole 762C. Oxygen and carbon isotopic composition of
208	bulk carbonates were measured with a mass spectrometer Finnigan Delta E on 87 samples at
209	the Laboratoire Biominéralisations et Paléoenvironnements (Université Pierre et Marie Curie,
210	Paris 6, France) in 2007. The extraction of CO_2 was done by reaction with anhydrous
211	orthophosphoric acid at 50°C. Additional analyses were performed with a micromass
212	isoprime spectrometer on 113 bulk carbonates at the Department of Geography and Geology,
213	University of Copenhagen in 2009. The extraction of CO_2 was done by reaction with
214	anhydrous orthophosphoric acid at 70°C. The oxygen and carbon isotope values are expressed
215	in per mil relative to the V-PDB standard reference. The analytical precision is estimated at
216	0.1‰ for oxygen and 0.05‰ for carbon for both laboratories. Common samples and samples
217	from the same stratigraphic intervals show a constant offset of -0.25‰ for $\delta^{18}O$ values and -
218	0.2‰ for δ^{13} C values between measurements from 2009 and those from 2007, likely due to
219	the different methods and apparatus. Values of 2007 were thus adequately corrected for
220	standardization. Inter-laboratory offsets of 0.1 to 0.2 per mil can commonly occur when
221	laboratories use single-point anchoring with one certified internal standard. Inter-laboratory

normalization producing minimal errors <0.1 per mil is possible only when laboratories use
anchoring with two or more certified internal standards (Debajyoti et al., 2007).

224

225 **4. Results**

226

227 4.1. Calcareous microfossil biochronology

228

229 Foraminifera bio-events recorded in Howe et al. (2003) and Campbell et al. (2004) are 230 reported here along with magnetostratigraphy, carbon-isotope stratigraphy and nannofossil 231 biostratigraphy refined in this study (Fig. 2). The resolution of the nannofossil analysis is ca. 1 232 m across the studied interval and below 0.5 m in the interval between 620 and 595 mbsf 233 where a large number of bio-events were recorded (Fig. 2). In addition to the record of typical 234 first (FO) and last occurences (LO) of taxa, few particular features are proposed here as bio-235 events. A transition in the abundance of Watznaueria manivitae sensu lato was observed with abundances shifting from common to frequent at 649.63 mbsf (Chron C33n, upper 236 237 Campanian) (Fig. 2). As in Lees and Bown (2005), two different forms of Uniplanarius 238 trifidus with distinct stratigraphic levels of extinction were observed, a medium-rayed and a 239 short-rayed form (Fig. 2). Three species also exhibit intervals of acmes: Cribrocorona gallica 240 (561.4 to 559.08 mbsf), Micula murus (564.14 to 556.33 mbsf) and Lithraphidites spp. (573.6 241 to 561.4 mbsf) (Fig. 2). This provides a total record of 18 foraminifer bio-events, 40 242 nannofossil bio-events and 4 additional nannofossil events based on obvious changes of 243 abundances correlated to carbon-isotope stratigraphy (Fig. 2 and Table 1). 244

245 Table 1 about here: format portrait

- 247 *4.2. Cyclostratigraphy*
- 248

249 4.2.1. Spectral analysis and amplitude spectrogram

250

251 The respective thickness of magnetochrons C31r and C30n relative to their duration, 252 according to the Geologic Time Scale 2004 (GTS2004, Gradstein et al., 2004), suggest 253 variations of the sedimentation rate. To ascertain these variations, spectral analyses have been 254 performed on two different intervals: the upper Campanian-lower Maastrichtian interval, 255 from 593 to 638 ambsf, and the upper Maastrichtian from 550 to 593 ambsf. The study of the 256 lower Maastrichtian periodogram highlights cycles with wavelength ranging from 0.26 to 4.1 257 m, with low frequency cycles presenting the highest power and the best individualisation 258 (Fig. 4). Comparison of their period ratios with the ratio of orbital parameters periods has 259 permitted their attribution to a forcing by the 405 kyr eccentricity (2.15 to 4.1 m cycles), 100 260 kyr eccentricity (0.58 m to 0.75 m cycles), and obliquity (0.26 m) variations (Fig. 4). The 261 identification of groups of cycles rather than distinct periods is linked to sedimentation rate 262 variation within the studied interval, which modifies the thickness of the cycles (Herbert, 263 1994).

264 The spectral analysis performed between 550 and 593 ambsf (upper Maastrichtian) 265 detects cycles with a wavelength ranging from 0.40 to 7.46 m (Fig. 4). The periodogram 266 shows numerous low frequency cycles and less expressed high frequencies variations. The 267 frequency ratios method applied to the periodogram indicates a forcing of the sedimentation 268 by obliquity, 100 kyr eccentricity, and 405 kyr eccentricity (Fig. 4). Colour variations in the 269 upper Maastrichtian have less amplitude, and the power of 405 kyr cycles is attenuated in the 270 frequency spectrum of the 550-593 ambsf interval as compared to the interval below (Fig. 4). 271 This strong attenuation and a disturbance due to the presence of numerous cracks in the

"strange" interval between 576 and 588 ambsf hindered the recognition of clear 405 kyr
cycles in the amplitude spectrograms of the upper Maastrichtian (Fig. 4). In addition, apart
from one interval in core 48X between 604 and 610 ambsf (Figs. 3–4), precession cycles are
not very well defined on the periodograms and in amplitude spectrograms. The studied
intervals may be too large to highlight high frequency cycles with accuracy. A strong shift of
the cycles toward lower frequencies can be observed between the two periodograms. It
characterises an increase of the sedimentation rate in the upper Maastrichtian.

279

280

Figure 4 about here: format portrait full page

281

282 Amplitude spectrograms characterize shifts in the frequency of Milankovith cycles and 283 variations of the sedimentation rate. Well-defined trends present on the entire record are 284 related to the evolution of 100 kyr and 405 kyr eccentricity cycles by comparison to the 285 results of the spectral analysis (Fig. 4). Obliquity is well characterised in the upper 286 Campanian and is also recorded during the lower Maastrichtian, though its amplitude is lower 287 (Fig. 4). Eccentricity is disturbed between 612.5 and 607.5, due once again to important core 288 cracks in this interval (Fig. 4). This interval also corresponds to decreasing sedimentation 289 rates. Sedimentation rates are much higher in the upper Maastrichtian as suggested by the 290 shift of 100 kyr eccentricity cycles toward lower frequencies after the "strange" disturbed 291 interval (Fig. 4). Perturbations of the analysis in the higher frequencies, due to the remaining 292 cracks in the cores, prevent a good identification of precession and obliquity variations. For 293 the upper Maastrichtian, only a filtering of 100 kyr eccentricity cycles could be performed 294 because doubts remained on the identification of 405 kyr cycles attenuated in the frequency 295 cpectrum and hindered in the amplitude spectrograms. For the upper Campanian and lower 296 Maastrichtian, a filter output of the 405 kyr eccentricity was performed from the lowermost

part of Chron C31n down to the upper part of Chron C33n. This filter output was already
presented in Husson et al. (2011) and calibrated to the La2010a astronomical solution (Laskar
et al., 2011).

300 The identification of 100 kyr and 405 kyr eccentricity cycles allows estimation of durations 301 by cycle counting. The counting is performed considering that minima in grey values (darker 302 colours) might correspond to maxima of insolation. Indeed, darker sediments have higher 303 terrigenous content which seem to reliably reflect enhanced weathering during periods of 304 higher insolation throughout the Cenozoic and Cretaceous period (Pälike et al., 2006, 305 Westerhold et al., 2008, Batenburg et al., 2012). 306 When precession cycles are well defined, the resolution in the cycle counting can be 307 down to 20 kyr (Fig. 3). Cycle counting was performed on a 5 points moving average 308 smoothed grey scale signal and relies on the 100 kyr filter output (Fig. 5). 100 kyr and 405 309 kyr eccentricity cycles have been numbered downhole with the Cretaceous/Paleogene (K-Pg) 310 boundary as starting point. Filtering can induce phase-shifts and create a misleading 311 impression of regular cyclicity where grey level variations are important (Weedon, 2003). 312 This effect has been limited by using a very large bandwidth. 313

314 Figure 5 about here: Format portrait full page

315

316 4.2.2. Downhole 100 kyr numbering and age-calibration of calcareous plankton bio-events
317

The position of the boundary between chrons C30n and C29r has been revised here and is given a much larger uncertainty than in Galbrun (1992). Indeed, most of the samples of core 43X2 to core 43X5 analysed by Galbrun (1992) could not be demagnetized at high steps, given their weakness in NRM intensity. As a consequence, these samples showed a weak 322 negative inclination which was previously interpreted as a normal polarity (Galbrun, 1992). 323 However the sub-jacent well-magnetized sample 44X1-132 (565.32 mbsf), shows a strong 324 positive inclination, interpreted as a short interval of reversed polarity (Galbrun, 1992) and is 325 then followed by numerous well-magnetized samples of normal polarity. Thus, the base of 326 C29r which was previously placed at 556.5 mbsf could also be placed downhole at 565.32 327 mbsf. Moreover, according to Henriksson (1993) whose study focused on the biochronology 328 of Micula prinsii biozone on a large number of sites, the FO of this taxon is synchronous 329 throughout the tethyan and transitional realms and lies very close to the base of magnetochron 330 C29r. In our study, the FO of this taxon is recorded at 560.46 mbsf (Fig. 2 and Table 1). A 331 downhole position of the base of C29r may thus be expected. The interval of no recovery at 332 the base of core 43X further complicates the precise identification of the boundary between 333 C29r and C30n. As a consequence, the whole uncertainty (between 556.5 and 565.32 mbsf) is 334 taken into account and the C29r/C30n boundary is rather placed at 560.91 +/- 4.41 mbsf 335 (Table 2a, Fig. 2). This new position results in a duration of 397 +/- 221 kyr for the 336 Cretaceous part of C29r which is consistent with the estimation provided in Husson et al. 337 (2011). However, the latter provided a much more precise and reliable estimation of the 338 duration of the Cretaceous part of chron C29r which is rather adopted here.

339 The duration and ages of biostratigraphic events and carbon-isotope trends rely 340 precisely on the downhole numbering of 100 kyr cycles (Fig. 5). This numbering is based on 341 the cycles identified according to the results of spectral analyses and can be followed on 342 Figure 5 along the 100 kyr filter output. The numbering also remains in accordance with the 343 astronomical calibration of the Maastrichtian tied to the La2010a astronomical solution 344 (Husson et al., 2011). The following reasoning has been followed for the different gaps of the 345 record: (1) Consistency in the thickness of the cycles has been assumed for all the intervals of 346 no recovery, except for the interval centered around 592 ambsf (Fig. 5). (2) Cyclostratigraphic

347 interpretations at Sites 1267B and 525A showed that chron C30r partly covers 100 kyr 348 eccentricity cycles $e_{100}23$ and $e_{100}24$ (Husson et al., 2011, Figure 3). Two samples clearly 349 indicated a reverse polarity around 595 ambsf (Appendix 1) and a total uncertainty of 4.3 m is 350 accounted for the boundary between chrons C30n and C30r (Fig. 2 and Table 2a). Therefore, 351 we have assigned the interval of no recovery between 591 and 594 ambsf as well as a short 352 part of the filter output between 594 and 594.6 ambsf to $e_{100}23$ and the following cycle to 353 e₁₀₀24, ending around 596.5 ambsf (Fig. 5). (3) A maximum of four 100 kyr eccentricity 354 cycles can be identified in the interval between 596.5 and 599.5 ambsf corresponding to 355 Chron C31n (Fig. 5). This contrasts with Herbert et al. (1999) and Husson et al. (2011) who 356 showed an average duration of this chron of 900 kyr. Therefore, a gap of ca. 500 kyr can be 357 accounted here and likely placed around 597 ambsf, where a neat change in the sedimentation 358 rate can be observed while comparing the thickness of $e_{100}23$ and $e_{100}24$ with the underlying 359 cycles (Fig. 5). This gap corresponds to the darkest interval of core 47X which could suggest 360 a much lower carbonate input to the sea-floor responsible for very low sedimentation rates. 361 Downhole numbering of the following cycles takes into account this 500 kyr gap and further 362 remains consistent with the numbering of 100 kyr eccentricity cycles at Sites 525A and 363 1258A with an average assignment to the base of e_{100} 33 for the base of Chron C31n (Fig. 5, 364 Husson et al., 2011, Figure 3) and with the calibration of these three sites to the La2010a 365 astronomical solution (Husson et al., 2011, Figure 5). Uncertainties are low for the boundaries of the following magnetochrons of the lower Maastrichtian and upper Campanian (Tables 2a 366 367 and 2b).

Foraminifera and calcareous nannofossil bio-events recorded in Hole 762C are calibrated in ages using the results of the cyclostratigraphic study (Table 1). Age uncertainties on the ages of bio-events are calculated by taking into account the uncertainty between top and bottom depths as well as the uncertainty on the ages of the K/Pg boundary (0.07 Ma,

372	Husson et al., 2011). An age of 66 Ma for the K-Pg was chosen based on the recent results on
373	radiometric dating and astronomical calibrations of the Paleocene (Kuiper et al., 2008;
374	Westerhold et al., 2008; Hilgen et al., 2010; Renne et al., 2010). This provides a robust
375	stratigraphic framework that can be used as a reference for the Indian Ocean and also provides
376	a base for large-scale correlations and testing in the future of potential
377	synchronism/diachronism of planktonic microfossil bio-events between the different
378	provinces of the southern hemisphere.
379	
380	Table 2a and 2b about here
381	
382	4.3. Carbon stable isotopes
383	
384	A cross-plot of carbon- and oxygen-isotope values (Fig. 6) shows no significant trends
385	and lacks the pronounced covariance seen in many mixing lines produced by the addition of
386	variable quantities of isotopically homogeneous diagenetic cement to isotopically
387	homogeneous skeletal calcite (Jenkyns et al., 1995; Mitchell et al., 1997). The pattern of δ^{13} C
388	values generally conforms to trends observed in bulk stable isotopes of a number of reference
389	sites (Figs. 7–10). Given that chalk sediments of Hole 762C are mainly composed of
390	calcareous nannofossils, the characteristic form of this curve likely reflects primary sea-
391	surface water values with minimal diagenetic effects affecting the section in generally
392	consistent manner.
393	Due to the higher ratio of oxygen in interstitial fluids with respect to oxygen in
394	carbonate as compared to similar ratio of carbon, and due to their thermo-dependence, oxygen
395	isotopes are far more sensitive to post-depositional processes which increase with the porosity
396	of the sediment (Schrag et al., 1995). In chalks of ODP Hole 762C, oxygen isotope values are

397 highly variable which may reflect the Milankovitch control on the sedimentation enhanced by 398 diagenesis. No clear long-term trends or trends conformed to previously published planktic 399 foraminifera δ^{18} O profiles worldwide (Barrera and Savin, 1999) were observed in our 400 analysis. Diagenetic overprint may have altered primary δ^{18} O values which are thus not 401 presented here.

Carbon isotope values range between 2.35 and 3.1‰ and do not display any
significant difference with respect to colour alternations (Fig. 2). The carbon isotope profile
exhibits several positive and negative excursions and inflection points which are calibrated in
age using the cyclostratigraphic results from the K-Pg boundary to 645 ambsf (642.65 mbsf)
downhole. The rest of the profile was calibrated in age considering an average sedimentation
rate of 14.5 m/Ma similar to the interval above between 634 and 644 ambsf (Figs. 7–11).

408 Despite some local expressions probably due to changing sedimentation rates and occurrence of stratigraphical gaps, the patterns of δ^{13} C values found at Site 762C well 409 410 conforms to trends observed in bulk stable isotopes of a number of sites of the same age. The pattern of δ^{13} C values conforms to trends observed in bulk stable isotopes of Tercis les Bains 411 412 (Fig. 7), of the Gubbio composite curve (Fig. 7), of the Lägerdorf – Kronsmoor – Hemmoor 413 (LKH) section in Northwest Germany (Fig. 8), in stable isotopes of planktic and benthic 414 foraminifera in South Atlantic DSDP Hole 525A (Fig. 9) and in the Indian Ocean ODP Hole 761 (Barrera and Savin, 1999). The most prominent δ^{13} C events identified in common in the 415 416 nearby Indian Ocean Site 761 and in other reference sites fall within the same magnetochrons 417 and, approximately, within the same subparts of magnetochrons, thus making a high degree of 418 reliability (Figs. 7–9).

419

Figure 6 about here: format one column,~ 8 cm wide

421 These correlations helped to define 13 isotopic events in ODP Hole 762C whose422 description is given below (Figs. 7–10 and Table 3).

423 A short negative excursion (C1-) is identified in the uppermost Campanian right at the 424 base of chron C32n2n above the LO of Eiffelithus eximius (Fig. 2). This excursion is 425 characterized by a sharp 0.25% negative shift, a small rebound and another 0.1% negative 426 shift (Figs. 7–8). This event is poorly defined in Hole 762C, where values do not come back 427 to pre-excursion levels at the top of the event as observed in Tercis les Bains, LKH or Gubbio 428 (Figs. 7–8). C1- event, also identified at the base of C32n2n at Gubbio (Fig. 7) has an 429 estimated duration of ~300 kyr in Hole 762C (Table 4), which matches the 405 kyr filtering in 430 LKH (Fig. 8). 431 The three-step negative shift of the Campanian – Maastrichtian boundary defined as

CMB a, CMB b and CMB c (Thibault et al., 2012) is identified within chron C32n2n in Hole
762C, in accordance with the results of Tercis les Bains and Gubbio (Fig. 7). The LOs of *Uniplanarius trifidus* and *U. gothicus* are recorded within CMB c in Hole 762C and above
this event at Tercis les Bains (Fig. 7). In addition, the LO of *T. stemmerikii* is recorded within
CMB c both in Hole 762C and in Stevns-1 (Fig. 8).

⁴³⁷ Nearly all Maastrichtian δ^{13} C events defined in Stevns-1 (Thibault et al., 2012) can be ⁴³⁸ identified in Hole 762C and in the LKH section, resulting in a precise correlation between the ⁴³⁹ three sections (Fig. 8). One exception concerns the identification of M3-(b), a small and short-⁴⁴⁰ lived negative excursion in Stevns-1 and LKH and well-defined event named MME for Mid-⁴⁴¹ Maastrichtian event in the Gubbio curve (Fig. 7, Voigt et al., 2012). This event falls into the ⁴⁴² identified gap in Hole 762C (Figs. 7–8).

A 0.4‰ positive excursion between M3-(b) and M4-(a) occurs in the lower half of
chron C30n in Hole 762C (Fig. 7). This excursion is also observed in the same chron at ODP
Hole 761, another site of the Exmouth Plateau in the Indian Ocean (Barrera and Savin, 1999,

446	Fig. 6B) as well as at Site 1210B in the Pacific Ocean (Voigt et al., 2012). This positive
447	excursion, not observed in Stevns-1, is more evident in LKH and better expressed at Gubbio
448	composite curve (Figs. 8–9). However, the fairly large extent of this event, that we named as
449	Exmouth Plateau event (Figs. 7–10), rather points to a regional peculiarity (+0.4‰ in Hole
450	762C versus 0.1‰ at Gubbio) (Fig. 7).
451	
452	Figure 7 about here: format portrait full page width
453	Figure 8 about here: format landscape on full page
454	Figure 9 about here: format landscape on full page
455	Table 3 about here: format portrait full page width
456	Table 4 about here
457	
458	5. Discussion
459	
460	5.1. Early Maastrichtian disconformity or diachronism of microfossil bio-events ?
461	
462	Howe et al. (2003) identified an early Maastrichtian disconformity in sites from the
463	Exmouth Plateau (Hole 762C and 761B) within biozones KPF3/KPF2c (nannofossil zone
464	UC18, Fig. 2) based on the stratigraphic order of nannofossil and foraminifera bio-events
465	which differs from Tethyan stratigraphic frameworks. This assumption is mainly based on the
466	last co-occurrence of Broinsonia parca constricta and Reinhardtites levis and the very close
467	first occurrence of Abathomphalus mayaroensis (Fig. 2). Apthorpe (1979) previously
468	suggested that this early Maastrichtian disconformity is widespread on the western Australian
469	margin as she was unable to identify foraminifer biozone C12 in 45 of 52 wells from this area.

470 This disconformity would thus lie within chron C31r in Hole 762C (Fig. 2). No hiatus can be

471 characterized in the amplitude spectrograms of Hole 762C within chron C31r (Fig. 4). 472 Moreover, the obtained duration estimated in this section for chron C31r matches almost 473 perfectly those obtained at the Contessa highway section, central Italy (Husson et al., 2012), 474 as well as at Hole 1258A, Demerara Rise, central Atlantic (Husson et al., 2011). This result differs from the duration provided in the GTS2004 by only 160 kyr (Table 2b). These results 475 476 do not suggest such a disconformity in Hole 762C. During the late Campanian and 477 Maastrichtian, the Perth and Carnaryon basins in the south of the western Australian margin 478 were shown to have Austral affinities whereas the northwestern margin where the Exmouth 479 Plateau is situated had Transitional affinities between Austral and Tethyan assemblages 480 (Rexilius, 1984; Shafik, 1990; Huber, 1992a; Huber and Watkins, 1992) (Fig. 1). 481 Diachronism of Late Cretaceous planktic foraminifer and nannofossil datums with respect to 482 paleolatitude in the Southern Ocean was discussed by Huber and Watkins (1992) and Petrizzo 483 (2003). Gardin et al. (2012) also discussed calcareous plankton diachronism and the difficult 484 applicability of the available "standard" calcareous nannofossil biozonations for the late 485 Campanian-Maastrichtian. In the latest Cretaceous, during times of climatic cooling, standard 486 Tethyan zonations are difficult to apply because some index species are absent or have 487 different age ranges (Bralower and Siesser, 1992; Wonders, 1992; Petrizzo, 2000, 2003; 488 Howe et al., 2003; Campbell et al., 2004). Barrera and Savin (1999) and Li and Keller (1999) 489 showed that a global climatic cooling occurred right before the C32n/C31r transition and was 490 followed by warming in the topmost part of chron C31r. These climatic changes were mainly 491 deciphered through the oxygen isotope ratios of benthic foraminifera but also affected surface 492 waters as expressed by changes in calcareous nannofossil assemblages (Thibault and Gardin, 493 2006, 2007, Thibault et al., 2011). Therefore, the different order of nannofossil and 494 foraminifera bio-events observed in Hole 762C within chron C31r are rather the expression of

495 diachronism between Transitional and Tethyan provinces due to these climatic changes than496 the evidence of a disconformity.

