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Abstract: Based on the condition of relativistic energy uniqueness, the calibration 

of the cosmological constant was performed. This allowed to obtain the 

corresponding equation for the metric and to determine the generalized 

momentum, the relativistic energy, momentum and mass of the system, as well as 

the expressions for the kinetic and potential energies. The scalar curvature at an 

arbitrary point of the system equaled zero, if the matter is absent at this point; the 

presence of a gravitational or electromagnetic field is enough for the space-time 

curvature. Four-potentials of the acceleration field and pressure field, as well as 

tensor invariants determining the energy density of these fields, were introduced 

into the Lagrangian in order to describe the system’s motion more precisely. The 

structure of the Lagrangian used is completely symmetrical in form with respect to 

the four-potentials of gravitational, electromagnetic, acceleration and pressure 

fields. The stress-energy tensors of the gravitational, acceleration and pressure 

fields are obtained in explicit form. Each of them can be expressed through the 

corresponding field vector and additional solenoidal vector. A description of the 

equations of acceleration and pressure fields is provided.  

Keywords: Cosmological constant, Acceleration field, Pressure field, Covariant 

theory of gravitation. 
 

 

1. Introduction 

The most popular application of the 

cosmological constant   in the general theory 

of relativity (GTR) is that this quantity 

represents the manifestation of the vacuum 

energy [1-2]. There is another approach to the 

cosmological constant interpretation, according 

to which this quantity represents the energy 

possessed by any solitary particle in the absence 

of external fields. In this case, including   into 

the Lagrangian seems quite appropriate, since 

the Lagrangian contains such energy 

components, which should fully describe the 

properties of any system consisting of particles 

and fields. 

Earlier in [3-4], we used such calibration of 

the cosmological constant, which allowed to 

maximally simplify the equation for the metric. 

The disadvantage of this approach was that the 

relativistic energy of the system could not be 

determined uniquely, since the expression for the 

energy included the scalar curvature. In this 

paper, we use another universal calibration of the 

cosmological constant, which is suitable for any 

particle and system of particles and fields. As a 

result, the energy is independent of both the 

scalar curvature and the cosmological constant. 

In GTR, the gravitational field as a separate 

object is not included in the Lagrangian and the 

role of a field is played by the metric itself. A 

known problem arising from such an approach is 

that in GTR there is no stress-energy tensor of 

the gravitational field. 
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In contrast, in the covariant theory of 

gravitation, the Lagrangian is used containing 

the term with the energy of the particles in the 

gravitational field and the term with the energy 

of the gravitational field as such. Thus, the 

gravitational field is included in the Lagrangian 

in the same way as the electromagnetic field. In 

this case, the metric of the curved spacetime is 

used to specify the equations of motion as 

compared to the case of such a weak field, the 

limit of which is the special theory of relativity. 

In the weak field limit, a simplified metric is 

used, which almost does not depend on the 

coordinates and time. This is enough in many 

cases, for example, in case of describing the 

motion of planets. However, generally, in case of 

strong fields and for studying the subtle effects, 

the use of metric becomes necessary. 

We will note that the term with the particle 

energy in the Lagrangian can be written in 

different ways. In [5-6], this term contains the 

invariant 0c g u u 

 , where 0  is the mass 

density in the co-moving reference frame and 

u 
 is four-velocity. The corresponding quantity 

in [7] has the form 
2

0 c . In [3] and [8], instead 

of it the product c g J J 

  is used, where 

J 
 is mass four-current. In this paper, we have 

chosen another form of the mentioned invariant 

– in the form u J 

 . The reason for this choice is 

the fact that we consider the mass four-current 

0J u   to be the fullest representative of the 

properties of matter particles containing both the 

mass density and the four-velocity. The mass 

four-current can be considered as the four-

potential of the matter field. All the other four-

vectors in the Lagrangian are four-potentials of 

the respective fields and are written with 

covariant indices. With the help of these four-

potentials, tensor invariants are calculated which 

characterize the energy of the respective field in 

the Lagrangian. 