497

498 5.2. Age of the Campanian–Maastrichtian boundary

499

500 Before the ratification of the GSSP boundary at Tercis les Bains, the base of the 501 Maastrichtian stage was assigned to the first occurrence of belemnite *Belemnella lanceolata* 502 with reference to the chalk section of Kronsmoor, North Germany (Birkelund et al., 1984; 503 Schönfeld et al., 1996). However, this marker has a biogeographic distribution which is 504 limited to the Boreal realm (Odin, 1996). The Maastrichtian Working Group chose to identify 505 the base of the Maastrichtian by the first occurrence of ammonoid Pachydiscus neubergicus 506 (Odin, 1996), which has a much wider geographical distribution (Hancock, 1991), on the 507 basis of indirect correlations and comparison of strontium isotope stratigraphy with the U.S. 508 Western Interior (McArthur et al., 1992; Landman and Waage, 1993; Schönfeld et al., 1996). 509 Subsequently, the Campanian-Maastrichtian GSSP boundary was defined and ratified at 510 Tercis les Bains close to the first occurrence of ammonoid P. neubergicus (the preferred guide 511 event, Odin and Lamaurelle, 2001) and as the arithmetical mean of 12 distinct biohorizons in 512 order to get the best precise definition. This combination of criteria ensures more secure 513 correlation of the boundary level at the global scale (Odin and Lamaurelle, 2001) than just the 514 ammonite bio-horizon only. Based on a large array of paleontological, paleomagnetic and 515 radiometric considerations, the GSSP boundary was considered nearly contemporaneous to 516 the FO of B. lanceolata in the Boreal realm (lan in LKH section, Fig. 8), lies close to the 517 middle or in the upper part of chron C32n2n, and was assigned an age of 72.0 ± 0.5 Ma 518 (Barchi et al., 1997; Lewy and Odin, 2001; Odin and Lamaurelle, 2001). In the GTS2004, two 519 distinct ages are proposed. (1) A first approximate age of 70.6 Ma is based on the supposed

520 last occurrence of nannofossil Uniplanarius trifidus at the top of belemnite Belemnella obtusa 521 zone in northwest Germany, calibrated with the strontium isotope curve of McArthur et al. (1994) at ca. 69.9 Ma. This estimate is ~0.75 Myr younger than the boundary level at Tercis 522 523 les Bains, by assuming a constant sedimentation rate on this section. However, U. trifidus is 524 actually inconsistent in Germany because this species is mainly restricted to low latitudes 525 (Schönfeld et al., 1996; Burnett, 1998) and the strontium isotope age calibration method has 526 an uncertainty comprised between 0.8 and 1.5 Ma (McArthur et al., 1994). (2) A second 527 estimate at 71.3 Ma is given, based on a strontium isotope age projection of the FO of 528 B. lanceolata (Schönfeld et al., 1996) on the curve of McArthur et al. (1994). 529 None of these two estimates actually match the biohorizon criteria provided for the 530 GSSP boundary and they do not take into account the large uncertainty of the strontium 531 isotope age calibration. In Husson et al. (2011), the LO of U. trifidus was considered to be ca. 532 0.75 Myr younger than the CMB at Tercis les Bains, assuming an obliquity-driven metric 533 rhythm of the sedimentation (40 kyr/m, Odin and Amorosi, 2001). The LO of U. trifidus is 534 identified with great precision in ODP Hole 762C (614.06 +/-0.06 mbsf), allowing a 535 cyclostratigraphic assignment to the top of $Ca_{405}1$ (616.09 ambsf, Fig. 5, $Ma_{405}16$ in Husson 536 et al., 2011). Consequently, the CMB was previously placed in the lowermost part of $Ca_{405}2$ 537 (corresponding to $Ma_{405}17$ in Husson et al., 2011), within the middle of 100 kyr eccentricity 538 cycle $e_{100}68$. However, uncertainties remain for the position of the CMB because the LO of U. 539 trifidus at ODP Hole 762C falls within the interval of reduced sedimentation rates (Fig. 10) 540 and because a reasonable diachronism of this bio-event between the Tethyan and Transitional 541 Provinces can not be completely ruled out. The correlation of δ^{13} C events CMBa, CMBb and CMBc between Stevns-1, Tercis les 542

543 Bains, LKH, Gubbio and Hole 762C (Figs. 7–9) calls for a revision of the placement and

544 subsequent age of the CMB. The boundary as defined in Tercis les Bains lies within CMBc

545	(Fig. 7), thus leading to a much more precise correlation of the boundary and a location at
546	615.4 mbsf (617.37 ambsf) in Hole 762C, i.e. within $Ca_{405}1$ and $e_{100}62$, in the uppermost part
547	of chron C32n2n (Fig. 5). A precise age of 72.15±0.05 Ma can thus be proposed for the CMB,
548	considering an average age of 66 Ma for the K-Pg boundary (Kuiper et al., 2008; Westerhold
549	et al., 2008; Hilgen et al., 2010; Renne et al. 2010). An independent approach to estimate the
550	age of the CMB has been recently documented in Voigt et al. (2012) based on macrofossil
551	biostratigraphic correlations of Inoceramids between Tercis les Bains and the Western Interior
552	Basin. Revised ⁴⁰ Ar/ ³⁹ Ar ages of two bentonites, bracketing ammonite zones tied to
553	Inoceramid zonation across the Campanian-Maastrichtian boundary interval of the Western
554	Interior Basin, gives an age of 72.2±0.2 Ma for the CMB.
555	In addition, the correlation of Hole 762C, Stevns-1 and LKH sections shows that the
556	CMB falls exactly at the base of the Belemnella obtusa zone in northwest Germany (Fig. 8).
557	The base of the <i>B. lanceolata</i> zone in the Boreal realm corresponds to the base of δ^{13} C event
558	CMBa and is approximately two 405 kyr cycles older than the identified level for the CMB
559	(Fig. 8). Consequently, the CMB as defined by the Belemnite zonation in the Boreal realm is
560	~800 kyr older than the CMB as defined in the GSSP of Tercis les Bains. This duration is
561	slightly greater than the 500 kyr discrepancy already estimated by Niebuhr and Esser (2003).
562	Gradstein et al. (2004) already proposed a projection of the base of the Maastrichtian stage as
563	defined in Tercis les Bains approximately at the base of the Belemnella obtusa zone of
564	northwest Germany and consequently estimated a 700 kyr discrepancy between the GSSP and
565	the base of <i>B. lanceolata</i> .

567 5.3. Variations of the sedimentation rate

569	Variations of the sedimentation rate can be precisely estimated at the scale of 100 kyr
570	and 405 kyr eccentricity cycles (Fig. 10). The resulting curves agree with the trends
571	delineated on the amplitude spectrograms and show a drop of sedimentation rates from ~ 1.5
572	cm/kyr in C33n/C32r to very low values around 0.6 cm/kyr throughout the top of C32n2n to
573	C31n. The sedimentation rate suddenly increases to ~1.3 cm/kyr close to the transition
574	between chrons C31n and C30r, right after the identified 500 kyr gap. A second increase in
575	the middle part of chron C30n results in a average value of the sedimentation rate of 1.9
576	cm/kyr (Fig. 10).
577	

Figure 10 about here: format landscape full page

580 An interesting issue is the comparison of the variations of the sedimentation rate with δ^{13} C variations at Hole 762C and with the sea-level record (Fig. 10). Kominz et al. (2008) 581 582 recently provided an updated sea-level record for the last 108 Ma through the backstripping of 583 corehole data from the New Jersey and Delaware Coastal Plains. The temporal resolution of 584 the sea level curve is quite low for comparison at the scale of one single stage (+/-1Ma for the 585 Late Cretaceous) and still bears large uncertainties (Fig. 10). The three sea-levels curves of Miller et al. (2005), Kominz et al. (2008) and Haq et al. (1987) are rather different for this 586 587 time interval (Fig. 10). Taking into account age uncertainties of these sea-level curves, a late Campanian–early Maastrichtian 3rd order regression can be observed in the three records and 588 may correlate to the large interval of lower δ^{13} C values between events CMBa and M3+ (Fig. 589 590 10). This interval is also marked by low values of the sedimentation rate in Hole 762C (Fig. 591 10).

592 Several hypothesis may explain the variations of the sedimentation rate such as 593 variations in pelagic carbonate productivity, changes in accommodation by variations of

594 subsidence or detrital supply, dissolution at the sea-floor and winnowing. At Site 762C, 595 variations of the sedimentation rate may actually reflect a change in the strength and 596 chemistry of bottom currents along the northwestern Australian margin. The early Maastrichtian 3rd order regression was correlated to an episode of accelerated cooling 597 598 associated to an inferred reversal of the thermohaline circulation (Barrera et al., 1997). The coincidence between this 3rd order regression and this episode of accelerated cooling suggests 599 600 a glacio-eustatic mechanism (Miller et al., 1999). These authors argued for the development 601 of a moderate Antarctic ice-sheet at that time. Such a short early Maastrichtian ice-age would 602 have intensified high-latitude formation of cooler and oxygenated bottom-waters and 603 increased latitudinal temperature gradients (Barrera et al., 1997; Barrera and Savin, 1999). 604 The Southern and Indian Oceans were isolated by geographical barriers between Antarctica 605 and South America and in the central Atlantic, which inhibited the free circulation of 606 intermediate to deep-waters. As a result, bottom-waters generated around Antarctica would 607 have flowed north past the northwestern Australian margin into the Tethys Ocean (Howe et 608 al., 2003). These cooler and well-oxygenated bottom waters may have been slightly more 609 corrosive. Alternatively, stronger bottom currents could have resulted in displacing the 610 pelagic rain further north of the site of deposition of Site 762C at that time. These bottom 611 waters could also have resulted into higher winnowing of the sea-floor. No sign of erosion, 612 condensation or winnowing was noticed in the original description of cores 47X to 49X which 613 correspond to this interval of reduced sedimentation rates (Haq et al., 1990) but this 614 interpretation calls for a more detailed examination of these cores. Nethertheless, any of these 615 processes would have been associated to this paleoceanographic reorganization and may 616 account for lower sedimentation rates within this interval. At the early-late Maastrichtian 617 transition (topmost part of chron C31r), the geographical barrier formed by the Rio Grande 618 Rise and Walvis Ridge in the Atlantic Ocean was breached by sea-floor spreading on the

Mid-Atlantic Ridge, allowing free circulation of bottom-waters between the North Atlantic
and Indian Oceans (Frank and Arthur, 1999). Such a return of warmer, less corrosive and less
powerful bottom-waters might eventually explain the following increase of the sedimentation
rate in the remaining part of the Maastrichtian (Fig. 10).

623

624 5.4. Correlations and paleoenvironmental interpretation of carbon-isotope signals

625

626 Li and Keller (1998a, 1998b) and Barrera and Savin (1999) described carbon isotope 627 trends on separated planktic and benthic foraminifera from a large number of deep-sea sites in the Atlantic, Pacific, Indian and Southern Oceans using time control on paleomagnetic 628 629 reversal stratigraphy and/or Sr isotopes calibrated on paleomagnetic reversal stratigraphy. 630 Their absolute ages were therefore based on Cande and Kent (1995) for magnetochronology. 631 These ages have been revised in the GTS2004, in particular for the K-Pg boundary whose 632 calibration shifted from 65 to 65.5 Ma and recently to 66 Ma (Kuiper et al., 2008; Westerhold 633 et al., 2008; Renne et al. 2010). This led to discrepant late Maastrichtian ages of isotopic events presented here and those described by previous authors. However, the bulk δ^{13} C profile 634 of the Maastrichtian of Hole 762C resembles previous δ^{13} C profiles acquired on separated 635 636 foraminifera (Li and Keller, 1998a, 1998b; Barrera and Savin, 1999), though several 637 additional events are recorded here, likely due to the higher-resolution dataset of our study or to the localized expression of some events. As discussed above, correlation of major δ^{13} C 638 639 events can be achieved throughout the Indian Ocean, the Tethys, the South Atlantic and the Boreal realm (Figs. 7–9). 640

641 Changes in the δ^{13} C record of marine carbonates are generally interpreted as a reflect 642 of changes in the ratio of burial fluxes of isotopically light C of organic matter to C in the 643 carbonates (Scholle and Arthur, 1980; Arthur et al., 1988; Weissert, 1989; Weissert et al.,

644 1998). Additional factors that can influence this record are the addition into the marine realm 645 of various external carbon species, such as terrestrial (through weathering), platform-derived 646 Corg and dissolved inorganic carbon (platform drowning), atmospheric CO₂, or methanederived carbon from the dissociation of clathrates (Cerlings et al., 1993; Dickens et al., 1995; 647 648 Hesselbo et al., 2000; Kump and Arthur, 1999; Immenhauser et al., 2003; Weissert and Erba, 649 2004; Swart and Eberli, 2005; Panchuk et al., 2005, 2006, Föllmi et al., 2006). However, processes generally associated to large (>1.5‰) δ^{13} C excursions during oceanic anoxic events 650 651 (OAEs) in the Jurassic, early and mid-Cretaceous can hardly be applied to Campanian-652 Maastrichtian records because no black shales were deposited on a large-scale during this 653 interval and because carbon-isotope excursions recorded here in bulk carbonates are either 654 much smaller ($\leq 0.4\%$) and/or are not short-lived episodes (for instance, the overall negative 655 trend regrouping CMBa-c accounts for a total duration of 1 Ma, Table 4).

Barrera and Savin (1999) noted that the δ^{13} C negative excursion of the lower 656 657 Maastrichtian is seen most markedly at southern polar Sites 689, 690 and 750. These authors 658 proposed two distinct mechanisms to explain this excursion : (1) at the global scale, an 659 increased ratio of organic to inorganic carbon in the input to the oceans driven by increased 660 weathering of organic-rich sediments exposed on continental shelves during the sea-level 661 drop, (2) in the southern ocean, a deepening of the oxygen minimum zone would reflect 662 increased oxidation of organic matter and an associated production of ¹³C-depleted 663 bicarbonate which would have resulted in more pronounced negative values as observed in the benthic foraminiferal profiles. However, these authors noted that a second sea-level drop 664 665 recorded in C30n (Haq et al., 1987 and Kominz et al., 2008) did not affect this ratio as inferred from their δ^{13} C values in that interval. In the Late Cretaceous (Cenomanian to 666 667 Campanian), Jarvis et al. (2002, 2006) noted that the carbon-isotope reference curve for the 668 English Chalk was remarkably similar in shape to supposedly eustatic sea-level curves. They

669 concluded that both long-term and short-term δ^{13} C changes were controlled by sea-level 670 throughout these stages with increasing δ^{13} C values accompanying sea-level rise and 671 transgression, and decreasing δ^{13} C values characterizing sea-level fall and regression. This 672 relationship is explained by variations in epicontinental sea area affecting organic-matter 673 burial fluxes.

674 When taking into account the large uncertainty of the age-scale of the sea-level curve 675 for the Late Cretaceous (+/- 1Ma, Kominz et al., 2008), it is not currently possible to confirm 676 or infirm Jarvis' hypothesis on the relationship between variations of the sea-level and 677 variations of δ^{13} C in the Late Cretaceous (Fig. 10). More work is needed to reduce these 678 uncertainties and establish the evolution of regional sea-level changes.

Friedrich et al. (2009) interpreted the large carbon isotope perturbations of the CMB
and early Maastrichtian as a weakening of surface water stratification and increased
productivity in the southern high latitudes caused by ongoing cooling during the Late
Cretaceous. This would have led to the strengthening contribution of intermediate- to deepwater production in the high southern latitudes.

Climate change might have also contributed to some of the observed $\delta^{13}C$ excursions. 684 685 In particular, in the late Maastrichtian, M4-(b) is coincident with the last occurrence of the 686 high-fertility species Biscutum constans (Fig. 9). This bio-event, which was also recorded in 687 the Tropical Atlantic and Pacific Oceans (Thibault and Gardin, 2010) could suggest a 688 decrease of surface-water fertility by the end of the Maastrichtian. In addition, M4-(b) occurs 689 during the acme of nannofossil warm-water species Micula murus which has been interpreted 690 as the expression of the end-Maastrichtian Deccan warming (Thibault and Gardin, 2006, 691 2007, 2010). This warming event has not been associated so far with any stratification of the ocean and the pulse of volcanically derived CO₂ (δ^{13} C \approx -5‰) associated with Deccan 692 693 volcanism would have contributed only to very small changes in the isotopic composition of

694	the oceans (Kump and Arthur, 1999). However, this global warming event might have	
695	significantly reduced photosymbiotic activity (Abramovich and Keller, 2003) and caused an	
696	ecologi	cal stress (Li and Keller, 1998a, 1998b; Abramovich and Keller, 2003), resulting in a
697	decreas	e of surface ocean productivity. Thus, the negative excursion M4-(b) may be the
698	express	ion of a global decrease in surface ocean productivity.
699		
700	6. Con	clusions
701		
702	1)	Combined calcareous plankton biostratigraphy, $\delta^{13}C$ stratigraphy, magneto- and
703		cyclostratigraphy of ODP Hole 762C has been established and shows that this site
704		had a nearly continuous sedimentation all along the upper Campanian-Maastrichtian
705		apart from a ~500 kyr gap identified in Chron C31n.
706	2)	There is no disconformity in the lower Maastrichtian of the Exmouth Plateau contrary
707		to what stated in Howe et al. (2003). The observed higher-than-expected extinctions
708		of lower Maastrichtian nannofossil species, and the different stratigraphic orders of
709		nannofossil and foraminifera events as compared to "standard" Tethyan zonations,
710		are rather the result of diachronism and migration patterns between the Tethyan,
711		Transitional and Austral realms. These migration patterns could well be caused by
712		paleoceanographic reorganizations triggered by the prominent climatic changes of the
713		Campanian–Maastrichtian.
714	3)	Results of the cyclostratigraphic approach tied to the astronomical calibration of the
715		Maastrichtian allowed a precise age-calibration of biostratigraphic events and of the
716		carbon-isotope profile.
717	4)	Reduced sedimentation rates in the early Maastrichtian may be the response to either
718		reduced pelagic carbonate productivity, or either major global reorganizations of

719		bottom-currents leading to reduced sedimentation rates along the northwestern
720		margin of Australia.
721	5)	Correlation of the calibrated δ^{13} C profile of Hole 762C to that of the Tercis section,
722		GSSP of the Campanian-Maastrichtian boundary, allows proposal of a precise age of
723		72.15 ± 0.05 Ma for this boundary considering an age of 66 Ma for the K-Pg boundary.
724		The total duration of the Maastrichtian stage is 6.15±0.05 Ma.
725	6)	The original CMB as defined by the base of the Boreal Belemnite zone Belemnella
726		lanceolata in northwest Germany is ~800 kyr older than the CMB as defined in the
727		GSSP of Tercis les Bains, which, in turn lies at the base of the Belemnella obtusa
728		zone.
729	7)	The obtained chronostratigraphic framework of ODP Hole 762C is proposed as a
730		robust reference for the Indian Ocean and can serve as a basis for large-scale
731		correlation of δ^{13} C profiles and to test synchronism/diachronism of microfossil bio-
732		events throughout the Boreal, Tethyan, Transitional and Austral realms.
733		
734	Plate 1	and Plate 2 around here: format portrait full page
735		
736	Ackno	wledgements
737		
738	We are	grateful to Nathalie Labourdette, Damien Huygues and Vincent Gressier for technical
739	support and analytical help. Kipis to Julien Moreau. This research used samples provided by	
740	the Ocean Drilling Program (ODP). ODP is sponsored by the US National Science	
741	Foundation (NSF) and participating countries under the management of Joint Oceanographic	
742	Institut	ions (JOI), Inc. Funding for this study was provided by Eclipse II Program, the Danish
743	Nation	al Foundation (FNU) and the Carlsberg Foundation. We warmly thank Silke Voigt and

745	well as Jim Ogg and an anonymous reviewer for their insightful and constructive reviews.
746	
747	References
748	
749	Abramovich, S., Keller, G., 2002. High stress late Maastrichtian paleoenvironment: inference
750	from planktonic foraminifera in Tunisia. Palaeogeogr. Palaeoclimat. Palaeoecol. 178,
751	145–164.
752	Abramovich, S., Keller, G., 2003. Planktonic foraminiferal response to the latest
753	Maastrichtian abrupt warm event: a case study from South Atlantic DSDP Site 525A.
754	Mar. Micropaleontol. 48, 225–249.
755	Apthorpe, M.C., 1979. Depositional history of the Upper Cretaceous of the Northwest shelf,
756	based upon Foraminifera. The APPEA Journal 19, 74–89.
757	Arthur, M. A., Dean, W.E., Pratt, L.M. 1988. Geochemical and climatic effects of increased
758	marine organic carbon burial at the Cenomanian/Turonian boundary, Nature 35, 714–717.
759	Barchi, P., Bonnemaison, M., Galbrun, B., Renard, M., 1997. Tercis (Landes, Sud-Ouest
760	France) : point stratotypique de la limite Campanien-Maastrichtien. Résultats
761	magnétostratigraphiques et premières données sur la nannoflore calcaire. Bull. Soc. Géol.
762	France 168, 133–142.
763	Barrera, E., Savin, S.M., 1999. Evolution of Campanian–Maastrichtian marine climates and
764	oceans. In: Barrera, E., Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate
765	System. Geol. Soc. Am. Spec. Paper, vol. 332, pp. 245-282.
766	Barrera, E., Savin, S.M., Thomas, E., Jones, C.E., 1997. Evidence for thermohaline-
767	circulation reversals controlled by sea level change in the latest Cretaceous. Geology 25,
768	715–718.

Andy Gale for numerous fruitful discussions on Campanian–Maastrichtian stratigraphy as

- 769 Batenburg, S.J., Sprovieri, M., Gale, A.S., Hilgen, F.J., Hüsing, S., Laskar, J., Liebrand, D.,
- T70 Lirer, F., Orue-Etxebarria, X., Pelosi, N., Smit, J., 2012. Cyclostratigraphy and
- astronomical tuning of the Maastrichtian at Zumaia (Basque country, Northern Spain).
- Earth Planet. Sci. Lett., in press.
- 773 Birkelund, T., Hancock, J.M., Hart, M.B., Rawson, P.F., Remane, J., Robaszynski, F.,
- Schmid, F., and Surlyk, F. 1984. Cretaceous stage boundaries Proposals. Bulletin of the
- 775 Geological Society of Denmark 33, 3–20.
- 776 Bown, P.R., 1998. Calcareous Nannofossil Biostratigraphy. British Micropaleontology
- 777 Society Publication Series. Chapman & Hall/Kluwer Academic Publishers, London, 328778 pp.
- Bralower, T.J., Siesser, W., 1992. Cretaceous calcareous nannofossil biostratigraphy of Sites
 761, 762 and 763, Exmouth and Wombat Plateaus, northwest Australia. Proc. ODP Sci.
 Results 122, 529-556.
- 782 Bralower, T.J., Leckie, R.M., Sliter, W.V., Thierstein, H.R., 1995. An integrated Cretaceous
- 783 microfossil biostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J.
- (Eds.), Geochronology, Timescales and Global Stratigraphic Correlations. SEPM Special
 Publication 54, Tulsa, pp. 65–79.
- 786 Burnett, J.A. with contributions from Gallagher, L.T. & Hampton, M.J. 1998. Upper
- 787 Cretaceous. In: P.R. Bown (Ed.). Calcareous Nannofossil Biostratigraphy. British
- 788 Micropalaeontological Society Series. Chapman & Hall/Kluwer Academic Publishers,
- 789 London: 132–199.
- 790 Campbell, R.J., Howe, R.W., Rexilius, J.P., 2004. Middle Campanian-lowermost
- 791 Maastrichtian nannofossil and foraminiferal biostratigraphy of the northwestern
- Australian margin. Cretaceous Res. 25, 827–864.

- Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for
 the late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095.
- Cerlings, T. E., Y. Wang, Quade, J., 1993. Expansion of C4 ecosystems as an indicator of
 global ecological change in the late Miocene. Nature 361, 344–345.
- 797 Chave, A.D., 1984, Lower Paleocene-Upper Cretaceous magnetostratigraphy, Sites 525, 527,
- 528, and 529, Deep Sea Drilling Project Leg 74, Init. Rep. DSDP 74, 525–531.
- 799 Cramer, B.S., 2001. Latest Palaeocene-earliest Eocene cyclostratigraphy: using core

800 photographs for reconnaissance geophysical logging. Earth Planet. Sci. Lett. 186, 231–

- 801 244.
- 802 Debajyoti, P., Skrzypek, G., Forizs, I., 2007. Normalization of measured stable isotopic
- compositions to isotope reference scales a review. Rapid Commun. Mass Spectrom. 21,
 3006–3014.
- 805 Dickens, G.R., O'Neil, J.R., Rea, D.K., Owen, R.M., 1995. Dissociation of oceanic methane

806 hydrate as a cause of the carbon isotope excursion at the end of the Paleocene.

- 807 Paleoceanography 10, 965–971.
- 808 Föllmi, K.B., Godet, A., Bodin, S., Linder, P., 2006. Interactions between environmental
- 809 change and shallow water carbonate buildup along the northern Tethyan margin and their
- 810 impact on the Early Cretaceous carbon isotope record. Paleoceanography 21, PA4211,
- 811 doi:10.1029/2006PA001313.
- Frank, T.D., Arthur, M.A., 1999. Tectonic forcings of Maastrichtian ocean-climate evolution.
 Paleoceanography 14, 103-117.
- 814 Friedrich, O., Herrle, J.O., Hemleben, C., 2005. Climatic changes in the Late Campanian-
- 815 Early Maastrichtian: Micropaleontological and stable isotopic evidence from an
- 816 epicontinental sea. J. Foraminiferal Res. 35, 228–247.

- 817 Friedrich, O., Herrle, J.O., Wilson, P.A., Cooper, M.J., Erbacher, J., Hemleben, C., 2009.
- 818 Early Maastrichtian carbon cycle perturbation and cooling event: Implications from the
- 819 South Atlantic Ocean. Paleoceanography 24, PA2211, doi:10.1029/2008PA001654.
- 820 Galbrun, B., 1992. Magnetostratigraphy of Upper Cretaceous and lower Tertiary sediments,
- 821 Sites 761 and 762, Exmouth Plateau, northwest Australia. Proc. ODP Sci. Results 122,
 822 699–716.
- Gale, A.S., Jenkyns, H.C., Kennedy, W.J., Corfield, R.M., 1993. Chemostratigraphy versus
 biostratigraphy: data from around the Cenomanian–Turonian boundary. J. Geol. Soc.
 London 150, 29–32.
- 826 Gardin, S., Monechi, S., 2001. Calcareous Nannofossil distribution in the Tercis geological
- site (Landes, SW France) around the Campanian-Maastrichtian boundary, in: Odin G.S.
- 828 (Ed.), The Campanian–Maastrichtian stage boundary. Characterization at Tercis les Bains
- 829 (France) and correlation with Europe and other continents. Developments in
- Palaeontology and Stratigraphy 19, pp. 272–284.
- 831 Gardin, S., Odin, G.S., Bonnemaison, M., Melinte, M., Monechi, S., von Salis, K., 2001.
- 832 Results of the cooperative study on the calcareous nannofossils across the Campanian-
- 833 Maastrichtian boundary at Tercis les Bains (Landes, France), in: Odin G.S. (Ed.), The
- 834 Campanian–Maastrichtian stage boundary. Characterization at Tercis les Bains (France)
- and correlation with Europe and other continents. Developments in Palaeontology and
- 836 Stratigraphy 19, pp. 293–309.
- 837 Gardin, S., Galbrun, B., Thibault, N., Coccioni, R., Premoli Silva, I., 2012. Bio-
- 838 magnetochronology for the upper Campanian Maastrichtian from the Gubbio area, Italy:
- new results from the Contessa Highway and Bottaccione sections. Newsl. Stratigr. 45, in
- 840 press.

- Golovchenko, X., Borella, P.E., O'Connell, S., 1992. Sedimentary cycles on the Exmouth
 Plateau. Proc. ODP Sci. Results 122, 279–294.
- Gradstein, F.M., Ogg, J.G., Smith, A.G., 2004. A Geologic Time Scale 2004, Cambridge
 University Press, Cambridge, U.K., 500 pp.
- Hancock, J.M., 1991. Ammonite time scales for the Cretaceous. Cretaceous Res. 12, 259–
 291.
- Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating Sea levels Since the
 Triassic. Science 235, 1156–1167.
- Haq et al., 1992. Site 762, Shipboard Scientific Party. Proc. ODP Init. Rep. 122, 213–288.
- 850 Hay, W.H., DeConto, R.M., Wold, C.N., Wilson, K.N., Voigt, S., Schulz, M., Rossby Wold,
- A., Dullo, W.-C., Ronov, A.B., Balukhovsky, A.N., Söding, E., 1999. Alternative global
- 852 Cretaceous paleogeography. In: Barrera, E., Johnson, C. C. (Eds.), Evolution of the
- 853 Cretaceous Ocean-Climate System: Boulder, Colorado, Geol. Soc. Am. Spec. Paper 332,
- 854 1–47.
- Henriksson, A.S., 1993. Biochronology of the terminal Cretaceous calcareous nannofossil
 Zone of *Micula prinsii*. Cretaceous Res. 14, 59–68.
- 857 Hesselbo, S. P., Gröcke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Bell, H.S.M.,
- Green, O.R., 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic
 event. Nature 406, 392–395.
- 860 Hilgen, F. J., Kuiper, K. F., and Lourens, L. J. (2010). Evaluation of the astronomical time
- scale for the Paleocene and earliest Eocene. Earth Planet. Sci. Lett. 300, 139–151.
- 862 Howe, R.W., Campbell, R.J., Rexilius, J.P., 2003. Integrated uppermost Campanian-
- 863 Maastrichtian calcareous nannofossil and foraminiferal biostratigraphic zonation of the
- 864 northwestern margin of Australia. Journal of Micropalaeontology 22, 29–62.
- 865 Huang, Z., Boyd, R., O'Connell, S., 1992. Upper Cretaceous cyclic sediments from Hole
- 866 762C, Exmouth Plateau, northwest Australia. Proc. ODP Sci. Results 122, 259–278.
- 867 Huber, B.T., 1992a. Paleobiogeography of Campanian–Maastrichtian foraminifera in the
- southern high latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 92, 325–360.
- 869 Huber, B.T., 1992b. Upper Cretaceous planktic foraminiferal zonation for the Austral Realm.
- 870 Mar. Micropaleontol. 20, 107–128
- 871 Huber, B.T., Watkins, D.K., 1992. Biogeography of Campanian–Maastrichtian calcareous
- 872 plankton in the region of the Southern Ocean: Paleogeographic and Paleoclimatic
- 873 implications. In: Kennett, J.P., Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A
- 874 Perspective on Global Change. American Geophysical Union, Antarctic Research Series
- 875 56, Washington, pp. 31–60.
- Husson, D., Galbrun, B., Laskar, J., Hinnov, L., Thibault, N., Gardin, S., Locklair, R.E., 2011.
 Astronomical calibration of the Maastrichtian (late Cretaceous). Earth Planet. Sci. Lett.
 305, 328–340.
- 879 Husson, D., Galbrun, B., Thibault, N., Gardin, S., Huret, E., Coccioni, R., 2012. Astronomical
- 880duration of polarity Chron C31r (Lower Maastrichtian): cyclostratigraphy of ODP Site
- 881 762 (Indian Ocean) and the Contessa Highway section (Gubbio, Italy). Geol. Mag. 149,
- 882 345–351.
- Immenhauser, A., Della Porta, G. Kenter, J. A. M., Bahamonde, J.R., 2003. An alternative
- 884 model for positive shifts in shallow-marine carbonate δ^{13} C and δ^{18} O. Sedimentology 50, 885 953–959.
- 886 Ion, J., Odin, G.S., 2001. Planktonic foraminifera from the Campanian-Maastrichtian at
- 887 Tercis les Bains (Landes, France). In: Odin, G.S. (Ed.), The Campanian-Maastrichtian
- stage boundary: characterisation at Tercis les Bains (France): correlation with Europe and

- other continents. Developments in Palaeontology and Stratigraphy Series 19, Elsevier
 Sciences Publ. Amsterdam, 349-378.
- Jarvis, I., Mabrouk, A., Moody, R.T.J., de Cabrera, S., 2002. Late Cretaceous (Campanian)
- carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms.
- 893Palaeogeogr. Palaeoclimatol. Palaeoecol. 188, 215–248.
- Jarvis, I., Gale, A.S., Jenkyns, H.C., Pearce, M.A., 2006. Secular variation in Late Cretaceous
- 895 carbon isotopes: a new δ^{13} C carbonate reference curve for the Cenomanian–Campanian 896 (99.6–70.6 Ma). Geol. Mag. 143, 561–608.
- Jenkyns, H.C., Gale, A.S., Corfield, R.M., 1994. Carbon- and oxygen-isotope stratigraphy of
- the English Chalk and Italian Scalia and its palaeoclimatic significance. Geol. Mag. 131,
 1–34.
- 900 Jenkyns, H.C., Mutterlose, J., Sliter, W.V., 1995. Upper Cretaceous carbon- and oxygen-
- 901 isotope stratigraphy of deep-water sediments from the North-Central Pacific (Site 869,
- 902 Flank of Pikini-Wodejebato, Marshall Islands). Proc. ODP Sci. Results 143, 105-108.
- 903 Johnson, C.C., Barron, E.J., Kauffman, E.G., Arthur, M.A., Fawcett, P.J., Yasuda, M.K.,
- 904 1996. Middle Cretaceous reef collapse linked to ocean heat transport. Geology 24, 376–
 905 380.
- 906 Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintsevaw, S., Scotese, C.R.,
- 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware
 coastal plain coreholes: an error analysis. Basin Res. 20, 211–226.
- Kuiper, K.F., Deino, A. Hilgen, F.J., Krijgsman, W., Renne, P.R., and Wijbrans, J.R., 2008.
 Synchronizing rock clocks of earth history. Science 320, 500-504.
- 911 Kump, L. R., Arthur, M.A., 1999. Interpreting carbon-isotope excursions: Carbonates and
- 912 organic matter. Chem. Geol. 161, 181–198.

- 913 Laskar, J., Fienga, A., Gastineau, M., Manche, H., 2011. La2010: a new orbital solution for
- 914 the long-term motion of the Earth. Astronomy and Astrophysics 532, A89, 1–15, DOI:

915 <u>http://dx.doi.org/10.1051/0004-6361/201116836</u>.

- 916 Landman, N.H., Waage, K.M., 1993. Scaphitid ammonites of the Upper Cretaceous
- 917 (Maastrichtian) Fox Hills formation in South Dakota and Wyoming, Bulletin of the
- 918 American Museum of National History 215, 1–257.
- Lees, J.A., 2002. Calcareous nannofossils biogeography illustrates palaeoclimate change in
 the Late Cretaceous Indian Ocean. Cretaceous Res. 23, 537–634.
- 921 Lees, J.A., Bown, P.R., 2005. Upper Cretaceous calcareous nannofossil biostratigraphy, ODP
- 922 Leg 198 (Shatsky Rise, northwest Pacific Ocean). Proc. Ocean Drill. Program Sci. Results
- 923 198, 1–60. doi:10.2973/odp.proc.sr.198.114.2005.
- 924 Lewy, Z., Odin, G.S., 2001. Magnetostratigraphy across the Campanian-Maastrichtian
- 925 boundary at Tercis les Bains in comparison with northern Germany, the Apennines
- 926 (Central Italy) and North America; biostratigraphical and Central Italy) and North
- 927 America; biostratigraphical and geochronological constraints. In: Odin, G.S. (Ed.), The
- 928 Campanian-Maastrichtian stage boundary: characterisation at Tercis les Bains (France):
- 929 correlation with Europe and other continents. Developments in Palaeontology and
- 930 Stratigraphy Series 19, Elsevier Sciences Publ. Amsterdam, 175-183.
- Li, L., Keller, G., 1998a. Maastrichtian climate, productivity and faunal turnovers in planktic
 foraminifera in South Atlantic DSDP sites 525A and 21. Mar. Micropaleontol. 33, 55–86.
- Li, L., Keller, G., 1998b. Abrupt deep-sea warming at the end of the Cretaceous. Geology 26,
 934 995–998.
- Li, L., Keller, G., 1999. Variability in Late Cretaceous and deep waters: evidence from stable
 isotopes. Mar. geol. 161, 171–190.

937	MacLeod, K.G., Huber, B.T., Ward, P.D., 1996. The biostratigraphy and paleobiogeography
938	of Maastrichtian inoceramids. In: Ryder, G., Fastovsky, D., Gartner, S. (Eds.), The
939	Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Geol. Soc. Am. Spec.
940	Paper 307, Boulder, pp. 361–373.
941	Manivit, H., 1984. Paleogene and Upper Cretaceous calcareous nannofossils from Deep Sea
942	Drilling Project Leg 74. Init. Rep. Deep Sea Drill. Proj. 74, 475–499.
943	McArthur, J.M., Kennedy, W.J., Gale, A.S., Thirlwall, M.F., Chen, M., Burnett, J., Hancock,
944	J.M., 1992. Strontium isotope stratigraphy in the Late Cretaceous: intercontinental
945	correlation of the Campanian/Maastrichtian boundary. Terra Nova 4, 385–393.
946	McArthur, J.M., Kennedy, W.J., Chen, M., Thirlwall and M.F. Gale, A.S., 1994. Strontium
947	isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr
948	isotope curve based on the US Western Interior. Palaeogeogr. Palaeoclimatol. Palaeoecol.
949	108, 95–119.
950	Miller, K.G., Barrera, E., Olsson, R.K., Sugarman, P.J. and Savin, S.M., 1999. Does ice drive
951	early Maastrichtian eustasy? Geology 27, 783-786.
952	Mitchell, S.F., Ball, J.D., Crowley, S.F., Marshall, J.D., Paul, C.R.C., Veltkamp, C.J., Samir,
953	A., 1997. Isotope data from cretaceous chalks and foraminifera: Environmental or

- 954 diagenetic signals? Geology 25, 691–694.
- 955 Niebuhr, B., Esser, K., 2003. Late Campanian and Early Maastrichtian ammonites from the
- white chalk of Kronsmoor (northern Germany) taxonomy and stratigraphy. Acta Geol.
 Pol. 53, 257–281.
- 958 Odin, G.S., 1996, Observations stratigraphiques sur le Maastrichtien. Arguments pour la
- 959 localisation et la corrélation du Point Stratotype Global de la limite Campanien-
- 960 Maastrichtien, Bull. Soc. Géol. France 167, 637–643.

- 961 Odin, G.S., 2001. The Campanian-Maastrichtian stage boundary: characterisation at Tercis les
- Bains (France): correlation with Europe and other continents. Developments in

Palaeontology and Stratigraphy Series 19, Elsevier Sciences Publ. Amsterdam, 910 p.

- 964 Odin, G.S., and Amorosi, A., 2001. Interpretative reading of the Campanian-Maastrichtian
- 965 deposits at Tercis les Bains: sedimentary breaks, rhythms, accumulation rate, sequences.
- 966 In: Odin, G.S. (Ed.), The Campanian-Maastrichtian stage boundary: characterisation at
- 967 Tercis les Bains (France): correlation with Europe and other continents. Developments in
- Palaeontology and Stratigraphy Series 19, Elsevier Sciences Publ. Amsterdam, 125-135.
- 969 Odin, G.S. and Lamaurelle, M.A., 2001. The global Campanian-Maastrichtian stage
- 970 boundary. Episodes 24, 229–237.
- 971 Olsson, R.K., Wright, J.D., Miller, K.G., 2001. Paleobiogeography of Pseudotextularia
- 972 elegans during the latest Maastrichtian global warming event. J. Foraminiferal Res. 31,
 973 275–282.
- 974 Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton,
- 975 N.J., Tripati, A.K., Wade, B.S., 2006. The heartbeat of the Oligocene climate system.
 976 Science 314, 1894–1898.
- 977 Panchuk, K. M., Holmden, C., Kump, L.R., 2005. Sensitivity of the epeiric sea carbon
- 978 isotope record to local-scale carbon cycle processes: Tales from the Mohawkian Sea,
- 979 Palaeogeogr. Palaeoclimat. Palaeoecol. 228, 320–337.
- 980 Panchuk, K. M., C. E. Holmden, Leslie, S.A., 2006. Local controls on carbon cycling in the
- 981 Ordovician midcontinent region of North America, with implications for carbon isotope
 982 secular curves. J. Sediment. Res. 76, 200–211.
- 983 Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H., S et al. (Editors),
- 984 Plankton Stratigraphy. Cambridge University Press, pp. 329–426.

- Petrizzo, M.R., 2000. Upper Turonian–lower Campanian planktonic foraminifera from
 southern mid-high latitudes (Exmouth Plateau, NW Australia): biostratigraphy and
 taxonomic notes. Cretaceous Res. 21, 479–505.
- Petrizzo, M.R., 2003. Late Cretaceous planktonic foraminiferal bioevents in the Tethys and in
 the Southern Ocean: an overview. J. Foraminiferal Res. 33, 330–337.
- 990 Premoli Silva, I., Sliter, W.V., 1994. Cretaceous planktonic foraminiferal biostratigraphy and
- evolutionary trends from the Bottaccione section, Gubbio, Italy. Palaeontogr. Ital. 82, 1–
 89.
- 993 Renne, P.R., Mundil, R., Balco, G., Min, K., Kudwig, K.R., 2010. Joint determination of ⁴⁰K
- 994 decay constants and ${}^{40}\text{Ar}*/{}^{40}\text{Ar}$ for the Fish Canyon sanidine standard, and improved
- 995 accuracy for 40 Ar/ 39 Ar geochronology. Geochim. Cosmochim. Acta., doi:
- 996 10.1016/j.gca.2010.06.017.
- 997 Rexilius, J.P., 1984. Late Cretaceous foraminiferal and calcareous nannoplankton
- 998 biostratigraphy, Southwestern Australian Margin. PhD Thesis. Department of Geology

and Geophysics, The University of Western Australia, 291p.

- 1000 Scholle, P. A., Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic
- 1001 limestones: Potential stratigraphic and petroleum exploration tool. Am. Assoc. Petrol.
- 1002 Geol. Bull. 64, 67–87.
- 1003 Schönfeld, J., Schulz, M.-G., Arthur, M.A., Burnett, J., Gale, A.S., Hambach, U., Hansen,
- 1004 H.J., Kennedy, W.J., Rasmussen, K.L., Thirlwall, M.F., Wray, D.S., 1996. New results on
- 1005 biostratigraphy, paleomagnetism, geochemistry and correlation from the standard section
- 1006 for the Upper Cretaceous white chalk of northern Germany (Lägerdorf-Kronsmoor-
- 1007 Hemmoor). Mitteilungen des Geologisch-Paläontologischen Institutes der Universität
- 1008 Hamburg 77, 545–575.

- 1009 Schrag, D.P., DePaolo, D.J., Richter, F.M, 1995. Reconstructing past sea surface
- 1010 temperatures: correcting for diagenesis of bulk marine carbon. Geochim. Cosmochim. Ac.1011 59, 2265–2278.
- 1012 Shafik, S., 1990. Late Cretaceous nannofossil biostratigraphy and biogeography of the
- 1013 Australian western margin. Bureau of Mineral Resources, Geology and Geophysics,

1014 Report 295, 1–164.

- 1015 Shafik, S., 1998. Problems with the Cretaceous biostratigraphic system of Australia: time for
- 1016 a review. Australian Geological Survey Organisation Research Newsletter 28, 12–14.
- 1017 Swart, P. K., Eberli, G., 2005. The nature of the δ^{13} C of periplatform sediments: Implications
- 1018 for stratigraphy and the global carbon cycle, Sedim. Geol. 175, 115–129.
- 1019 Thibault, N., Gardin, S., 2006. Maastrichtian calcareous nannofossil biostratigraphy and
- paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Rev.
 Micropaleontol. 49, 199–214.
- Thibault, N., Gardin, S., 2007. The late Maastrichtian nannofossil record of climate change in
 the South Atlantic DSDP Hole 525A. Mar. Micropaleontol. 65, 163–184.
- 1024 Thibault, N., Gardin, S., Galbrun, B., 2010. Latitudinal migration of calcareous nannofossil
- 1025 *Micula murus* in the Maastrichtian: Implications for global climate change. Geology 38,

1026 203–206.

- 1027 Thibault, N., Schovsbo, N., Harlou, R., Stemmerik, L., Surlyk, F., 2011. An age-calibrated
- 1028 record of upper Campanian Maastrichtian climate change in the Boreal Realm. Abstract,
- 1029 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.
- 1030 Thibault, N., Harlou, R., Schovsbo, N., Schiøler, P., Minoletti, F., Galbrun, B., Lauridsen,
- 1031 B.W., Sheldon, E., Stemmerik, L., Surlyk, F., 2012. Upper Campanian–Maastrichtian
- 1032 nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish
- 1033 Basin: towards a standard δ^{13} C curve fot the Boreal Realm. Cretaceous Res. 33, 72–90.