Action and its variations in the 

principle of least action 

The action function 

We use the following expression as the action 

function for continuously distributed matter in 

the gravitational and electromagnetic fields in an 

arbitrary frame of reference: 
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    
 
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where:  

L  – the Lagrange function or Lagrangian, 

dt  – the differential of the coordinate time of 

the used reference frame,  

k  – a coefficient to be determined, 

R  – the scalar curvature, 

  – the cosmological constant, 

0J u   – the four-vector of gravitational 

(mass) current, 

0  – the mass density in the reference frame 

associated with the particle, 

cdx
u

ds


   – the four-velocity of a point 

particle, dx
 – four-displacement, ds  – 

interval, 

c  – the speed of light as a measure of the 

propagation velocity of electromagnetic and 

gravitational interactions, 

,D
c



 
  
 

D  – the four-potential of the 

gravitational field, described by the scalar 

potential   and the vector potential D  of 

this field, 

G  – the gravitational constant, 

Φ D D D D              – the 

gravitational tensor (the tensor of 

gravitational field strengths), 

Φ g g Φ     

  – definition of the 

gravitational tensor with contravariant indices 

by means of the metric tensor g  , 
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,A
c



 
  
 

A  – the four-potential of the 

electromagnetic field, which is set by the 

scalar potential   and the vector potential 

A  of this field, 

0qj u   – the four-vector of the 

electromagnetic (charge) current, 

0q  – the charge density in the reference frame 

associated with the particle, 

0  – the vacuum permittivity, 

F A A A A              – the 

electromagnetic tensor (the tensor of 

electromagnetic field strengths), 

u g u

   – the four-velocity with a covariant 

index, expressed through the metric tensor 

and the four-velocity with a contravariant 

index; it is convenient to consider the 

covariant four-velocity locally averaged over 

the particle system as the four-potential of the 

acceleration field ,u
c



 
  
 

U , where   

and U  denote the scalar and vector 

potentials, respectively, 

u u u u u              – the 

acceleration tensor calculated through the 

derivatives of the four-potential of the 

acceleration field, 

  – a function of coordinates and time, 

0

2

0

,
p

u
c c

 


 
   

 
Π  – the four-potential 

of the pressure field, consisting of the scalar 

potential  and the vector potential Π , 0p  

is the pressure in the reference frame 

associated with the particle, the relation 

0

2

0

p

c
 specifies the equation of the matter 

state, 

f                 – the 

tensor of the pressure field, 

  – a function of coordinates and time, 

1 2 3g d g cdt dx dx dx     – the invariant 

four-volume, expressed through the 

differential of the time coordinate 

0dx cdt , through the product 
1 2 3dx dx dx  

of differentials of the spatial coordinates and 

through the square root g  of the 

determinant g  of the metric tensor, taken 

with a negative sign. 

Action function (1) consists of almost the 

same terms as those which were considered in 

[3]. The difference is that now we replace the 

term with the energy density of particles with 

four terms located at the end of (1). It is natural 

to assume that each term is included in (1) 

relatively independently of the other terms, 

describing the state of the system in one way or 

another. The value of the four-potential u  of 

the set of matter units or point particles of the 

system defines the four-field of the system’s 

velocities, and the product u J 

  in (1) can be 

regarded as the energy of interaction of the mass 

current J   with the field of velocities. Similarly, 

D  is the four-potential of the gravitational 

field, and the product D J 

  defines the energy 

of interaction of the mass current with the 

gravitational field. The electromagnetic field is 

specified by the four-potential A , the source of 

the field is the electromagnetic current j , and 

the product of these quantities A j  is the 

density of the energy of interaction of a moving 

charged matter unit with the electromagnetic 

field. The invariant of the gravitational field in 

the form of the tensor product Φ Φ

  is 

associated with the gravitational field energy and 

cannot be equal to zero even outside bodies. The 

same holds for the electromagnetic field 

invariant F F 

 . This follows from the 

properties of long-range action of the specified 

fields. As for the field of velocities u , the field 

should be used to describe the motion of the 

matter particles. Accordingly, the field of 

accelerations in the form of the tensor u   and 

the energy of this field associated with the 

invariant u u

  refer to the accelerated motion 

of particles and are calculated for those spatial 

points within the system’s volume where the 

matter is located.  
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The last two terms in (1) are associated with 

the pressure in the matter, and the product 

J 

  characterizes the interaction of the 

pressure field with the mass four-current, and the 

invariant f f 

  is part of the stress-energy 

tensor of the pressure field. 

We will also note the difference of four-

currents J   and j  – all particles of the system 

make contribution to the mass current J  , and 

only charged particles make contribution to the 

electromagnetic current j . This results in 

difference of the fields’ influence – the 

gravitational field influences any particles and 

the electromagnetic field influences only the 

charged particles or the matter, in which by the 

field can sufficiently divide with its influence the 

charges of opposite signs from each other. The 

field of velocities u , as well as the mass current 

J  , are associated with all the particles of the 

system. Therefore, the product u J 

  describes 

that part of the particles’ energy, which stays if 

we somehow "turn off " in the system under 

consideration all the macroscopic gravitational 

and electromagnetic fields and remove the 

pressure, without changing the field of velocities 

u  or the mass current 0J u  . 