- 1034 Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Inst. Electr. And Electron.
 1035 Eng. Proc. 70, 1055–1096.
- 1036 Voigt, S., 2000. Cenomanian–Turonian composite δ^{13} C curve for Western and Central
- 1037 Europe: the role of organic and inorganic carbon fluxes. Palaeogeogr. Palaeoclimatol.
- 1038 Palaeoecol. 160, 91–104.
- 1039 Voigt, S., Schönfeld, J., 2010. Cyclostratigraphy of the standard section for the Cretaceous
- 1040 white chalk of northern Germany, Lägerdorf-Kronsmoor: a late Campanian early
- 1041 Maastrichtian orbital time scale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 287, 67–80.
- 1042 Voigt, S., Friedrich, O., Norris, R.D., Schönfeld, J., 2010. Campanian Maastrichtian carbon
- 1043 isotope stratigraphy: shelf–ocean correlation between the European shelf sea and the
- 1044 tropical Pacific Ocean. Newsl. Stratigr. 44, 57–72.
- 1045 Voigt, S., Gale, A.S., Jung., C., Jenkyns, H.C., 2012. Global correlation of Upper
- 1046 Campanian–Maastrichtian successions using carbon-isotope stratigraphy: development of
- 1047 a new Maastrichtian timescale. Newsl. Stratigr. 45, in press.
- 1048 Weedon, G.P., 2003. Time series analysis and cyclostratigraphy: Examining stratigraphic
- 1049 records of environmental cycles: Cambridge, UK Cambridge University Press, 259 p.
- 1050 Weissert, H., 1989. C-isotope stratigraphy, a monitor of paleoenvironmental change: a case
- study from the Early Cretaceous. Surv. Geophys. 10, 1-61.
- 1052 Weissert, H., Erba, E., 2004. Volcanism, CO2 and palaeoclimate: A late Jurassic-early
- 1053 Cretaceous carbon and oxygen isotope record. Journ. Geol. Soc. London 161, 695–702.
- 1054 Weissert, H., Lini, A., Föllmi, K.B., Kuhn, O., 1998. Correlation of Early Cretaceous carbon
- 1055 isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr.,
- 1056 Palaeoclimat., Palaeoecol. 137, 189–203.

- 1057 Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., Evans,
- H.F., 2008. Astronomical calibration of the Paleocene time. Palaeogeogr. Palaeoclimatol.,
 Palaeoecol. 257, 377–403.
- 1060 Wonders, A.A.H., 1992. Cretaceous planktonic foraminiferal biostratigraphy, Leg 122,
- 1061 Exmouth Plateau, Australia. Proc. ODP, Sci. Results 122, 587-600.
- 1062 Young, J.R., Bown, P.R., 1997. Higher classification of calcareous nannoplankton. J.

1063 Nannoplankton Res. 19, 15-20.

- 1064 Zepeda, M.A., 1998. Planktonic foraminiferal diversity, equitability and biostratigraphy of the
- 1065 uppermost Campanian-Maastrichtian, ODP Leg 122, Hole 762C, Exmouth Plateau, NW
- 1066 Australia, eastern Indian Ocean. Cretaceous Res. 19, 117–152.
- 1067
- 1068 Captions to figures
- 1069
- 1070 Figure 1 : A. Palaeogeographic reconstruction of the Southern Hemisphere for the upper
- 1071 Campanian-lower Maastrichtian showing the location of ODP Hole 762C, DSDP Hole 525A,
- 1072 and the inferred palaeobiogeographical boundaries between the Austral, Transitional and
- 1073 Tethyan provinces (from Huber, 1992a). B. Map of Europe showing other important locations
- 1074 of Campanian-Maastrichtian sections. G: Gubbio, LKH: Lägerdorf Kronsmoor Hemmoor,

1075 M: Maastricht, N: Norfolk, R: Rørdal, S: Stevns-1, T: Tercis les Bains.

- 1076
- 1077 Figure 2 : Magnetostratigraphy, bulk-carbonate δ^{13} C profile, planktic foraminifer and
- 1078 nannofossil bio-events in ODP Hole 762C, with inferred biozonations of Howe et al. (2003)
- 1079 and Campbell et al. (2004) for planktic foraminifera and Burnett (1998) for calcareous
- 1080 nannofossils. (a) Revised in this study from data published by Galbrun (1992). (b) Planktic
- 1081 foraminifer transitional biozonation from Zepeda (1998). (c) Data from Howe et al. (2003).

(d) This study. (e) Data from Campbell et al. (2004). C/F: sudden change of abundance fromcommon to frequent only.

1084

Figure 3 : Illustration of an ODP core photograph (core 48X) from the early Maastrichtian of Hole 762C. One hundred kyr eccentricity cycles $e_{100}39$ to $e_{100}55$ are identified on the core and bracketed between the "X". A few obvious precession cycles are shown (P). These precession cycles are also expressed on the amplitude spectrograms of Figure 4 in the interval between 604 and 610 ambsf.

1090

Figure 4 : (a) Gray scale log reflectance. The presented signal has been filtered for cracks and lighting effects. (b) MTM power spectra of the gray scale log for the stratigraphical intervals 550-593 ambsf and 593-638 ambsf. (c) Amplitude spectrograms for the studied interval. The shaded area corresponds to a "strange" interval with disturbance (D.) caused by numerous cracks in the cores which hinder the identification of clear 405 kyr eccentricity cycles.

1097 Figure 5 : Cyclostratigraphic age-model for the upper Campanian-Maastrichtian of ODP Hole 1098 762C. The counting of 100 and 405 kyr eccentricity cycles is here based on the 100 kyr filter 1099 output extracted from the original gray-scale log reflectance. 405 kyr cycles are thus hand-1100 counted by regroupment of 100 kyr cycles. From the base of C31n to the top of C33n, this 1101 counting corresponds fairly well to the extracted 405 kyr filter output (Figs. 7–10). The 1102 identified Campanian-Maastrichtian boundary level lies within 100 kyr eccentricity cycle 1103 e₁₀₀62 which provides an age of 72.15±0.05 Ma for the CMB (with a K-Pg boundary at 66 1104 Ma) and a total duration of 6.15±0.05 Ma for the Maastrichtian stage. 1105

Figure 6 : Cross-plot of carbon- and oxygen-isotope ratios for bulk samples analyzed from the
Maastrichtian section of ODP Hole 762C. There is no significant correlation between the two
sets of values.

1109

Figure 7: Correlation of the age-calibrated δ^{13} C profile of ODP Hole 762C with the δ^{13} C 1110 1111 profile of Tercis les Bains, GSSP of the Campanian-Maastrichtian boundary, and the Gubbio 1112 composite section. (a) This study. PF datums are in bold and PF zones correspond to the 1113 transitional biozonation of Zepeda (1998). (b) All references on planktic foraminiferal (PF) 1114 and nannofossil biostratigraphic datums of Tercis les Bains can be found in Voigt et al. 1115 (2012). The first occurrences of planktic foraminifers C. contusa and T. scotti reported for the 1116 Tercis les Bains section are not reliable and thus not presented here (I. Premoli Silva in Gardin et al., 2012). (c) The Gubbio composite presented here was built using the δ^{13} C 1117 1118 records of the Bottaccione and Contessa sections presented in Voigt et al. (2012) and 1119 corresponding biostratigraphic datums of Gardin et al. (2012). (d) 405 kyr filter after Husson 1120 et al. (2011). Only the 100 kyr filtering could be used for magnetochrons C29r to C30r in 1121 Hole 762C, 405 kyr eccentricity cycles of this interval (in grey) are thus hand counted by 1122 regroupment of four 100 kyr cycles.

1123

1124 Figure 8: Correlation of δ^{13} C profiles between ODP Hole 762C (Indian Ocean), Stevns-1

1125 (Danish Basin), and Lägerdorf – Kronsmoor – Hemmoor composite section (LKH, Northwest

1126 Germany). (a) This study. (b) After Husson et al. (2011). Only the 100 kyr filtering could be

used for magnetochrons C29r to C30r in Hole 762C, 405 kyr eccentricity cycles of this

1128 interval (in grey) are thus hand counted by regroupment of four 100 kyr cycles. (c) Thibault et

al. (2012). (d) Voigt et al. (2010). (e) 405 kyr filter of CaCO₃ data and corresponding

1130 numbering of cycles for Boreal Campanian and Maastrichtian stages after Voigt and

1131 Schönfeld (2010). (f) Nannofossil datums by Burnett in Schönfeld et al. (1996). Belemnite

1132 zones are: polypl = polyplucum, gri/gra = grimmenis/granulosis, lan = lanceolata, p =

1133 *pseudoobtusa*, obt = *obtusa*, cimb = *cimbrica*, fas = *fastigata*, teg/jun = *tegulatus/junior*,

1134 arg/jun = *argentea/junior*, da = *danica*, ba/da = *baltica/danica*. The Boreal CMB as defined

1135 by belemnite zones in LKH section corresponds to the base of δ^{13} C event CMBa and thus

shows a discrepancy of ca. two 405 kyr cycles with the CMB as defined in ODP Hole 762C

1137 within δ^{13} C event CMBc by comparison with the GSSP of Tercis les Bains.

1138

1139 Figure 9: Correlation of δ^{13} C profiles between ODP Hole 762C (Indian Ocean) and DSDP

1140 Hole 525A (South Atlantic). (a) Husson et al. (2011), (b) Thibault and Gardin (2007), (c)

1141 Manivit (1984), (d) Li and Keller (1998a).

1142

Figure 10: Age-calibrated bulk-carbonate δ^{13} C profile and variations of the sedimentation rate in ODP Hole 762C vs variations of the sea-level as estimated in Miller et al. (2005), Kominz et al. (2008) and Haq et al. (1987).

1146

1147 Table 1: Top depths, sub-bottom depths, estimated absolute ages and error margins of

1148 calcareous nannofossil, planktic and benthic foraminifera bio-events in ODP Hole 762C. (a)

1149 calcareous nannofossil bio-events, this study. (b) planktic foraminiferal bio-events, Howe et

al. (2003). (c) benthic foraminiferal bio-events, Howe et al. (2003). (d) planktic foraminiferal

1151 bio-events, Campbell et al. (2004). (e) calcareous nannofossil bio-events, Campbell et al.

1152 (2004).

1153

1154 Table 2: Depth and estimated ages (2a), and mean durations (2b) of uppermost Cretaceous

1155 magnetochrons in ODP Hole 762C and comparison with the standard Geological Time Scale

1156	(Gradstein et al., 2004). Table 2a modified after Husson et al. (2011). Note that the durations
1157	of C29r to C30n at ODP Hole 762C (2b) are consistent with the astronomical calibration of
1158	Husson et al. (2011). (*) The duration of chron C30r is doubtful because the base of this
1159	chron falls very near the identified 500 kyr gap and the cyclostratigraphic signal is distorted
1160	here (Fig. 5). Magnetochron durations and ages of upper Maastrichtian chron boundaries
1161	provided in Husson et al. (2011) are more precise with lower uncertainties and are rather
1162	adopted here for the chronostratigraphic framework of Figures 7-10. Magnetochron durations
1163	and ages of upper Campanian-lower Maastrichtian chron boundaries are based on Hole 762C
1164	in Husson et al. (2011). Comparison of these durations with the standard marine magnetic
1165	model is discussed in Husson et al. (2011).
1166	
1167	Table 3: Description, top and bottom depths of δ^{13} C events in ODP Hole 762C. CMB:
1168	Campanian–Maastrichtian boundary.
1169	
1170	Table 4: Top depths, sub-bottom depths, estimated absolute ages and durations of $\delta^{13}C$ events
1171	in ODP Hole 762C.
1172	
1173	Plate 1: Calcareous nannofossils from the upper Campanian-Maastrichtian of ODP Hole
1174	762C. 1, Ahmuellerella octoradiata, 53X-7, 1–2 cm. 2, Amphizygus brooksii, 49X-1, 61–62
1175	cm. 3, Biscutum coronum, 44X-7, 14–15 cm. 4, Biscutum constans, 44X-4, 110–111 cm. 5,
1176	Biscutum magnum, 49X-1, 61–62 cm. 6, Broinsonia parca constricta, 49X-5, 124–125 cm. 7,
1177	Broinsonia parca parca, 55X-1, 66–67 cm. 8, Calculites obscurus, 51X-4, 11–12 cm. 9,

- 1178 Ceratolithoides aculeus, 50X-4, 101–102 cm. 10, Ceratolithoides indiensis, 43X-1, 33–34
- 1179 cm. 11, Ceratolithoides kamptneri, 44X-3, 108–109 cm. 12 Cribrocorona gallica, 43X-1, 33–
- 1180 34 cm. 13, Cribrosphaerella daniae, 43X-1, 33–34 cm. 14, Discorhabdus ignotus, 49X-5, 35–

- 1181 36 cm. 15, *Eiffellithus angustus*, 52X-3, 77–78 cm. 16, *Eiffellithus eximius*, 54X-7, 20–21 cm.
- 1182 17, Lithraphidites praequadratus, 43X-1, 33–34 cm. 18, Lithraphidites quadratus, 44X-4,
- 1183 110–111 cm. 19, *Micula murus*, 43X-2, 33–34 cm. 20, *Micula praemurus*, 43X-2, 83–84 cm.
- 1184 21, *Micula prinsii*, 43X-2, 33–34 cm. 22, *Micula prinsii*, 43X-1, 33–34 cm. 23,
- 1185 Monomarginatus quaternarius, 49X-2, 82–83 cm. 24, Nephrolithus frequens, 43X-1, 33–34
- 1186 cm. 25, Petrarhabdus copulatus, 49X-1, 9–10 cm. 26 and 27, Petrarhabdus copulatus (same
- specimen), 49X-5, 35–36 cm. 28, Petrarhabdus vietus 48X-4, 54–55 cm. 29, Prediscosphaera
- 1188 mgayae, 49X-1, 9–10 cm. 30, Pseudomicula quadrata, 43X-3, 66–67 cm. 31, Quadrum
- 1189 gartneri, 50X-2, 11–12 cm. 32, Quadrum svabenickae, 51X-4, 11–12 cm. 33, Reinhardtites
- 1190 anthophorus, 54X-6, 60–62 cm. 34, Reinhardtites elegans, 51X-6, 35–36 cm.
- 1191
- 1192 Plate 2: Calcareous nannofossils from the upper Campanian–Maastrichtian of ODP Hole
- 1193 762C. 1, *Reinhardtites levis*, 51X-4, 11–12 cm. 2, *Rotelapillus laffittei*, 49X-1, 61–62 cm. 3,
- 1194 Stoverius cf. S. achylosus, 48X-6, 104–105 cm. 4, Stoverius coangustatus, 49X-2, 82–83 cm.
- 1195 5, Stoverius coangustatus, 50X-4, 101–102 cm. 6, Tortolithus hallii, 53X-3, 101–102 cm. 7,
- 1196 Tortolithus hallii, 54X-7, 20–21 cm. 8, Tranolithus orionatus, 49X-4, 105–106 cm. 9,
- 1197 Tranolithus orionatus, 55X-1, 66–67 cm. 10, Tranolithus stemmerikii, 50X-5, 100–101 cm.
- 1198 11, Tranolithus stemmerikii, 55X-1, 66–67 cm. 12, Uniplanarius gothicus, 49X-5, 35–36 cm.
- 1199 13, Uniplanarius gothicus, 49X-3, 104–105 cm. 14, Uniplanarius sissinghii (very rare), 50X-
- 1200 3, 10–11 cm. 15, Uniplanarius sissinghii, 52X-3, 77–78 cm. 16, Uniplanarius trifidus short-
- 1201 rayed, 51X-3, 10–11 cm. 17, Uniplanarius trifidus medium-rayed, 49X-3, 89–90 cm. 18,
- 1202 Uniplanarius trifidus long-rayed (very rare), 52X-3, 77–78 cm. 19, Watznaueria manivitiae
- 1203 sensu stricto, 55X-1, 66–67 cm. 20, Watznaueria manivitiae sensu lato, 49X-4, 105–106 cm.
- 1204 21, Zeugrhabdotus bicrescenticus (big form), 52X-6, 83–85 cm. 22, Zeugrhabdotus
- 1205 *bicrescenticus* (small form), 54X-1, 138–139 cm. 23, *Zeugrhabdotus diplogrammus*, 50X-1,

1206	10-11 cm. 24, Zeugrhabdotus diplogrammus, 49X-3, 104-105 cm. 25, Zeugrhabdotus
1207	erectus, 49X-3, 38-39 cm. 26, curved spine, 53X-1, 12-13 cm. 27, curved spine, 52X-2, 112-
1208	113 cm.
1209	
1210	Appendix 1: Values of inclination, paleomagnetic interpretation and additional remarks for
1211	the upper Campanian–Maastrichtian of ODP Hole 762C.
1212	
1213	Appendix 2: Stratigraphic distribution of key and potential stratigraphic calcareous
1214	nannofossil markers in the upper Campanian-Maastrichtian of ODP Hole 762C. M: moderate
1215	preservation, P: poor preservation.
1216	
1217	Appendix 3: Alphabetical list of calcareous nannofossil species considered in this study.
1218	
1219	Appendix 4: Grey level values obtained for core photographs used for cyclostratigraphy.
1220	These data correspond to a resampling at a step of 1 cm. Adjusted depths (ambsf) and
1221	equivalent original depths (mbsf) are given along with cores, sections and identified 100 kyr
1222	and 405 kyr eccentricity cycles.
1223	
1224	Appendix 5: Measured and standardized bulk carbonate $\delta^{13}C$ values for ODP Hole 762C with
1225	depths (mbsf), adjusted depths (ambsf) and calibrated absolute ages (Ma).
1226	
1227	Appendix 6: Age-depth plot for ODP Hole 762C. Horizontal axis shows standard
1228	tropical/subtropical planktonic foraminiferal and calcareous nannofossil biozones correlated
1229	to the Gradstein and others (2004) Geologic Time Scale. A line of correlation is drawn
1230	through each of the counted 100 kyr cycles below the K-Pg boundary (numbers 1 to 83). Nine

average calculated sedimentation rates (cm/kyr) are shown for each significant change in
slope of the line of correlation. Grey-shaded squares represent the uncertainties of magnetic
polarity reversals.

- 1235 Appendix 7: Exmouth Plateau age model based on Hole 762C versus a conventional age
- 1236 model based on Gradstein et al. (2004) and Huber et al. (2008) (Huber, B.T., MacLeod, K.G.,
- 1237 Tur, N.A., 2008. Chronostratigraphic framework for upper Campanian-Maastrichtian
- 1238 sediments on the Blake Nose (Subtropical North Atlantic). J. Foraminiferal Res. 38, 162–
- 1239 182). FO of *M. murus* at mid-latitudes (1) and low-latitudes (2) after Thibault et al. (2010).
- 1240 Thick grey lines of correlation indicate reliable biostratigraphic datums. Calcareous plankton
- 1241 diachronism is compelling.

Figure 1 : A. Palaeogeographic reconstruction of the Southern Hemisphere for the upper Campanian-lower Maastrichtian showing the location of ODP Hole 762C, DSDP Hole 525A, and the inferred palaeobiogeographical boundaries between the Austral, Transitional and Tethyan provinces (from Huber, 1992a). B. Map of Europe showing other important locations of Campanian-Maastrichtian sections. G: Gubbio, LKH: Lägerdorf – Kronsmoor – Hemmoor, M: Maastricht, N: Norfolk, R: Rørdal, S: Stevns-1, T: Tercis les Bains.

Figure2 Click here to download high resolution image

Figure3 Click here to download high resolution image

Figure3BW Click here to download high resolution image

Figure 5 Click here to download high resolution image

Figure 9 Click here to download high resolution image

Plate1 Click here to download high resolution image

Events	Top depth (mbsf)	Bottom depth (mbsf)	Top depth (ambsf)	Bottom depth (ambsf)	Age (Ma) with K/Pg at 66 Ma	Uncertainty (Ma)
K-Pg boundary	554.80	554.80	556.03	556.03	66.00	-
Top Acme <i>M. muru</i> s ^a	555.51	556.33	556.74	557.56	66.07	±0.06
Top Acme <i>C. gallica^a</i>	558.16	559.08	559.39	560.31	66.24	±0.07
FO M. prinsiiª	560.46	561.40	561.69	562.63	66.39	±0.07
Base Acme <i>C. gallica</i> ^a	560.46	561.40	561.69	562.63	66.39	±0.06
Top Acme L. quadratus ^a & L. praequadratus ^a	560.46	561.40	561.69	562.63	66.39	±0.06
LO B. constans ^a	561.40	564.14	562.63	565.37	66.49	±0.1
Base Acme <i>M. murus</i> ^a	564.14	564.42	565.37	565.65	66.56	±0.04
LO C. indiensis ^a , D. ignotus ^a	569.60	570.80	570.83	572.03	66.87	±0.07
FO C. kamptneri ^a	571.70	572.78	572.93	574.01	66.98	±0.1
Base Acme L. quadratus ^a & L. praequadratus ^a	573.60	573.97	574.83	575.20	67.07	±0.05
FO M. murus ^a	576.99	577.83	578.54	579.38	67.33	±0.07
FO R. fructicosa ^b . C. contusa ^b	579.30	584.00	580.85	585.55	67.66	±0.22
FO L. quadratus ^a , LO A. octoradiata ^a	583.20	583.89	584.75	585.44	67.79	+0.06
$I \cap P$ vietus ^a	583.20	583 89	584 75	585 44	67 79	+0.06
FO P. quadrata ^a	586.10	587.21	587.65	588.76	68.02	+0.08
FOP palpebra ^b G angulata ^b R powelli ^b	587.20	593.60	588 75	595 15	68.18	+0.18
FO M praemurus ^a	587.55	588 15	589 10	589 70	68.07	+0.05
FO I proceeding a C callica ^a	588 15	592 59	589.70	594 14	68.18	±0.00 +0.13
FO P acenyulinoides ^b	593.60	595 70	595.16	597.25	68.36	+0.08
10.5 coordustatus ^a	595.00	595.40	596.83	596.95	68.40	+0.00
LO[A] brocksii ^a	595.20	595.40	590.00	597.95	68.95	±0.04 ±0.06
EO A. brooksii	595.00	500.60	507.20	601 15	60.30	±0.00
$I \cap B$ pareo constricto ^a	500.00	600.22	597.25 600.64	601.13	60.48	±0.12
EO B. parca constructa EO B. plagans ^b B. intermedia ^b LO S. pommerana ^c	599.09	600.23	601.04	602.15	09.40 60.54	±0.1
FO F. elegans, F. Internieula, LO S. pomineraria	599.00	600.60	601.13	602.15	60.56	±0.09
LO R lovin ^a Z bioropontious ^a	600.23	602.04	602.44	602.21	60.75	±0.07
LO R. levis , Z. biclescenticus	601.03	602.04	602.44	604.61	60.02	±0.15
FO A. Mayaroensis	601.70	603.00	603.31	604.61	09.92	±0.15
	603.00	604.40	604.61	606.01	70.13	±0.14
LO Z. erectus	604.64	604.82	606.25	606.43	70.28	±0.05
FO N. frequens	604.82	605.20	606.43	606.81	70.32	±0.06
	605.20	605.57	606.81	607.18	70.37	±0.06
LO M. quaternarius [°] , Z. diplogrammus [°]	610.18	610.37	611.79	611.98	71.22	±0.05
LO B. parca parca	610.54	610.67	612.15	612.28	/1.28	±0.05
LO P. copulatus	610.97	611.59	612.94	613.56	71.46	±0.09
FO P. mgayae	611.59	611.79	613.56	613.76	71.54	±0.05
FO G. cuvillieri ^a , LO C. fornicata ^a	611.20	614.10	613.17	616.07	71.71	±0.3
LO U. trifidus short-rayed ^a	614.00	614.12	615.97	616.09	72.00	±0.05
LO T. stemmeriki ^a , U. gothicus ^a	614.12	614.70	616.09	616.67	72.03	±0.07
Campanian-Maastrichtian boundary level	-	615.40	-	617.37	72.15	±0.05
FO A. intermedius	614.10	624.00	616.07	625.97	72.48	±0.39
FO P. vietus"	618.82	618.85	620.79	620.82	72.47	±0.04
LO <i>U. trifidu</i> s medium-rayed [®]	619.50	621.11	621.47	623.08	72.57	±0.09
LO R. elegans ^a	633.61	635.12	635.96	637.47	73.80	±0.06
LO <i>E. eximius</i> ^a , curved spine ^a	635.12	636.60	637.47	638.95	73.90	±0.09
LO H. semicostata	637.10	642.50	639.45	645.12	74.20	±0.23
LO E. angustus ^a	638.36	640.11	640.71	642.46	74.15	±0.06
W. manivitae [®] s.l. C/F	648.35	649.63	650.97	652.25	74.83	±0.4
LO B. coronum	655.91	657.19	658.53	659.81	75.36	±0.4
LO W. manivitae ^ª s.s.	658.52	659.77	661.14	662.39	75.54	±0.4
FO curved spine ^a	659.77	660.39	662.39	663.01	75.60	±0.4
LO R. anthophorus ^a	660.39	661.72	663.01	664.34	75.67	±0.4
FO H. rajagopalani ^a	663.2	670.2	665.82	672.82	76.06	±0.4

depth (mbsf)	ambef	GTS2004	Husson et al. (2011)		
deptil (linesi)	ambai	0102004	Ref. Site	Option 2	
554.8	556.03	65.500	1267B	66±0.07	
560.91+/-4.41	562.14	65.861	1267B	66.3±0.08	
590.79 +/-2.15	592.34	67.696	1267B	68.2±0.08	
594.72 +/-1.21	596.27	67.809	525A	68.32±0.07	
598.16 +/-0.04	599.71	68.732	525A	69.22±0.07	
611.46 +/-0.06	613.07	70.961	762C	71.4±0.08	
612.37 +/-0.18	614.34	71.225	762C	71.64±0.07	
612.975 +/-0.075	614.95	71.474	762C	71.72±0.07	
631.475 +/-0.395	633.83	72.929	762C	73.6±0.08	
635.885 +/-0.465	638.24	73.231	762C	73.9±0.09	
637.39 +/-0.45	639.74	73.318	762C	74±0.08	
638.78 +/-0.35	641.13	73.577	762C	74.1±0.08	
	depth (mbsf) 554.8 560.91+/-4.41 590.79 +/-2.15 594.72 +/-1.21 598.16 +/-0.04 611.46 +/-0.06 612.37 +/-0.18 612.975 +/-0.075 631.475 +/-0.395 635.885 +/-0.465 637.39 +/-0.45 638.78 +/-0.35	depth (mbsf)ambsf554.8556.03560.91+/-4.41562.14590.79 +/-2.15592.34594.72 +/-1.21596.27598.16 +/-0.04599.71611.46 +/-0.06613.07612.37 +/-0.18614.34612.975 +/-0.075614.95631.475 +/-0.395633.83635.885 +/-0.465638.24637.39 +/-0.45639.74638.78 +/-0.35641.13	depth (mbsf)ambsfGTS2004 -554.8556.0365.500560.91+/-4.41562.1465.861590.79 +/-2.15592.3467.696594.72 +/-1.21596.2767.809598.16 +/-0.04599.7168.732611.46 +/-0.06613.0770.961612.37 +/-0.18614.3471.225612.975 +/-0.075614.9571.474631.475 +/-0.395633.8372.929635.885 +/-0.465638.2473.231637.39 +/-0.45639.7473.318638.78 +/-0.35641.1373.577	$\begin{array}{c cccc} \mbox{depth (mbsf)} & \mbox{ambsf} & \mbox{GTS2004} & \mbox{Husson e} \\ \hline Ref. Site \\ \hline Solution (120) \\ \hline Solution (120)$	

Table 2a

Magnetochron	Duration in this study (Ma)	Husson et al. (2011)	GTS2004
C29r (Cretaceous)	0.397+/-0.22	0.3+/-0.02	0.361
C30n	1.798+/-0.16	1.9+/-0.03	1.835
C30r	0.173+/-0.07*	~0.12	0.113
C31n	-	~0.9	0.923
C31r	2.18+/-0.03	id.	2.229
C32n1n	0.240+/-0.06	id.	0.264
C32n1r	0.08+/- 0.03	id.	0.249
C32n2n	1.88 +/- 0.03	id.	1.456
C32r1r	0.3+/-0.06	id.	0.301
C32r1n	0.1+/-0.03	id.	0.087
C32r2r	0.1 +/- 0.04	id.	0.259

Table 2b

Carbon-isotope events	Stratigraphic interval	Top depth (mbsf)	Bottom depth (mbsf)	Description
M5+	upper Maastrichtian	554.80	557.36	Rapid 0.2‰ increase up to values around 2.6‰
M4-(b)	upper Maastrichtian	557.36	565.27	Sharp 0.4‰ negative decrease reaching a minimum value of 2.38‰
M4+	upper Maastrichtian	565.27	573.79	Positive 0.25‰ rebound with values fluctuating around 2.77‰
M4-(a)	upper Maastrichtian	573.79	579.93	Fluctuating values resulting in a progressive 0.55‰ decrease from 3.1 to 2.55‰
Exmouth Plateau event	upper Maastrichtian	579.93	583.20	Sharp 0.4‰ positive excursion up to values of 3.1‰
M3-(b)	upper Maastrichtian	583.20	588.75	Short-lived 0.1‰ negative excursion from values around 2.8 to values around 2.7‰
M3+	lower Maastrichtian	598.48	600.89	Rapid 0.3‰ increase up to 2.85‰
M2+	lower Maastrichtian	602.05	604.43	short-lived 0.1‰ positive excursion with values fluctuating around 2.55‰
M1-	lower Maastrichtian	604.43	609.45	Slight 0.1‰ negative excursion with values fluctuating gently around 2.45‰
M1+	lower Maastrichtian	609.45	612.11	Values increase from 2.45 to 2.7‰
СМВ с	СМВ	613.84	615.66	Third step of CMBE characterized by a 0.3‰ negative shift from 2.6 to 2.3‰
CMB b	upper Campanian	615.66	619.50	Second step of CMBE characterized by rapid fluctuations between 2.4 and 2.6‰
СМВ а	upper Campanian	619.50	625.34	First step of CMBE characterized by a 0.3‰ negative shift from 2.7 to 2.4‰
C1-	upper Campanian	628.50	631.70	0.25‰ negative excursion from 2.75 to 2.5‰, immediataly followed by a 0.15‰ positive rebound
late Campanian event ?	upper Campanian	650.80	658.05	long-lasting 0.2‰ negative excursion with values shifting from an average of 2.8‰ to c. 2.6‰

Table 3

Carbon isotono Evonto	Top depth	Base depth	Top depth	Base depth	Age (Ma),	K-Pg at 66	Duration
Carbon Isotope Events	(mbsf)	(mbsf)	(ambsf)	(ambsf)	Тор	Base	(Ma)
M5+	554.80	557.36	556.03	558.59	66.00	66.16	0.16
M4-(b)	557.36	565.27	558.59	566.50	66.16	66.60	0.44
M4+	565.27	573.79	566.50	575.34	66.60	67.11	0.51
M4-(a)	573.79	579.93	575.34	581.48	67.11	67.54	0.43
Exmouth Plateau event	579.93	583.20	581.48	584.75	67.54	67.77	0.23
M3-(b)	583.20	588.75	584.75	590.30	67.77	68.11	0.34
M3+	598.48	600.89	600.03	602.44	69.34	69.64	0.30
M2+	602.05	604.43	603.66	606.04	69.87	70.24	0.38
M1-	604.43	609.45	606.04	611.06	70.24	71.04	0.80
M1+	609.45	612.11	611.06	614.08	71.04	71.62	0.57
СМВс	613.84	615.66	615.81	617.63	71.94	72.16	0.22
CMBb	615.66	619.50	617.63	621.47	72.16	72.52	0.35
СМВа	619.50	625.34	621.47	627.31	72.52	72.95	0.43
C1-	628.50	631.70	630.47	633.67	73.28	73.57	0.29
late Campanian event ?	650.80	658.05	653.42	660.67	74.96	75.40	0.44

Table 4

Samples	Depth mbsf	Inclination (°)	Chrons	Paleomagnetic	Remarks	ambsf
ODP Leg 122 Hole 762C					_	
42X4, 80	550.3	-58		C29n		
42X5, 75	551.76	-2		?		
42X5, 130 42X6, 25	552.3	11				
42X6, 136	553.86	29		C29r		
43X1, 41	554.91	41		0201	K-Pg at 554.8 mbsf	T
43X1, 100	555.5	53			3	<u>1</u>
43X2, 50	556.5	20	C29r base	of Galbrun (1992) does not fit with the FO of <i>M. prinsii</i>	557.73
43X2, 110	557.1	-40	weak			558.33
43X3, 42	557.92	-55	?			
43X3, 141	558.91	-18	weak			
43X4, 20	559.2	-12	weak	0		T
43X4, 113 43X5 22	560.13	-22	weak	?	FO Micula prinsii at 560.46 mbsf	
4373, 22	561 /6	-23	weak			1
44X1 51	564 51	-20	weaк ?			
44X1, 132	565.32	52	C29r large	r uncertaintv		566.55
44X2, 52	566.02	-56	C30n			567.25
44X2, 132	566.83	-76				
44X3, 126	568.26	-46				
44X4, 95	569.45	-49				
44X5, 102	571.02	-62				
44X6, 67	572.17	-44				
45X1, 29	573.79	-61				
45XZ, 11Z	570.12	-58				
45X3, 80 45X4 60	578.6	-00 -23		C30n		
45X4, 111	579.11	-23		03011		
45X5, 24	579.74	-13				
45X5, 110	580.6	-64				
46X1, 44	583.44	-61				
46X1, 120	584.2	-9				
46X2, 41	584.91	34				
46X2, 117	585.67	-42				
46X3, 45	586.45	-44				
40AJ, 117 16X1 38	587.88	-52				
46X4 114	588.64	-57	C30n		No recovery interval between 589 5	590 19
47X1, 44	592.94	55	C30r		and 592.5 mbsf	594.49
47X2, 101	593.51	18	C30r	C30r		595.06
47X3, 43	595.93	-16	C31n		~500 kyr gap around 595.45 mbst	597.48
47X3, 95	596.45	-73				•
47X4, 48	597.48	-34		C31n		
47X4, 89,5	597.89	-48				
47X4, 112	598.12	-62	C31n			599.67
47 X4, 120 77 X4 140	598.2	57	U311			599.75
47X5.4	508 54	C1 ₽\				
47X5, 19	598.69	52				
47X5, 32	598.82	70				
47X5, 39,5	598.89	64				
47X5, 46	598.96	75				
47X5, 101	599.51	63				
47X6, 40	600.4	83		C31r		
48X1, 54	602.54	80				
48X2, 36	603.86	58				
4073, JU 1881 65	000.3 607 15	67				
48X5 131	6007.15 600 31	62				
48X6, 47	609.97	63				
48X7, 30	611.31	66				
48XCC, 6	611.4	57	C31r			613.01
48XCC, 18	611.52	-42	C32n1n			613.13
49X1, 10	611.6	-25				

49X1, 26,5	611.76	-14	
49X1, 37	611.87	-45	C32n1n
49X1, 48	611.98	-24	
49X1, 58	612.08	-40	
49X1, 78	612.28	-48 C32n1n	614.25
49X1, 96	612.46	31 C32n1r	614.43
49X1, 118	612.68	52	C22m1-
49X1, 122	612.72	56	CSZIIII
49X1, 142,5	612.92	56 C32n1r	614.89
49X2, 3,5	613.03	-70 C32n2n	615
49X2, 20,5	613.2	-45	
49X2, 49,5	613.42	-55	
49X2, 45	613.45	-51	
49X2, 117	614.17	-40	
49X3, 46	614.96	53	very small reverse within C32n2n ?
49X3, 109	615.59	-54	
49X4, 50	616.5	-49	
49X4, 111	617.11	-59	
49X5, 41	617.91	-63	C32n2n
49X5, 108	618.58	-59	
50X1, 47	621.47	-15	
40X1, 113	622.14	-44	
50X2, 102	623.52	-58	
50X3, 98	624.98	-55	
50X4, 104	626.54	-59	
50X5, 47	627.47	-56	
50X6, 121	629.71	-66	
50X7, 37	630.38	-69	
51X1, 58	631.08	-46 C32n2n	633.43
51X1, 135	631.87	38 C32r1r	634.22
51X2, 141	633.41	41	C22+1+
51X3, 117	634.67	68	C32III
51X4, 42	635.42	70 C32r1r	637.77
51X4, 135	636.35	-30 C32r1n	638.7
51X5, 44	636.94	-23 C32r1n	639.29
51X5, 133	637.84	8 C32r2r	640.19
51X6, 43	638.43	8 C32r2r	640.78
51X6, 112	639.13	-32 C33n	641.48
52X1, 117	641.17	-75	
52X2, 122	642.72	-54	C33n
52X3, 114	644.14	-54	
52X4, 141	645.91	-71	

...and so on until 704.72 mbsf for base C33n

In black, samples from Galbrun (1992) In bold grey, additional samples analysed by Galbrun in 2008

Appendix 1
Appendix 2: Alphabetical list of calcareous nannofossil species. All references prior to 1998 can be found in Perch-Nielsen (1985) and Bown (1998). Others are given in the reference list below.

Ahmuellerella octoradiata (Gorkà, 1957) Reinhardt, 1966 Amphizygus brooksii Bukry, 1969 Biscutum constans (Gorkà, 1957) Black in Black and Barnes, 1959 Biscutum coronum Wind and Wise in Wise and Wind, 1977 *Biscutum magnum* Wind and Wise *in* Wise and Wind, 1977 Broinsonia parca constricta Hattner et al., 1980 Broinsonia parca parca Hattner et al., 1980 Calculites obscurus (Deflandre, 1959) Prins and Sissingh in Sissingh, 1977 Ceratolithoides aculeus (Stradner, 1961) Prins and Sissingh in Sissingh, 1977 Ceratolithoides indiensis Burnett, 1997a Ceratolithoides kamptneri Bramlette and Martini, 1964 Cribrocorona gallica (Stradner, 1963) Perch-Nielsen, 1973 Cribrosphaerella daniae Perch-Nielsen, 1973 Discorhabdus ignotus (Gorkà, 1957) Perch-Nielsen, 1968 Eiffellithus angustus (Bukry, 1969) Shamrock and Watkins, 2009 Eiffellithus eximius (Stover, 1966) Perch-Nielsen, 1968 Lithraphidites praequadratus Roth, 1978 Lithraphidites quadratus Bramlette and Martini, 1964 Micula murus (Martini, 1961) Bukry, 1973 Micula praemurus (Bukry, 1973) Stradner and Steinmetz, 1984 Micula prinsii Perch-Nielsen, 1979

Monomarginatus quaternarius Wind and Wise in Wise and Wind, 1977 Nephrolithus frequens Gorkà, 1957 Petrarhabdus copulatus (Deflandre, 1959) Wind and Wise in Wise, 1983 Petrarhabdus vietus Burnett, 1997b Prediscosphaera mgayae Lees, 2007 Pseudomicula quadrata Perch-Nielsen in Perch-Nielsen et al., 1978 Quadrum gartneri Prins and Perch-Nielsen in Manivit et al., 1977 Quadrum svabenickae Burnett, 1997b Reinhardtites anthophorus (Deflandre, 1959) Perch-Nielsen, 1968 Reinhardtites elegans (Gartner, 1968) Wise, 1983 Reinhardtites levis Prins and Sissingh in Sissingh, 1977 Rotelapillus laffittei (Noël, 1956) Howe, Bergen and Campbell in Howe et al., 2003 Stoverius achylosus (Stover, 1966) Perch-Nielsen, 1986 Stoverius coangustatus Howe, Bergen and Campbell in Howe et al., 2003 Tortolithus hallii (Bukry, 1969) Crux in Crux et al., 1982 Tranolithus orionatus (Reinhardt, 1966a) Reinhardt, 1966b Tranolithus stemmerikii Thibault and Sheldon in Thibault, 2010 Uniplanarius gothicus (Deflandre, 1959) Prins and Perch-Nielsen in Manivit et al., 1977 Uniplanarius trifidus (Stradner in Stradner and Papp, 1961) Hattner and Wise, 1980 Watznaueria manivitiae Bukry, 1973 Zeugrhabdotus bicrescenticus (Stover, 1966) Burnett in Gale et al., 1996 Zeugrhabdotus diplogrammus (Deflandre in Deflandre and Fert, 1954) Burnett in Gale et al., 1996 Zeugrhabdotus erectus (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1965

References

- Burnett, J.A., 1997a. New species and conjectured evolutionary trends of Ceratholithoides Bramlette and Martini, 1964 from the Campanian and Maastricthian of the Indian Ocean. Journal of Nannoplankton Research 19, 123–131.
- Burnett, J.A., 1997b. New species and new combinations of Cretaceous nannofossils, and a note on the origin of Petrarhabdus (Deflandre) Wind and Wise. Journal of Nannoplankton Research 19, 133–146.
- Howe, R.W., Campbell, R.J., Rexilius, J.P., 2003. Integrated uppermost Campanian–
 Maastrichtian calcareous nannofossil and foraminiferal biostratigraphic zonation of the northwestern margin of Australia. Journal of Micropalaeontology 22, 29–62.
- Lees, J.A., 2007. New and rarely reported calcareous nannofossils from the Late
 Cretaceous of coastal Tanzania: outcrop samples and Tanzania Drilling Project Sites 5,
 9 and 15. Journal of Nannoplankton Research 29, 39–65.
- Thibault, N., 2010. Calcareous nannofossils from the boreal Upper Campanian Maastrichtian chalk of Denmark. Journal of Nannoplankton Research 31, 39–56.

$\begin{array}{r} 48X-4, 85-86\\ 48X-4, 103-104\\ 48X-4, 102-121\\ 48X-4, 138-139\\ 48X-5, 55-56\\ 48X-5, 78-79\\ 48X-5, 111-112\\ 48X-5, 122-123\\ 48X-5, 145-146\\ 48X-6, 68-69\\ 48X-6, 87-88\\ 48X-6, 97-98\\ 48X-6, 97-98\\ 48X-6, 104-105\\ 48X-6, 104-105\\ 48X-6, 117-118\\ 48X-6, 147-148\\ 49X-1, 9-10\\ 49X-1, 23-24\\ 49X-1, 61-62\\ 49X-1, 95-96\\ 49X-1, 116-117\\ 49X-2, 20-21\\ 49X-2, 20-21\\ 49X-2, 100-101\\ 49X-2, 112-113\\ \end{array}$	48X-3, 57-58 48X-3, 74-75 48X-3, 94-95 48X-3, 129-130 48X-4, 10-11 48X-4, 17-18 48X-4, 30-31 48X-4, 39-40 48X-4, 54-55 48X-4, 73-74	48X-2, 60-61 48X-2, 71-72 48X-2, 80-81 48X-2, 93-94 48X-2, 105-106 48X-2, 114-115 48X-2, 132-133 48X-3, 21-22	+1/3-0, 23-24 47X-6, 66-67 47X-6, 85-86 48X-1, 4-5 48X-1, 40-41 48X-1, 100-101 48X-2, 19-20 48X-2, 35-36 48X-2, 45-46	47X-2, 81-82 47X-2, 128-129 47X-2, 140-141 47X-3, 16-17 47X-3, 16-17 47X-3, 40-41 47X-4, 40-41 47X-4, 106-107 47X-5, 23-24 47X-5, 59-60 47X - 5, 22-24	40x-1, 63-30 46X-2, 8-9 46X-2, 109-110 46X-3, 10-11 46X-3, 121-122 46X-4, 5-6 46X-4, 65-66 47X-1, 9-10 47X-1, 95-96 47X-2, 81-82	45X-3, 131-132 45X-4, 5-6 45X-4, 74-75 45X-5, 4-5 45X-5, 80-81 45X-5, 143-144 46X-1, 20-21 46X-1, 80-90	44A-b, 128-129 44X-7, 14-15 45X-1, 10-11 45X-1, 47-48 45X-1, 47-48 45X-2, 25-26 45X-2, 113-114 45X-3, 49-50 45X-3, 88-80	++x-2, 35-36 44X-2, 148-149 44X-3, 9-10 44X-3, 108-109 44X-4, 5-6 44X-4, 5-6 44X-5, 8-9 44X-5, 119-120 44X-6, 20-21	43X-3, 4-5 43X-3, 66-67 43X-4, 8-9 43X-4, 145-146 43X-5, 90-91 44X-1, 14-15 44X-1, 14-15 44X-2, 25-26 44X-2, 25-26	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
607.35 607.53 607.7 607.83 608.55 608.78 609.11 609.22 609.45 610.18 610.37 610.47 610.54 610.54 610.54 611.75 612.45 612.66 613.2	605.57 605.74 605.94 606.29 606.6 606.67 606.8 606.89 607.04 607.23	604.11 604.21 604.3 604.43 604.55 604.64 604.82 605.2	600.23 600.66 600.83 602.04 602.4 603 603.69 603.85 603.95	594.81 595.28 595.4 595.65 595.9 597.4 598.06 598.73 599.09 600.22	583.69 584.58 585.59 586.1 587.21 587.55 588.15 592.59 593.35 594.81	577.81 578.05 578.74 579.54 580.3 580.93 583.2 583.2	572.78 573.14 573.6 573.97 574.95 575.25 576.13 576.99 577.3°	500.45 566.98 567.09 568.08 568.55 569.6 570.08 571.19 571.7	557.54 558.16 559.08 560.46 561.4 564.14 564.42 565.75 566.45	(tsquu) 554.83 555.51 556.83 556.83
M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M	M M P M M M M	M M M M M M P	M M M M M M M M M	P P M P M P M M M	P M P M P M M	М Р Р М Р М Р М	M M M M M M M M M	M P M M M M M	→ Z Z Preservation
R S F R R R R R R R R R R R R	R F R R R F F R R	R R R F F R R F	R R R F R	F R R R R R R	F R F F R R F R	R				Ahmuellerella octoradiata
R R R R R R R R R R R	R R R R R	R R R	R R R R R	R R						Amphizygus brooksii
										Biscutum coronum
C F C R F F F F C C C C C C C C C C C C	C F C C C C C C C C	F F F F F C C	C C C C F F F F	C C F F F F F C C	C F C F C F C F C	F F C C C C C	F C F C F F F F F C	C C F C R F F F	R F C	W Biscutum constans
R		S								Biscutum magnum
R R R R R R R R R R R R R S	F R R R R R F F R	R R R R R R R F R	F F R R R	D						Broinsonia parca constricta
R R R R R R										Broinsonia parca parca
										Calculites obscurus
			R	R R R 	R 	S 				Z Z Ceratolithoides aculeus
	२ २ २ २ २ २ २	२ २ २ २	र २ २ २ २ २	× ベ ス イ ト ス イ ス イ ス イ ス イ		ペート マント マント マント マント マント マント マント マント マント マン		۲ ۲ ۲ ۲ ۲ ۲	F	
						R F R F R R			F F C R F C R R R R	H H H Crihrocoma callica
		R	R	R				R R R	R R R	N D Cribrosobaerella daniae
	R	R	R	R R R R R	R					Cvlindralithus? nieliae
FFRCFCCCCFFFFF	F F C C C F F F C	R F F R F	RRRRRRRR	R R R R F R R R R R R	R R R R R R	R R R R	R R F R	R		Z Z Discorhabdus ignotus
										Eiffellithus angustus
										Eiffellithus eximius
		R R R F R F F	F C F R R F F R		F R F F R F C F	R F R F F F	<u> </u>	F R F R F R C F	R R R R F F F	ン ン ン ン Eiffellithus parallelus
					R R F R F R	R R R R F	R F R F R	<u> </u>	т т т т т т т	න 게 게 Lithraphidites praequadratus
						R F R R F F R	C F F R F R F R F	F F F F C F F F	R R R F F F	저 ヵ ヵ Lithraphidites quadratus
S S R R R R S					R R	R			R R R	거 거 거 Lucianorhabdus cayeuxii
							R F R	R F R R R R R R	F C F F R R	オーオーン Micula murus
					R R R		R	R	R R R	A Z Micula praemurus
									R R R	Name Name Name Name
R R R R R R R R R R R R	S	S								Monomarginatus quaternarius
		R	Я Я Я Я	ד ק ק ק ק ק	7 7 7 7 7 7 7 7 7 7	Я Я Я Я Я	9 9 9 9 9 9 9	R F R	R R F F R	Nephrolithus corystus
					ξ = 					
F F F F F F F F F F F F F F F F F F F	F	F		F F F F	F F F F F					
	२ 	۲ ۲		< F ス ス ス ス 、 、 、 、 、 、 、 、 、 、 、 、 、	ペート マント マント マント マント マント マント マント マント マント マン	2				Petrarnapdus vietus
	5	5			R	R	R	S	R	Prediscosphaera mgayae
	Я Я Я									
										Painhardtitas anthonhorus
										Reinhardtittes elenans
R R R R F F F F F R R F F F R R F F F F	R F F F R R R F R R F R	R R R R R R R R R R R	F F R F F R	S						Reinhardtites levis
R R R R R R R R R R R R R R R R R R R R R R R R R R R R	F R F F R F R R R R R R R	R R R R R R	R R F F R R R R	R R R R R R R R R R						Stoverius coapoustatus
										Tortolithus hallii
R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R	R R R R R R R	R R R R R	S						Tranolithus orionatus
										Tranolithus stemmerikii
										0 Uniplanarius gothicus
										Uniplanarius trifidus short-rayed
										Uniplanarius trifidus medium-rayed
										Watznaueria manivitae s.s.
F F	F F F F F F F F	F F F F F F	F F F F F F	F F F F F F F F F F	F F F F F F F	F F F F F F	F F F F F F F	F F F F F F	<u></u>	<u> </u>
R F R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R R F R R R F R R R F R R R F R R R F R R R R F R	F R R R R F R F	F F F F F F F F F F F	R R R F R R				S			Zeughrabdotus bicrescenticus sma
										Zeughrabdotus bicrescenticus big
R R R R										Zeugrhabdotus diplogrammus
R R R R R R R R R R R R S	R R F R R R R	R								Zeugrhabdotus erectus
										המו לקייול

****.Cv., 2v-i Pisson F R F F F R F F F R F F R F F R F R F R F R F R F R F R F R F R F R F R F R F R F R F R R F R R R R R R R R R R R R R R R R R R	48X.5.051 618. M F R R R F R <t< th=""><th>abox abox abox b</th></t<>	abox abox abox b
49A-CU, 20-21 013.5 M F F K K C F F F F K K S 50X-1, 0-11 622.62 M R F C R F R R F R R F R R F R R F R R F R R F R R F F R R F F R R F F R F F F S S S S R F F F R R F R R F F F F F F F F S S S S S R F R R R R R R R F R F F F F F F F F F F F F F F R S S S S S S S	49X.5.05-1 618.3 M F R R R F R	1000000000000000000000000000000000000
49x-0c, cv-21 019.5 M F K C K C F F F K S 50x-1, 10-11 62.11 M R F F F F K S S 50x-2, 11-12 622.62 M R C C C F R R F S S 50x-3, 10-11 624.11 M F R F R R R R F R R F R F R F R F R F R F R F R F R F R F R F R F R F R F R F R R F R F R F R F R F R R F R F R F R F R F R F R F R F R F R R F	49X5,50-51 618 M F R R F R R F R R F R R F R R F R R F R R F R R R F R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R <t< td=""><td>Image: Image: Image:</td></t<>	Image:
495-CC, 20-21 101.5.5 M F F K C K C F F F F K S 50X-1, 10-11 621.11 M R F C R F R R F R R F F R F R F R F F R	49X-5, 50-51 618.4 M M F R R R F R R F R R R F R	Image: Second Participation
493-00, 20-21 019.5 019.5 01 F F F R S 50X.1, 10-11 621.11 M R F C R F R C F F R F R S 50X.2, 11-12 622.62 M R C C F F R F R R F R R F R F R F R F R F R F R F R F R F R F R F R F R F R F R F R F R F R F F R F F R F F R F R F R F R F F R F F R F F R F F R F F R F F F F F F F F F F </td <td>49X-5, 50-51 618 M F R R R F R R F R R F R R F R</td> <td>101.10 102.10 11 <t< td=""></t<></td>	49X-5, 50-51 618 M F R R R F R R F R R F R R F R	101.10 102.10 11 1 <t< td=""></t<>
	49X-5, 50-51 618 M F R R F R R F R R F R R F R	49x.4, 93-94 616.93 M F R R F R R F R R F R R F R R F R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R F R R

Appendix 3

Leg 122, Hole 762C, core, section, interval (cm)	Samples numbers	depth (mbsf)	adjusted depth (ambsf) 13C	standardized (‰ V-PDB)	Age (Ma) based on K/Pg at 65.59	Age (Ma) based on K/Pg at 66 100 kyr cycles
42X-5, 95-96	post-doc-1	551.95	552.98	1.40		
42X-UU, 35.5-35.5	POST-00C-2	554.50 554.83	555.73	1.43	65 502	66 002 e1
43X-1, 33-34 43X-1, 34-35	post-doc-3	554.85	556.08	2.55	65 593	66 003
43X-1, 50-52	post-doc-4	555.01	556.24	2.56	65.602	66.012
43X-1, 101-102	PhD-128	555.51	556.74	2.61	65.632	66.042
43X-2, 33-34	PhD-127	556.33	557.56	2.49	65.680	66.090
43X-2, 83-84	PhD-126	556.83	558.06	2.61	65.720	66.130 e2
43X-2, 103-104	post-doc-5	557.04	558.27	2.64	65.739	66.149
43X-3, 4-5	PhD-125	557.54 558.16	558.77	2.44	65.784	66.220 o2
43X-3, 00-07 43X-3, 147-148	post-doc-6	558.98	560 21	2.30	65 862	66 272
43X-4, 8-9	PhD-123	559.08	560.31	2.38	65.867	66.277
43X-4, 145-146	PhD-122	560.46	561.69	2.49	65.958	66.368 e4
43X-5, 47-48	post-doc-7	560.98	562.21	2.47	65.995	66.405 e5
43X-5, 90-91	PhD-121	561.40	562.63	2.48	66.019	66.429
44X-1, 14-15	PhD-120	564.14	565.37	2.56	66.170	66.580 e6
44X-1, 42-43	PhD-119	564.42	565.65	2.60	66.185	66.595
44X1-47-48	post-doc-8	564.48	565.71	2.64	66.188	66.598
44X-2, 25-20	PhD-118 PhD 117	566.45	567.68	2.80	66 202	66 702 og
44×-2, 95-90 44×-2, 95-90	nost-doc-9	566.48	567 71	2.75	66 292	66 703
44X-2, 30 33 44X-2, 148-149	PhD-116	566.98	568 21	2.17	66 313	66 723
44X-3, 9-10	PhD-115	567.09	568.32	2.68	66.317	66.727
44X-3, 108-109	PhD-114	568.08	569.31	2.79	66.356	66.766
44X-3, 147-148	post-doc-10	568.48	569.71	2.78	66.372	66.782
44X-4, 5-6	PhD-113	568.55	569.78	2.76	66.368	66.778 e9
44X-4, 110-111	PhD-112	569.60	570.83	2.82	66.426	66.836
44X-5, 8-9	PhD-111	570.08	571.31	2.85	66.453	66.863
44X-5, 45-46	post-doc-11	570.45	571.68	2.85	66.474	66.884
44X-5, 119-120	PhD-110	571.19	572.42	2.72	66.602	66.932 e10
44×-0, 95-90 44×-6 128-129	PhD-108	572.45	573.00	2.74	66 618	67.013 e11
44X-7, 14-15	PhD-107	573.14	574.37	2.80	66.634	67.044
45X-1, 10-11	PhD-106	573.60	575.15	2.87	66.655	67.065
45X-1, 47-48	PhD-105	573.97	575.52	2.78	66.672	67.082
45X-1, 50-51	post-doc-13	574.00	575.55	2.78	66.673	67.083
45X-1, 145-146	PhD-104	574.95	576.50	2.55	66.732	67.142 e12
45X-2, 25-26	PhD-103	575.25	576.80	2.65	66.754	67.164
45X-2, 113-114	PhD-102	576.13	577.68	2.66	66.814	67.224 e13
45X-3, 49-50	PhD-101	576.99	578.54	2.67	66.869	67.279
457-2, 100-102	PhD-100	577 38	578.03	2.02	66 895	67 305 e14
45X-3, 131-132	PhD-99	577.81	579.36	2.84	66.927	67.337
45X-3, 149-150	post-doc-15	577.99	579.54	2.97	66.941	67.351
45X-4, 5-6	PhD-98	578.05	579.60	2.80	66.946	67.356
45X-4, 74-75	PhD-97	578.74	580.29	2.73	66.999	67.409 e15
45X-5, 4-5	PhD-96	579.54	581.09	2.94	67.065	67.475
45X-5, 44-45	post-doc-16	579.95	581.50	2.87	67.101	67.511 e16
45X-5, 80-81	PhD-95	580.30	581.85	3.01	67.136	67.546
45X-5, 143-144	PhD-94	580.93	582.48	3.09	67.197	67.607 e17
45X-00, 40-42 46X-1, 20-21		583 20	584 75	3.03 2.74	67 373	67.049 67.783 o18
46X-1, 45-46	post-doc-18	583.45	585.00	2.74	67.391	67.801 e19
46X-1, 89-90	PhD-92	583.89	585.44	2.70	67.422	67.832
46X-2, 8-9	PhD-91	584.58	586.13	2.66	67.472	67.882
46X-2, 99-100	post-doc-19	585.50	587.05	2.76	67.535	67.945 e20
46X-2, 109-110	PhD-90	585.59	587.14	2.67	67.541	67.951
46X-3, 10-11	PhD-89	586.10	587.65	2.66	67.575	67.985
46X-3, 121-122	PhD-88	587.21	588.76	2.69	67.651	68.061 e21
46X-3, 147-148	post-doc-20	587.48	589.03	2.70	67.670	68.080
40X-4, 5-6	PUD-81	587.55	ov9.10	2.71	01.014	bð.U84

46X-4, 65-66	PhD-86	588.15	589.70	2.59	67.715	68.125	e22
46X-4, 125-126	post-doc-21	588.75	590.30	2.80	67.756	68.166	
46X-CC, 33-34	post-doc-22	589.30	590.85	2.83	67.791	68.201	e23
47X-1, 9-10	PhD-85	592.59	594.14	2.69	67.868	68.278	
47X-1, 23-24	post-doc-23	592.74	594.29	2.66	67.871	68.281	
47X-1, 95-96	PhD-84	593.35	594.90	2.81	67.886	68.296	
4/X-2, 46-47	post-doc-24	594.46	596.01	2.67	67.957	68.367	e24
4/X-2, 81-82	PhD-83	594.81	596.36	2.65	67.982	68.392	-04 5
47X-2, 128-129	PhD-82	595.28	596.83	2.70	68.024	68.434	e24,5
4/ A-2, 140-141		595.40	590.95 507.20	2.00	00.409 69 557	60.099	ez9,5
47X-3, 10-17 47X-3, 40-41	PhD-70	595.05	597.20	2.74	68 577	68 087	630
47X-3, 111-112	nost-doc-25	596 62	598 17	2.66	68 688	69 098	e31
47X-4 40-41	PhD-78	597 40	598.95	2.60	68 808	69 218	e33
47X-4, 106-107	PhD-77	598.06	599.61	2.77	68.904	69.314	e34
47X-4, 147-148	post-doc-26	598.48	600.03	2.72	68.962	69.372	
47X-5, 23-24	PhD-76	598.73	600.28	2.77	68.995	69.405	e35
47X-5, 59-60	PhD-75	599.09	600.64	2.85	69.035	69.445	
47X-6, 23-24	PhD-74	600.23	601.78	2.60	69.157	69.567	e36
47X-6, 85-86	PhD-72	600.83	602.38	2.55	69.227	69.637	e37
47X-6, 88-89	post-doc-27	600.89	602.44	2.63	69.235	69.645	
48X-1, 4-5	PhD-71	602.04	603.65	2.37	69.469	69.879	e39
47X-CC, 28-29	post-doc-28	602.05	603.66	2.54	69.471	69.881	
48X-1, 10-11	post-doc-29	602.11	603.72	2.44	69.482	69.892	
48X-1, 40-41	PhD-70	602.40	604.01	2.57	69.531	69.941	e40
48X-1, 100-101	PhD-69	603.00	604.61	2.45	69.640	70.050	e41
48X-2, 19-20	PhD-68	603.69	605.30	2.59	69.778	70.188	e42
48X-2, 60-61	PhD-65	604.11	605.72	2.50	69.828	70.238	e43
48X-2, 69-70	post-doc-30	604.20	605.81	2.46	69.838	70.248	
48X-2, 93-94	PhD-62	604.43	606.04	2.49	69.862	70.272	- 1 1
487-2, 132-133	PhD-59 PhD 56	604.82	607.25	2.41	69.906 70.024	70.316	e44
40A-3, 74-73 19X 2 125 126	PIID-00	606.26	607.33	2.00	70.024	70.434	e45 o46
40A-3, 123-120 /8X-3, 120-130	PUSI-000-31	606.20	607.07	2.40	70.103	70.513	640
48X-4 30-31	PhD-51	606.80	608.41	2.33	70.107	70.517	
48X-4 73-74	PhD-48	607.23	608.84	2.40	70.239	70.505	e47
48X-4, 120-121	PhD-45	607.70	609.31	2.38	70.311	70.721	e48
48X-5, 26-27	post-doc-32	608.27	609.88	2.52	70.391	70.801	e49
48X-5, 78-79	PhD-42	608.78	610.39	2.51	70.481	70.891	
48X-5, 145-146	PhD-39	609.45	611.06	2.54	70.586	70.996	e50
48X-6, 68-69	PhD-38	610.18	611.79	2.59	70.863	71.273	e53
48X-6, 71-72	post-doc-33	610.22	611.83	2.59	70.871	71.281	
48X-6, 87-88	PhD-37	610.37	611.98	2.61	70.898	71.308	e54
48X-6, 117-118	PhD-34	610.67	612.28	2.66	70.943	71.353	
48X-6, 147-148	PhD-33	610.97	612.58	2.56	70.988	71.398	
49X-1, 10-12	post-doc-34	611.62	613.59	2.43	71.120	71.530	e56
49X-1, 23-24	PhD-30	611.75	613.72	2.60	71.141	71.551	
49X-1, 61-62	PhD-29	612.11	614.08	2.43	71.197	71.607	e57
49X-1, 116-117	PhD-27	612.66	614.63	2.45	71.281	71.691	- 50
49X-2, 11-12	post-doc-35	613.12	615.09	2.44	71.351	71.761	658
497-2, 20-21	PND-20	612.20	615.01	2.44	71.304	71.002	<u>~60</u>
497-2, 02-04 198-2, 112-113	PUSI-000-30	61/ 12	616.00	2.42	71.493	71.903	600
49X-2, 112-113 49X-3, 10-11	nost-doc-37	614.12	616 58	2.34	71.507	72 063	<u>e61</u>
49X-3 20-21	PhD-22	614 70	616.67	2.42	71.665	72.005	001
49X-3, 65-66	PhD-19	615.15	617.12	2.39	71.716	72.126	e62
49X-3, 104-105	PhD-16	615.55	617.52	2.34	71.756	72.166	
49X-3, 115-116	post-doc-38	615.66	617.63	2.54	71.767	72.177	
49X-4, 11-12	post-doc-39	616.12	618.09	2.48	71.814	72.224	e63
49X-4, 19-20	PhD-13	616.19	618.16	2.59	71.822	72.232	
49X-4, 93-94	PhD-12	616.93	618.90	2.44	71.900	72.310	e64
49X-4, 101-102	post-doc-40	617.02	618.99	2.45	71.908	72.318	
49X-5, 11-12	post-doc-41	617.62	619.59	2.38	71.965	72.375	
49X-5, 20-21	PhD-8	617.70	619.67	2.37	71.973	72.383	
49X-5, 80-81	PhD-5	618.30	620.27	2.45	72.039	72.449	e65
49X-5, 105-106	post-doc-42	618.56	620.53	2.65	72.070	72.480	
49X-5, 135-136	PhD-1	618.85	620.82	2.49	72.097	12.507	egg
49X-6, 10-11	post-doc-43	619.11 610.50	621.08	2.49	72.111	72.521	
498-00, 20-21	post-doc-44	019.50	021.47	Z.44	12.133	12.543	

50X-1, 19:-94 post-doc-46 621.94 623.91 2.47 72.295 72.705 668 50X-2, 11-12 post-doc-47 622.62 624.59 2.55 72.398 72.480 669 50X-3, 10-111 post-doc-50 625.11 627.08 2.57 72.648 72.966 670 50X-4, 101-102 post-doc-51 625.62 628.49 2.58 72.287 73.138 672 50X-5, 10-0101 post-doc-54 628.01 629.09 2.63 72.428 73.138 672 50X-6, 16-17 post-doc-56 628.67 630.64 2.42 72.827 73.328 673 50X-CC, 28.5-3 post-doc-58 630.62 632.97 2.53 73.100 73.510 73.520 51X-1, 101-12 post-doc-61 632.11 634.46 2.70 73.629 73.369 73.649 51X-1, 101-12 post-doc-61 633.16 635.96 2.60 73.308 73.649 73.649 51X-1, 101-12 post-doc-61
50X-2, 11-102 post-doc-47 622.62 624.59 2.55 72.308 72.748 50X-3, 110-111 post-doc-48 623.51 622.08 2.57 72.858 72.956 670.90 50X-3, 110-115 post-doc-51 625.62 627.59 2.62 72.664 73.014 e71 50X-4, 101-112 post-doc-53 627.12 620.92 2.63 72.787 73.387 e73 50X-5, 11-12 post-doc-56 628.61 631.68 2.48 72.878 73.198 50X-6, 16.17 post-doc-56 628.61 631.68 2.48 73.077 73.287 e73 50X-6, 10.51 post-doc-56 629.61 631.58 2.48 73.010 73.510 e75 50X-7, 10.5-11 post-doc-56 630.50 632.85 2.60 73.030 73.110 73.820 51X-1, 10.12 post-doc-61 632.11 633.46 2.70 73.287 73.632 51X-3, 10.11 post-doc-63 633.61 633.96 2.70 73.547 73.632
50X-2, 101-102 post-doc-49 623, 53 625, 50 2, 52 72, 399 72, 809 663 50X3, 10-111 post-doc-50 625, 11 627, 08 2, 71 72, 556 72, 966 670 50X-4, 101-102 post-doc-51 625, 62 622, 99 2, 63 72, 178 73, 114 671 50X-5, 100-101 post-doc-54 628, 10 629, 99 2, 63 72, 178 73, 138 672 50X-6, 110-111 post-doc-56 628, 67 630, 64 2, 62 73, 100 73, 340 675 50X-CC, 28, 5-30 post-doc-56 630, 60 632, 85 2, 60 73, 110 73, 360 677 51X-1, 101.5 post-doc-61 632, 11 634, 66 2, 70 73, 350 73, 110 73, 360 73, 100 73, 510 76 51X-1, 101.5 post-doc-61 632, 11 634, 66 2, 70 73, 544 73, 350 73, 110 73, 360 73, 168 73 51X-3, 101.5 post-doc-61 632, 11 634
50X-3 (10-11 post-doc-49 624.11 626.08 2.50 72.456 72.868 50X-3, 110-115 post-doc-51 625.62 627.08 2.71 72.556 72.967 73.014 e71 50X-4, 101-112 post-doc-53 627.12 629.09 2.63 72.787 73.138 672 50X-5, 11-12 post-doc-56 628.67 630.64 2.62 72.787 73.327 673 50X-6, 16-17 post-doc-56 628.61 631.58 2.44 72.827 73.332 674 50X-7, 10.5-115 post-doc-57 630.62 632.97 2.53 73.100 73.510 675 51X-1, 10.15 post-doc-63 633.61 633.66 2.30 73.308 73.100 73.502 51X-1, 10.15 post-doc-63 633.61 633.66 2.80 73.308 73.718 78 51X-3, 10-11 post-doc-65 635.12 637.47 2.64 73.331 73.915 680 51X-3, 10-12 post-doc-76 636.60
50X.3, 110-111 post-doc-50 625.11 627.08 2.71 72.566 72.966 e70 50X.4, 101-102 post-doc-52 626.62 627.59 2.63 72.604 73.104 e71 50X.5, 100-101 post-doc-54 628.01 629.09 2.63 72.728 73.138 e72 50X.6, 101-11 post-doc-56 628.67 630.64 2.62 72.849 73.328 e73 50X.6, 116-11 post-doc-56 629.61 631.58 630.62 2.60 73.100 73.510 73.61 e77 50X.CC, 28.5-30 post-doc-61 632.11 634.66 2.70 73.222 73.632 73.7310 73.520 51X.1, 11-12 post-doc-61 632.11 634.66 2.70 73.250 73.661 e77 51X.1, 11-12 post-doc-61 632.11 634.66 2.80 73.306 73.915 860 51X.3, 10.11 post-doc-64 633.61 63.70 2.77 73.447 73.915 874.100
50X 101-10 post-doc-51 625.62 627.59 2.62 72.687 73.014 671 50X.4, 101-10 post-doc-53 627.12 629.09 2.53 72.728 73.138 672 50X.5, 11-12 post-doc-56 628.61 631.58 2.48 72.877 73.287 673 927 73.392 673 50X.6, 10-11 post-doc-56 628.61 631.58 2.44 72.827 73.392 673 50X.7, 10.5-115 post-doc-57 630.62 632.97 2.53 73.110 73.510 675 51X.1, 101.5-102.5 post-doc-61 631.16 633.66 2.70 73.287 73.682 51X.3, 10-11 post-doc-62 632.11 634.46 2.73 73.087 73.816 673 51X.3, 10-11 post-doc-64 635.72 637.47 2.64 73.306 73.718 678 51X.4, 10-102 post-doc-67 636.02 638.97 2.76 73.564 73.694 74.004 631
S0X.4, 101-102 post-doc-52 628.52 628.69 2.57 72.687 73.097 50X.5, 101-10 post-doc-54 628.01 629.09 2.63 72.728 73.138 672 50X.5, 101-10 post-doc-54 628.01 629.08 2.68 72.728 73.138 672 50X.6, 110-11 post-doc-56 628.61 631.58 633.08 2.48 72.822 73.322 673 50X.CC, 28.5-30 post-doc-56 630.62 632.97 2.53 73.110 73.500 73.601 73.861 673 51X.1, 101.5-102.5 post-doc-61 632.11 633.46 2.707 73.259 73.866 73.866 73.806 673 51X.3, 101-11 post-doc-66 635.12 637.47 2.64 73.806 73.915 680 51X.4, 101-102 post-doc-66 636.22 633.92 2.77 73.544 73.954 73.096 73.806 73.954 73.096 73.806 73.954 73.404 631 53.75 <t< td=""></t<>
500.4,5,111-12 post-doc-53 627.12 620.09 2.63 72.728 73.138 e72 500.4,5,110-101 post-doc-54 628.01 629.98 2.59 72.7287 73.138 e72 500.4,5,110-11 post-doc-55 628.61 630.64 2.68 73.061 73.461 e73 500.4,5,111-15 post-doc-56 630.62 632.97 2.58 73.061 73.461 e76 510.4,1,101-5102.5 post-doc-60 631.53 633.88 2.71 73.222 73.601 e77 f31.51 73.601 e77 511.4,101-5102.5 post-doc-61 632.11 634.46 2.77 73.225 73.609 73.718 e78 511.4,3,10-11 post-doc-65 635.12 637.47 2.64 73.431 73.841 73.841 511.4,4,11-12 post-doc-66 636.02 633.71 2.66 73.504 73.504 73.504 73.504 73.544 73.544 73.544 73.544 73.544 73.544 73.544
DAX-5, 100-101 post-doc-54 622.02 622.03 2.05 72.789 73.189 SDX-6, 100-101 post-doc-56 628.67 630.64 2.62 72.789 73.287 e73 SDX-6, 100-111 post-doc-56 628.67 630.58 2.48 72.789 73.191 73.261 e73 SDX-CC, 226.5-30 post-doc-56 630.02 632.92 2.53 73.100 73.510 e73.510 e73.510 e73.510 e73.610 e75.632 e73.710 e73.510 e73.610 e75.632 e73.510 e76.632 e73.851 e73.222 e73.662 e73.852 e73.863 e73.308 e73.718 e78.622 e73.863 e74.73.308 e73.718 e78.642 e73.541 e73.464 e73.308 e73.718 e78.643 e74.065 e83.45 e74.73.544 e73.544 e74.066 e73.55 e73.916 e80 e73.554 e74.006 e81.55 e74.065 e73.556 e73.916 e80.73.564 e73.564 e74.066 e74.306 e84.55 e74.73.544 e73.564 e74.066 e74.306 e84.552.77 e73.547 e74.046
$ \begin{array}{c} 50.5, 6, 16.7, 100.76, 100.76, 100.76, 100.76, 100.76, 100.77, 100.76, 100.77, 100.76, 100.77, 100.76, 100.76, 100.73, 512, 100.73, 514, 100, 514, 524, 514, 514, 514, 514, 514, 51$
30.A-6, 10-1/1 post-duc-56 629.61 631.58 2.4.87 73.267 73.227 73.232 e74 50X-CC, 28.5-30 post-duc-57 630.02 632.69 2.5.8 73.001 75.101 e75 51X-1, 10.5-10.25 post-duc-68 630.62 632.87 2.5.3 73.101 73.501 e76 51X-1, 101.5-102.5 post-duc-61 632.11 634.46 2.7.3 73.229 73.683 51X-3, 101.1 post-duc-62 632.81 635.16 2.70 73.229 73.689 51X-3, 101.10 post-duc-66 635.12 637.47 2.64 73.431 73.841 73.841 51X-4, 101-102 post-duc-66 636.02 638.37 2.76 73.654 74.004 e81 51X-5, 910 post-duc-67 636.60 639.35 2.77 73.544 73.954 73.544 74.123 e82 52X-1, 10-11 post-duc-71 640.61 641.66 2.66 73.979 74.123 e82 52X-1, 10-11 post-duc-76 643.61 647.90 2.66 73.970 74.338 74.248
$\begin{array}{c} 30.4-6, 110-111 \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
bulk-r, 10.5-11.5 bost-doc-57 bost-doc bost-doc<
50.X-C, 28.S-30 post-doc-59 630.50 632.85 2.60 7.3.100 7.3.510 7.3.520 51X-1, 11-12 post-doc-60 631.53 633.88 2.71 7.3.110 7.3.520 51X-2, 10-11 post-doc-62 632.81 635.16 2.70 73.326 73.669 51X-3, 10-11 post-doc-64 634.73 637.08 2.71 73.336 73.806 79 51X-4, 10-102 post-doc-66 635.12 637.74 2.64 73.411 73.806 73.056 73.915 e80 51X-5, 910 post-doc-67 636.02 638.97 2.76 73.544 73.954 73.954 74.066 51X-6, 130-131 post-doc-71 640.11 642.46 2.68 73.791 74.123 e82 52X-1, 10-11 post-doc-75 643.12 643.02 2.63 73.896 74.306 52X-2, 12.11 74.169 74.169 74.169 74.169 74.169 74.169 74.160 74.169 74.201 83 74.28 74.438
51X.1, 101-12 post-doc-69 630.62 632.97 2.53 73.110 73.520 51X.2, 10.11 post-doc-61 632.11 633.68 2.71 73.259 73.601 e77 51X.2, 80-81 post-doc-63 633.61 635.66 2.70 73.308 73.718 e78 51X.3, 10-11 post-doc-64 633.61 635.96 2.80 73.308 73.718 e78 51X.4, 11-12 post-doc-66 636.02 638.37 2.76 73.505 73.915 e80 51X.5, 91-0 post-doc-66 637.35 637.97 2.66 73.591 74.004 e81 51X.6, 130-131 post-doc-70 639.31 641.66 2.72 73.713 74.123 e82 52X.1, 10-11 post-doc-71 640.67 643.02 2.63 73.791 74.201 e83 52X.2, 1.5 post-doc-74 642.63 644.98 2.76 73.896 74.248 52X.2, 1.0-11 post-doc-75 643.12 645.47 2.66 73.979 74.169 52X.4 10.11.5 post-doc-76
51X-1, 101.5-102.5 post-doc-60 631.53 633.88 2.71 73.191 73.601 e77 51X-2, 10-11 post-doc-61 632.11 634.46 2.73 73.222 73.632 51X-3, 10-11 post-doc-62 632.81 635.16 2.70 73.259 73.669 51X-3, 10-12 post-doc-64 634.73 637.08 2.71 73.396 73.806 e73 51X-4, 101-102 post-doc-66 635.12 637.47 2.64 73.431 73.841 51X-5, 9-10 post-doc-67 636.60 638.95 2.77 73.544 73.954 51X-5, 9-10 post-doc-68 637.35 639.70 2.69 73.504 74.004 e81 51X-6, 130-131 post-doc-71 636.60 638.95 2.77 73.544 73.954 51X-5, 9-10 post-doc-70 639.31 641.66 2.72 73.713 74.123 e82 52X-1, 10-11 post-doc-71 640.67 643.02 2.63 73.791 74.201 e83 52X-2, 12-113 post-doc-73 641.55 643.90 2.62 73.838 74.248 52X-3, 10-12 post-doc-76 643.12 645.47 2.66 73.924 74.304 52X-2, 112 post-doc-76 643.12 645.47 2.66 73.924 74.306 e84 52X-3, 10-12 post-doc-76 643.12 645.47 2.66 73.924 74.306 e84 52X-3, 10-12 post-doc-76 643.12 645.47 2.66 73.924 74.336 52X-4, 109-110.5 post-doc-77 644.62 646.97 2.67 74.020 74.439 52X-4, 109-110.5 post-doc-76 643.18 646.13 2.67 73.907 74.507 52X-5, 10.51.15 post-doc-76 643.12 646.97 2.67 74.020 74.502 52X-5, 10.51.15 post-doc-78 645.16 647.94 2.55 74.009 74.507 52X-5, 10.51.15 post-doc-78 644.52 646.97 2.67 74.022 74.542 52X-5, 10.51.15 post-doc-78 644.52 646.97 2.67 74.202 74.542 52X-5, 10.51.15 post-doc-78 643.12 651.47 2.66 74.332 74.542 52X-5, 10.51.15 post-doc-78 643.12 651.47 2.56 74.301 74.502 52X-6, 8-99 post-doc-82 648.33 650.70 2.66 74.388 74.498 52X-7, 11.12 post-doc-84 64.938 651.70 2.56 74.288 74.498 52X-7, 11.12 post-doc-84 64.938 651.73 2.58 74.300 74.707 53X-1, 12.13 post-doc-84 64.938 651.70 2.56 74.288 74.498 53X-4, 100-102 post-doc-85 651.90 653.52 2.56 74.4554 74.964 53X-4, 100-102 post-doc-86 650.52 653.14 2.67 74.483 74.669 53X-4, 100-102 post-doc-84 655.90 657.71 2.56 74.381 74.902 53X-5, 104-102 post-doc-84 655.91 663.73 2.57 74.492 75.332 63X-4, 104-19 post-doc-93 655.91 663.73 2.77 75.18 75.44 53X-4, 104-19 post-doc-94 656.92 657.1 2.56 74.491 75.518 6 53X-4, 104-19 post-doc-96 658.
$ 51X_2, 10-11 post-doc-61 632.11 634.46 2.73 73.222 73.652 \\ 51X_3, 10-11 post-doc-63 633.61 635.6 2.70 73.259 73.669 \\ 51X_3, 121.5-122.5 post-doc-64 634.73 637.08 2.71 73.396 73.806 e79 \\ 51X_4, 11-12 post-doc-66 636.02 638.37 2.76 73.505 73.915 e80 \\ 51X_5, 121.5-122.5 post-doc-66 636.02 638.37 2.76 73.505 73.915 e80 \\ 51X_5, 84-85 post-doc-68 637.35 639.70 2.69 73.594 74.004 e81 \\ 51X_5, 84-85 post-doc-69 638.36 640.71 2.66 73.656 74.066 \\ 51X_6, 1301 post-doc-71 640.11 642.46 2.68 73.759 74.169 \\ 52X_4, 16-11 post-doc-72 640.67 643.02 2.63 73.791 74.121 e83 \\ $
$ 51X-2, 80-81 post-doc-62 632.81 635.16 2.70 73.259 73.669 \\ 73.08 73.718 \ e^{78} \\ 51X-3, 10-11 post-doc-64 634.73 637.08 2.71 73.396 73.708 \ e^{79} \\ 51X-4, 101-102 post-doc-66 636.02 638.37 2.76 73.505 73.915 \ e^{80} \\ 51X-5, 81-0 post-doc-68 637.35 639.70 2.69 73.505 73.915 \ e^{80} \\ 51X-5, 81-0 post-doc-69 638.36 640.71 2.66 73.656 74.004 \ e^{81} \\ 51X-6, 53-36 post-doc-69 638.36 640.71 2.66 73.656 74.066 \\ 51X-6, 130-131 post-doc-71 640.11 642.46 2.68 73.759 74.169 \\ 52X-1, 10-11 post-doc-71 640.67 643.02 2.63 73.971 74.201 \ e^{83} \\ 52X-2, 112-113 post-doc-75 643.12 645.47 2.66 73.924 74.334 \\ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
51X-3, 121.5-122.5 post-doc-64 633.73 637.08 2.71 73.396 73.807 51X-4, 101-102 post-doc-66 636.02 638.37 2.64 73.314 73.841 51X-5, 9-10 post-doc-67 636.00 638.36 640.71 2.66 73.544 73.915 e80 51X-5, 84-85 post-doc-68 637.35 639.70 2.66 73.567 74.106 51X-6, 35-36 post-doc-71 639.31 641.66 2.72 73.713 74.123 e82 52X-1, 10-11 post-doc-73 641.55 643.90 2.62 73.897 74.306 e84 52X-2, 112-113 post-doc-75 643.12 645.47 2.66 73.924 74.334 52X-4, 10-11.5 post-doc-76 643.78 646.13 2.67 74.028 74.438 52X-4, 10-11.5 post-doc-76 644.51 646.97 74.028 74.438 74.542 52X-5, 10.51 post-doc-76 645.61 647.94 2.56 74.028 74.438 52X-4, 10-11.5 post-doc-81 647.99 648.47
51X-4, 11-12 post-doc-65 635.12 637.47 2.64 73.431 73.841 51X-5, 9-10 post-doc-66 636.02 638.37 2.76 73.505 73.954 73.954 51X-5, 9-10 post-doc-68 637.35 639.70 2.69 73.594 74.006 e81 51X-6, 130-131 post-doc-70 639.31 641.66 2.72 73.713 74.123 e82 52X-1, 10-11 post-doc-71 640.11 642.42 2.68 73.797 74.201 e83 52X-2, 4.5 post-doc-73 641.55 643.02 2.62 73.898 74.248 52X-3, 10-12 post-doc-76 643.12 646.47 2.66 73.970 74.330 52X-4, 10-11.5 post-doc-76 643.78 646.13 2.67 73.970 74.380 52X-4, 10-11.5 post-doc-76 643.78 646.13 2.67 73.970 74.380 74.248 52X-4, 10-11.5 post-doc-78 645.21 648.47 2.66 74.132 74.542 52X-4, 10-11.5 post-doc-81 644.98 651.77
51X-4, 101-102 post-doc-66 636.02 638.95 2.77 73.504 73.954 51X-5, 84-85 post-doc-68 637.35 630.70 2.66 73.594 74.104 e81 51X-6, 35-36 post-doc-69 638.36 640.71 2.66 73.594 74.103 e82 52X-1, 10-11 post-doc-71 640.67 643.02 2.63 73.791 74.218 e82 52X-2, 12-113 post-doc-75 641.55 643.90 2.62 73.838 74.306 e84 52X-2, 12-113 post-doc-76 643.78 646.13 2.67 73.907 74.308 52X-3, 10-12 post-doc-76 643.78 646.13 2.67 73.907 74.330 52X-4, 10-11.5 post-doc-76 643.78 646.13 2.67 74.028 74.438 52X-5, 10.5-11.5 post-doc-78 645.61 647.96 2.55 74.097 74.507 52X-5, 98-99 post-doc-81 647.95 649.34 2.56 74.235 74.648 52X-6, 8.9 post-doc-81 647.59 649.34 2.56
51X-5, 9-10 post-doc-67 636.00 638.35 639.70 2.69 73.594 73.594 74.004 e81 51X-5, 35-36 post-doc-69 633.35 639.70 2.69 73.594 74.004 e81 51X-5, 35-36 post-doc-70 633.31 641.66 2.72 73.713 74.123 e82 52X-1, 65-67 post-doc-71 640.11 642.46 2.68 73.791 74.201 e82 52X-2, 4-5 post-doc-73 641.55 643.02 2.66 73.924 74.306 e84 52X-3, 10-12 post-doc-76 643.78 646.13 2.67 73.970 74.380 522×4, 10-11.5 post-doc-77 644.62 646.97 2.67 74.028 74.430 522×4, 10-91.05 post-doc-78 645.61 647.96 2.55 74.097 74.507 522×5, 10.5-11.5 post-doc-80 646.99 649.34 2.56 74.288 74.632 522×5, 98.99 post-doc-81 641.59 651.77 2.56 74.288 74.603 522×5, 98.99 post-doc-81 641.26 651.77 2.56 74.288 74.6
51X-5, 84-85 post-doc-68 637.35 639.70 2.69 73.594 74.004 e81 51X-6, 130-131 post-doc-69 638.36 640.71 2.66 73.656 74.066 52X-1, 10-11 post-doc-71 640.67 643.02 2.63 73.791 74.123 e83 52X-2, 4-5 post-doc-73 641.67 643.02 2.66 73.896 74.306 e84 52X-2, 4-5 post-doc-73 641.55 643.90 2.67 73.896 74.306 e84 52X-3, 77.78 post-doc-76 643.12 645.47 2.66 73.924 74.334 52X-4, 10-11.5 post-doc-77 644.62 646.97 2.67 74.080 74.507 52X-5, 10.51.5 post-doc-78 645.16 647.96 2.55 74.097 74.507 74.542 52X-5, 10.5-1.5 post-doc-80 646.99 649.34 2.58 74.193 74.603 74.707 52X-6, 8.9 post-doc-81 647.59 649.94 2.57 74.238 74.402 74.902 74.808 52X-6, 8.9 po
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 52X-2, 4-5 \\ 52X-2, 4-5 \\ 52X-2, 112-113 \\ post-doc-74 \\ 642.63 \\ 644.98 \\ 2.76 \\ 73.803 \\ 74.306 \\ rds \\ $
52X-2, 112-113 post-doc-74 642.63 644.98 2.76 73.896 74.306 e84 52X-3, 10-12 post-doc-75 643.12 645.47 2.66 73.896 74.306 e84 52X-3, 10-12 post-doc-76 643.78 646.13 2.67 73.970 74.380 52X-4, 10-11.5 post-doc-77 644.62 646.97 2.67 74.028 74.438 52X-5, 10.5-11.5 post-doc-79 646.12 648.47 2.66 74.132 74.542 52X-5, 10.5-11.5 post-doc-79 646.12 648.47 2.66 74.133 74.603 52X-6, 8-9 post-doc-81 647.59 649.94 2.57 74.645 74.645 52X-7, 11-12 post-doc-82 648.35 650.70 2.56 74.380 74.806 52X-7, 11-12 post-doc-86 650.52 653.41 2.67 74.435 74.645 53X-2, 1-2 post-doc-87 651.02 653.64 2.55 74.607 74.902 U U Y Y Y Y Y Y Y Y <t< td=""></t<>
$ \begin{array}{c} 52X-3, 10-12 \\ 52X-4, 10-11.5 \\ 50x+doc-76 \\ 643.78 \\ 646.13 \\ 2.67 \\ 73.970 \\ 74.380 \\ 74.380 \\ 74.438 \\ 74.438 \\ 74.438 \\ 74.438 \\ 74.438 \\ 74.438 \\ 74.438 \\ 74.507 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.603 \\ 74.608 \\ 74.707 \\ 74.587 \\ 74.698 \\ 74.698 \\ 74.707 \\ 74.587 \\ 74.698 \\ 74.747 \\ 74.668 \\ 74.717 \\ 75.74 \\ 74.668 \\ 74.717 \\ 75.74 \\ 74.964 \\ 74.707 \\ 75.3X-1, 12-1 \\ post-doc-81 \\ 649.38 \\ 651.90 \\ 653.64 \\ 2.57 \\ 74.492 \\ 74.964 \\ 74.700 \\ 74.458 \\ 74.868 \\ 74.714 \\ 75.121 \\ 75.3X-2, 12- \\ post-doc-88 \\ 651.90 \\ 655.22 \\ 2.52 \\ 74.602 \\ 74.514 \\ 74.964 \\ 74.97 \\ 75.380 \\ 75.380 \\ 75.380 \\ 75.380 \\ 75.380 \\ 75.380 \\ 75.380 \\ 75.40 \\ 75.380 \\ 75.40 \\ 75.414 \\ 75.547 \\ 75.424 \\ 90 \\ 75.332 \\ 75.603 \\ 75.603 \\ 90 \\ 75.404 \\ 90 \\ 75.334 \\ 75.603 \\ 75.603 \\ 90 \\ 75.404 \\ 90 \\ 75.334 \\ 75.603 \\ 75.$
$ \begin{array}{c} 52X-4, 10-11.5 \\ 52X-4, 10-11.5 \\ post-doc-77 \\ 644.62 \\ 646.97 \\ 2.67 \\ 74.028 \\ 74.438 \\ 52X-4, 109-110.5 \\ post-doc-78 \\ 645.61 \\ 647.96 \\ 2.55 \\ 74.097 \\ 74.507 \\ 74.603 \\ 74.508 \\ 74.508 \\ 74.508 \\ 74.508 \\ 74.508 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.518 \\ 74.608 \\ 74.700 \\ 74.518 \\ 74.608 \\ 74.700 \\ 74.518 \\ 74.608 \\ 74.700 \\ 74.518 \\ 74.608 \\ 74.700 \\ 74.518 \\ 74.608 \\ 74.700 \\ 74.808 \\ 74.608 \\ 74.700 \\ 74.808 \\ 74.700 \\ 74.808 \\ 74.608 \\ 74.700 \\ 74.808 \\ 74.608 \\ 74.700 \\ 74.808 \\ 74.700 \\ 74.808 \\ 74.700 \\ 74.808 \\ 74.808 \\ 74.700 \\ 74.808 \\ 74.808 \\ 74.700 \\ 75.818 \\ 74.606 \\ 74.908 \\ 75.118 \\ 75.71 \\ 75.188 \\ 75.71 \\ 75.88 \\ 74.708 \\ 75.188 \\ 75.71 \\ 75.88 \\ 75.818 \\ 75.8$
$ \begin{array}{c} 52.4, 10 + 110.5 \\ 52.4, 109 + 110.5 \\ 52.4, 109 + 110.5 \\ 52.4, 109 + 110.5 \\ 52.4, 109 + 110.5 \\ 52.5, 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 52.5 \\ 10.5 + 11.5 \\ 10.5 + 11.5 \\ 10.5 \\ 11.5 \\ 1$
52X-5, 10.5-11.5 post-doc-79 646.12 648.47 2.66 74.132 74.542 52X-5, 10.5-11.5 post-doc-79 646.99 649.94 2.57 74.235 74.603 52X-6, 8.9 post-doc-81 647.59 649.94 2.57 74.235 74.698 52X-6, 8.3-85 post-doc-82 648.35 650.70 2.56 74.381 74.751 52X-7, 11-12 post-doc-83 649.12 651.47 2.56 74.341 74.761 52X-7, 11-12 post-doc-85 649.63 652.25 2.64 74.806 74.806 53X-1, 120-102 post-doc-86 651.02 653.41 2.67 74.492 74.902 53X-2, 89-90 post-doc-87 651.02 655.22 2.52 74.602 75.076 53X-3, 101-102 post-doc-90 653.52 656.14 2.54 74.666 75.076 53X-4, 108-109 post-doc-91 655.09 657.71 2.58 74.711 75.121 53X-4, 108-109 post-doc-93 655.91 658.53 2.51 74.823 75.323 <t< td=""></t<>
52X-5, 98-99 post-doc-80 646.99 649.34 2.58 74.193 74.603 52X-5, 98-99 post-doc-81 647.59 649.94 2.57 74.285 74.645 52X-6, 8.3 post-doc-82 648.35 650.70 2.56 74.288 74.693 52X-7, 11-12 post-doc-83 649.12 651.47 2.56 74.341 74.771 53X-1, 12-13 post-doc-84 649.63 652.25 2.64 74.396 74.806 53X-1, 12-13 post-doc-86 650.52 653.14 2.67 74.458 74.866 53X-2, 1-2 post-doc-87 651.02 653.64 2.57 74.492 74.902 44 53X-3, 9-10 post-doc-88 651.90 654.52 2.65 74.514 75.012 75.332 53X-3, 9-10 post-doc-91 655.10 656.78 2.65 74.711 75.186 75.313 75.343 75.243 95 53X-5, 40-41 post-doc-94 656.99 659.61 2.62 74.908 75.389 95 53X-5, 148-149 post-doc-96 65
52X-6, 80-9 post-doc-81 647.59 649.94 2.56 74.235 74.645 52X-6, 83-85 post-doc-82 648.35 650.70 2.56 74.245 74.645 52X-7, 11-12 post-doc-83 649.12 651.47 2.56 74.341 74.751 52X-7, 11-12 post-doc-84 649.38 651.73 2.56 74.486 74.806 52X-7, 12 post-doc-84 649.38 651.73 2.56 74.486 74.806 53X-1, 100-102 post-doc-86 650.52 653.14 2.67 74.488 74.902 10 53X-2, 1-2 post-doc-88 651.90 654.52 2.65 74.74.54 74.902 10 53X-3, 9-10 post-doc-89 652.60 655.22 2.52 74.602 75.076 10 53X-3, 101-102 post-doc-91 654.16 656.78 2.65 74.711 75.121 10 53X-5, 148-149 post-doc-92 655.91 658.53 2.51 74.902 75.338 90 53X-5, 148-149 post-doc-96 658.75 661.14 2.8
52X-6, 83-85 post-doc-82 648.35 650.70 2.56 74.233 74.643 52X-6, 83-85 post-doc-82 648.35 650.70 2.56 74.248 74.698 52X-7, 11-12 post-doc-82 649.38 651.73 2.56 74.340 74.70 53X-1, 12-13 post-doc-85 649.63 652.25 2.64 74.458 74.806 53X-1, 100-102 post-doc-86 650.52 653.64 2.57 74.458 74.806 74.533 53X-2, 89-90 post-doc-87 651.02 653.64 2.57 74.666 75.012 75 53X-3, 101-102 post-doc-89 652.60 655.22 2.52 74.666 75.076 95 53X-4, 15-16 post-doc-91 654.16 656.78 2.65 74.711 75.121 10 53X-4, 108-109 post-doc-92 655.91 658.53 2.51 74.833 75.243 10 53X-5, 40-41 post-doc-97 658.12 661.14 2.66 74.979 75.389 95 53X-6, 101-102 post-doc-97 658.75 <td< td=""></td<>
52X-7, 11-12 post-doc-82 640.33 651.47 2.56 74.266 74.689 52X-7, 11-12 post-doc-84 649.38 651.73 2.58 74.360 74.770 53X-1, 12-13 post-doc-85 649.63 652.25 2.64 74.396 74.806 53X-2, 1-2 post-doc-86 650.52 653.14 2.67 74.458 74.902 74.902 53X-2, 1-2 post-doc-87 651.02 653.64 2.57 74.602 75.012 75 53X-3, 9-10 post-doc-89 652.60 655.22 2.52 74.602 75.012 75 53X-3, 9-10 post-doc-90 653.52 656.14 2.56 74.711 75.121 75 53X-3, 9-10 post-doc-91 654.16 656.78 2.65 74.711 75.121 75 53X-4, 108-109 post-doc-92 655.09 657.71 2.58 74.802 75.186 74 53X-5, 148-149 post-doc-95 657.19 659.81 2.61 74.908 75.318 75 53X-6, 101-102 post-doc-96 658.02
52X-7, 11-12 post-doc-83 649.12 651.47 2.56 74.341 74.71 52X-CC, 5-6 post-doc-84 649.88 651.73 2.58 74.360 74.70 53X-1, 12-13 post-doc-85 649.63 652.25 2.64 74.396 74.806 53X-2, 1-2 post-doc-87 651.02 653.64 2.57 74.492 74.902 14 53X-2, 89-90 post-doc-87 651.02 653.64 2.57 74.54 74.964 14 53X-3, 9-10 post-doc-88 651.90 655.22 2.52 74.602 75.012 14 53X-3, 101-102 post-doc-91 654.16 656.78 2.65 74.711 75.121 14 53X-4, 15-16 post-doc-92 655.09 657.71 2.58 74.707 75.186 15 53X-5, 148-149 post-doc-93 655.19 659.81 2.51 74.902 75.332 16 53X-6, 101-102 post-doc-96 658.02 661.14 2.88 75.014 75.440 16 53X-7, 1-2 post-doc-97 658.52
52X-CC, 5-6 post-doc-84 649.63 651.73 2.58 74.300 74.70 53X-1, 12-13 post-doc-85 649.63 652.25 2.64 74.458 74.868 74.868 53X-1, 100-102 post-doc-87 651.02 653.64 2.57 74.492 74.902 10 53X-2, 89-90 post-doc-88 651.90 654.52 2.65 74.548 74.4964 74 53X-3, 101-102 post-doc-89 652.60 655.22 2.52 74.602 75.012 10 53X-4, 15-16 post-doc-91 655.16 656.78 2.65 74.717 75.126 10 53X-5, 10-41 post-doc-92 655.91 658.53 2.51 74.833 75.243 10 53X-5, 148-149 post-doc-93 657.71 2.58 74.776 75.186 10 53X-6, 101-102 post-doc-93 655.91 658.53 2.51 74.833 75.243 10 53X-6, 101-102 post-doc-96 658.02 661.14 2.88 75.101 75.511 15 53X-7, 1-2 post-doc-98
53X-1, 12-13 post-doc-85 649.63 652.25 2.64 74.496 74.806 53X-1, 100-102 post-doc-86 650.52 653.14 2.67 74.458 74.806 74.553 53X-2, 1-2 post-doc-87 651.02 653.64 2.57 74.492 74.902 10 53X-3, 9-10 post-doc-88 651.00 655.22 2.52 74.602 75.012 10 53X-3, 101-102 post-doc-90 653.52 656.14 2.54 74.666 75.076 10 53X-4, 108-109 post-doc-91 654.16 656.78 2.65 74.711 75.186 11 53X-5, 40-41 post-doc-93 655.09 657.71 2.58 74.908 75.318 11 53X-6, 101-102 post-doc-96 656.99 659.61 2.62 74.908 75.329 10 53X-7, 1-2 post-doc-97 658.52 661.14 2.88 75.014 75.424 10 53X-6, 101-102 post-doc-97 658.52 661.37 2.71 75.030 75.440 15 53X-6, 101-102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
53X-2, 1-2 post-doc-87 651.02 653.64 2.57 74.92 74.902 4 53X-2, 89-90 post-doc-88 651.00 654.52 2.65 74.554 74.964 74 53X-3, 9-10 post-doc-89 652.60 655.22 2.52 74.602 75.012 10 53X-4, 15-16 post-doc-91 654.16 656.78 2.65 74.711 75.121 10 53X-4, 108-109 post-doc-92 655.09 657.71 2.58 74.708 75.186 53X-5, 40-41 post-doc-93 655.91 658.53 2.51 74.833 75.243 9 53X-6, 18-19 post-doc-96 658.02 660.64 2.66 74.979 75.389 9 53X-7, 1-2 post-doc-97 658.52 661.14 2.88 75.014 75.424 9 53X-7, 1-2 post-doc-98 659.77 662.39 2.76 75.101 75.511 6 54X-1, 76-77 post-doc-98 659.77 662.39 2.76 75.101 75.511 6 54X-2, 28-59 post-doc-100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
53X-3, 9-10post-doc-89652.60655.222.5274.60275.0125353X-3, 101-102post-doc-90653.52656.142.5474.66675.0766553X-4, 15-16post-doc-91654.16656.782.6574.71175.1219553X-4, 108-109post-doc-92655.09657.712.5874.77675.1869653X-5, 40-41post-doc-93655.91658.532.5174.83375.2439653X-5, 148-149post-doc-94656.99659.612.6274.90875.3189653X-6, 18-19post-doc-95657.19659.812.5174.92275.3329653X-7, 1-2post-doc-96658.02660.642.6674.97975.3899653X-7, 1-2post-doc-97658.52661.142.8875.01175.42453X-CC, 14-15post-doc-98658.75661.372.7175.03075.44054X-1, 76-77post-doc-100660.39663.012.7475.14475.5545654X-2, 58-59post-doc-101661.09663.712.6275.19375.6039654X-3, 15-16post-doc-103662.16664.782.6675.26775.6779654X-3, 15-16post-doc-105663.97665.592.6975.33475.44454X-4, 46-47post-doc-106664.71667.732.7175.68574.4554X-5, 95-96post-doc-107665.96
53X-3, 101-102post-doc-90 653.52 656.14 2.54 74.666 75.076 $53X-4, 15-16$ $53X-4, 15-16$ post-doc-91 654.16 656.78 2.65 74.711 75.121 $53X-4, 108-109$ $53X-5, 40-41$ post-doc-93 655.91 658.53 2.51 74.833 75.243 $53X-5, 148-149$ $53X-5, 148-149$ post-doc-94 656.99 659.61 2.62 74.908 75.318 $53X-6, 18-19$ $53X-6, 18-19$ post-doc-95 657.19 659.81 2.51 74.922 75.332 $53X-6, 101-102$ post-doc-96 658.02 660.64 2.66 74.979 75.389 $53X-7, 1-2$ post-doc-97 658.52 661.14 2.88 75.014 75.424 $53X-C, 14-15$ post-doc-98 658.75 661.37 2.71 75.030 75.440 $54X-1, 76-77$ post-doc-100 660.39 663.01 2.74 75.144 75.511 $54X-2, 58-59$ post-doc-101 661.09 663.71 2.62 75.101 75.603 $54X-3, 15-16$ post-doc-103 662.16 664.78 2.66 75.267 75.677 $54X-3, 15-16$ post-doc-104 663.12 665.74 2.80 75.334 75.444 $54X-4, 46-47$ post-doc-105 663.97 2.69 75.333 75.803 $54X-4, 120-121$ post-doc-106 667.12 665.74 2.80 75.324 75.855 $54X-5, 95-96$ post-doc-108 677
53X-4, 15-16 post-doc-91 654.16 656.78 2.65 74.711 75.121 9 53X-4, 108-109 post-doc-92 655.09 657.71 2.58 74.776 75.186 9 53X-5, 40-41 post-doc-93 655.91 658.53 2.51 74.833 75.243 9 53X-6, 18-19 post-doc-95 657.19 659.81 2.51 74.922 75.332 9 53X-6, 101-102 post-doc-96 658.02 660.64 2.66 74.979 75.389 9 53X-7, 1-2 post-doc-97 658.52 661.14 2.88 75.014 75.424 9 54X-1, 76-77 post-doc-98 658.75 661.37 2.71 75.030 75.440 9 54X-1, 76-77 post-doc-100 660.39 663.01 2.74 75.144 75.554 5 54X-2, 58-59 post-doc-102 661.72 664.34 2.66 75.267 75.677 54X-3, 15-16 post-doc-103 662.16 664.78 2.66 75.333 75.744 54X-4, 46-47 post-doc-104 <t< td=""></t<>
53X-4, 108-109 post-doc-92 655.09 657.71 2.58 74.776 75.186 1 53X-5, 40-41 post-doc-93 655.91 658.53 2.51 74.833 75.243 1 53X-5, 148-149 post-doc-94 656.99 659.61 2.62 74.908 75.318 1 53X-6, 18-19 post-doc-95 657.19 659.81 2.51 74.922 75.332 0 53X-6, 101-102 post-doc-96 658.02 660.64 2.66 74.979 75.389 0 53X-7, 1-2 post-doc-97 658.52 661.14 2.88 75.014 75.424 0 53X-CC, 14-15 post-doc-98 658.75 661.37 2.71 75.030 75.440 0 54X-1, 76-77 post-doc-100 660.39 663.01 2.74 75.144 75.554 5 54X-2, 58-59 post-doc-102 661.72 664.34 2.66 75.267 75.677 54X-3, 15-16 post-doc-103 662.16 664.78 2.66 75.333 75.803 54X-4, 120-121 post-doc-104
53X-5, 40-41post-doc-93 655.91 658.53 2.51 74.833 75.243 $post-318$ $53X-5, 148-149$ post-doc-94 656.99 659.61 2.62 74.908 75.318 $post-328$ $53X-6, 101-102$ post-doc-95 657.19 659.81 2.51 74.922 75.332 $53X-6, 101-102$ post-doc-96 658.02 660.64 2.66 74.979 75.389 $post-328$ $53X-7, 1-2$ post-doc-97 658.52 661.14 2.88 75.014 75.424 $post-328$ $53X-CC, 14-15$ post-doc-98 658.75 661.37 2.71 75.030 75.440 $54X-1, 76-77$ post-doc-100 660.39 663.01 2.74 75.101 75.511 $54X-1, 138-139$ post-doc-101 661.09 663.71 2.62 75.193 75.603 $post-328$ $54X-2, 58-59$ post-doc-102 661.72 664.34 2.64 75.237 75.647 $post-328$ $54X-3, 15-16$ post-doc-103 662.16 664.78 2.66 75.267 75.677 $54X-3, 111-112$ post-doc-104 663.12 665.74 2.80 75.333 75.803 $54X-4, 120-121$ post-doc-106 664.71 667.33 2.71 75.642 75.855 $54X-5, 95-96$ post-doc-108 667.12 669.74 2.87 75.612 76.022 $54X-6, 128-129$ post-doc-109 667.79 670.41 2.80 75.659 76.069 $54X$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
53X-6, 18-19post-doc-95 657.19 659.81 2.51 74.922 75.332 75.389 $53X-6, 101-102$ post-doc-96 658.02 660.64 2.66 74.979 75.389 75.389 $53X-7, 1-2$ post-doc-97 658.52 661.14 2.88 75.014 75.424 75.324 $53X-CC, 14-15$ post-doc-98 658.75 661.37 2.71 75.030 75.440 $54X-1, 76-77$ post-doc-99 659.77 662.39 2.76 75.101 75.511 $54X-1, 138-139$ post-doc-100 660.39 663.01 2.74 75.144 75.554 554 $54X-2, 58-59$ post-doc-101 661.09 663.71 2.62 75.193 75.603 75.443 $54X-2, 121-122$ post-doc-102 661.72 664.34 2.64 75.237 75.647 75.647 $54X-3, 15-16$ post-doc-103 662.16 664.78 2.66 75.267 75.677 $54X-3, 111-112$ post-doc-104 663.12 665.74 2.80 75.334 75.744 $54X-4, 46-47$ post-doc-106 664.71 667.33 2.71 75.642 75.855 $54X-5, 95-96$ post-doc-108 667.12 669.74 2.87 75.612 76.022 $54X-6, 128-129$ post-doc-108 667.12 669.74 2.87 75.648 76.022 $54X-6, 128-129$ post-doc-110 668.21 670.83 2.57 75.688 76.098 $54X-7, 20-21$ <
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
54X-1, 76-77post-doc-99 659.77 662.39 2.76 75.101 75.511 $54X-1$ $54X-1, 138-139$ post-doc-100 660.39 663.01 2.74 75.144 75.554 $554X-2$ $54X-2, 58-59$ post-doc-101 661.09 663.71 2.62 75.193 75.603 $954X-2$ $54X-2, 121-122$ post-doc-102 661.72 664.34 2.64 75.237 75.647 $954X-3$ $54X-3, 15-16$ post-doc-103 662.16 664.78 2.66 75.267 75.677 $54X-3, 111-112$ post-doc-104 663.12 665.74 2.80 75.334 75.744 $54X-4, 46-47$ post-doc-105 663.97 666.59 2.69 75.393 75.803 $54X-4, 120-121$ post-doc-106 664.71 667.33 2.71 75.445 75.855 $54X-5, 95-96$ post-doc-107 665.96 668.58 2.89 75.532 75.942 $54X-6, 128-129$ post-doc-108 667.12 669.74 2.87 75.612 76.022 $54X-7, 20-21$ post-doc-110 668.21 670.83 2.57 75.688 76.098 $54X-CC, 25-26$ post-doc-111 668.62 672.03 2.84 75.772 76.182 $5X-1, 11-12$ post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-1, 138-139 post-doc-100 660.39 663.01 2.74 75.144 75.544 5 54X-2, 58-59 post-doc-101 661.09 663.71 2.62 75.193 75.603 9 54X-2, 121-122 post-doc-102 661.72 664.34 2.64 75.237 75.647 8 54X-3, 15-16 post-doc-103 662.16 664.78 2.66 75.267 75.677 9 54X-3, 11-112 post-doc-104 663.12 665.74 2.80 75.334 75.744 54X-4, 46-47 post-doc-105 663.97 666.59 2.69 75.393 75.803 54X-4, 120-121 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 128-129 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-7, 20-21 post-doc-111 668.50 671.91 2.69
54X-2, 58-59 post-doc-101 661.09 663.71 2.62 75.193 75.603 0 54X-2, 121-122 post-doc-102 661.72 664.34 2.64 75.237 75.677 0 54X-3, 15-16 post-doc-103 662.16 664.78 2.66 75.267 75.677 0 54X-3, 11-112 post-doc-104 663.12 665.74 2.80 75.334 75.744 54X-4, 46-47 post-doc-105 663.97 666.59 2.69 75.393 75.803 54X-4, 120-121 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-6, 25-26 post-doc-111 668.62 672.03 2.84 75.772<
54X-2, 121-122 post-doc-102 661.72 664.34 2.64 75.237 75.647 m 54X-3, 15-16 post-doc-103 662.16 664.78 2.66 75.267 75.677 54X-3, 15-16 post-doc-104 663.12 665.74 2.80 75.334 75.744 54X-3, 111-112 post-doc-105 663.97 666.59 2.69 75.393 75.803 54X-4, 46-47 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-108 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-7, 20-21 post-doc-111 668.50 671.91 2.69 75.7763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.810 76.220
54X-3, 15-16 post-doc-103 662.16 664.78 2.64 75.267 75.677 54X-3, 111-112 post-doc-104 663.12 665.74 2.80 75.334 75.744 54X-4, 46-47 post-doc-105 663.97 666.59 2.69 75.393 75.803 54X-4, 120-121 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-109 667.79 670.41 2.80 75.659 76.022 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-7, 20-21 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.772 76.182 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-3, 111-112 post-doc-104 663.12 665.74 2.80 75.207 75.744 54X-3, 111-112 post-doc-105 663.97 666.59 2.69 75.334 75.744 54X-4, 46-47 post-doc-105 663.97 666.59 2.69 75.393 75.803 54X-4, 120-121 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.7763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.810 76.220 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-4, 46-47 post-doc-105 663.97 666.59 2.69 75.334 73.744 54X-4, 46-47 post-doc-105 663.97 666.59 2.69 75.393 75.803 54X-4, 120-121 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.810 76.220 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-4, 120-121 post-doc-105 666.57 6667.33 2.71 75.335 75.855 54X-4, 120-121 post-doc-106 664.71 667.33 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.62 672.03 2.84 75.772 76.182 55X-1, 11-12 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-4, 120-121 post-doc-100 664.71 607.53 2.71 75.445 75.855 54X-5, 95-96 post-doc-107 665.96 668.58 2.89 75.532 75.942 54X-6, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.60 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.810 76.220 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-0, 55-50 post-doc-107 665.96 606.56 2.89 75.522 75.942 54X-6, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.810 76.220 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54x-0, 60-62 post-doc-108 667.12 669.74 2.87 75.612 76.022 54X-6, 128-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.772 76.182 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
544-6, 126-129 post-doc-109 667.79 670.41 2.80 75.659 76.069 54X-7, 20-21 post-doc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.772 76.182 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-7, 20-21 post-acc-110 668.21 670.83 2.57 75.688 76.098 54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.772 76.182 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
54X-CC, 25-26 post-doc-111 668.50 671.91 2.69 75.763 76.173 55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.772 76.182 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
55X-1, 11-12 post-doc-112 668.62 672.03 2.84 75.772 76.182 55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220
55X-1, 66-67 post-doc-113 669.17 672.58 2.84 75.810 76.220

Appendix 6

Appendix 7