Variations of the action function 

We will vary the action function S  in (1) 

term by term, then the total variation S  will be 

the sum of variations of individual terms. In 

total, there are 9 terms inside the integral in (1). 

If we consider the quantity   a constant (a 

cosmological constant), then according to [7-9] 

the variation of the first term in the action 

function (1) is equal to: 

1 2

k
kR R g

S g g d

k g

   

 

 

 

 
     
 
   

 ,  

             (2) 

where: 

 R 
 is the Ricci tensor, 

g   is the variation of the metric tensor. 

According to [3], the variations of terms 2 

and 3 in the action function are as follows: 

2

1 1

,
1

2

Φ J J D
c c

S g d

D J g g
c

  

 

  

  

 





 
  

   
  
 



             (3) 

3

4

1

2

c
Φ D

G
S g d

U g
c

 

 

 

 








 
   

   
 
 
 

 ,  

             (4) 

where: 

 
  is the variation of coordinates, which results 

in the variation of the mass four-current J 
 

and in the variation of the electromagnetic 

four-current j , 

D  is the variation of the four-potential of the 

gravitational field, 

and U
 

 denotes the stress-energy tensor of the 

gravitational field: 

2

2

1

4 4

1
.

4 4

c
U g Φ Φ g Φ Φ

G

c
Φ Φ g Φ Φ

G

       

 

     

 





 
  

 


        

             (5) 

Variations of terms 4 and 5 in the action 

function according to [6-7] and [10] are as 

follows: 

4

1 1

,
1

2

F j j A
c c

S g d

A j g g
c

  

 

  

  

 





 
  
   
  
 



             (6) 

0

5 1

2

c F A

S g d
W g

c

 

 

 

 

 




  
 

    
 

 ,       (7) 

where A  is the variation of the four-potential 

of the electromagnetic field and W  
 denotes 
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the stress-energy tensor of the electromagnetic 

field: 

2

0

2

0

1

4

1
.

4

W c g F F g F F

c F F g F F

       

 

     

 





 
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 


       
             (8) 

Variations of the other terms in the action 

function (1) are defined in Appendices A-D and 

have the following form: 

6
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,
1
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u J J u
c c

S g d

u J g g
c

  

 

  

  
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
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             (9) 
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4

1

2

c
u u

S g d

B g
c

 

 

 

 








 
  
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 
 
 

 ,    (10) 

where u  is the variation of the four-potential 

of the acceleration field and B 
 denotes the 

stress-energy tensor of the field of accelerations: 

2 1

4 4

c
B g u u g u u       

 


 
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 
.  

           (11) 

8

1 1

.
1

2

f J J
c c

S g d

J g g
c

  

 

  
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 



 

 
  
   
  
 



           (12) 

9

4

1

2

c
f

S g d

P g
c

 

 

 

 


 





 
  

   
 
 
 

 ,  (13) 

where the stress-energy tensor of the pressure 

field is given as: 

2 1

4 4

c
P g f f g f f       

 
 

 
   

 
.  

           (14) 

In variation, in order to simplify (10), the 

special case is considered, when   is a constant, 

which does not vary by definition. According to 

its meaning,   depends on the parameters of the 

system under consideration and can therefore 

have different values. The same should be said 

about  . 

The Motion Equations of the Field, 

Particles and Metric 

According to the principle of least action, we 

should sum up all the variations of the individual 

terms of the action function and equate the result 

to zero. The sum of variations (2), (3), (4), (6), 

(7), (9), (10), (12) and (13) gives the total 

variation of the action function: 

1 2 3 4 5

6 7 8 9 0.

S S S S S S

S S S S

     

   

     


     
        (15) 

The field equations 

When the system moves in spacetime, the 

variations g  , 
 , D , A , u  and 

  do not vanish, since it is supposed that they 

can occur only at the beginning and the end of 

the process, when the conditions of motion are 

precisely fixed. Consequently, the sum of the 

terms, which is located before these variations, 

should vanish. For example, the variation A  

occurs only in 4S  according to (6) and in 5S  

from (7), then from (15) it follows that: 

0

1
0j c F A g d

c

  

  
 
      
 
 . 

From this, we obtain the equation of the 

electromagnetic field with the field sources as: 

2

0

1
F j

c

  




   or 0F j  

    ,    (16) 

where 0 2

0

1

c



  is the vacuum permeability.  

The second equation of the electromagnetic 

field follows from the definition of the 

electromagnetic tensor in terms of the 

electromagnetic four-potential and from the 

antisymmetry properties of this tensor: 
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0F F F           

or 0F   

     ,          (17) 

where      is a Levi-Civita symbol or a 

completely antisymmetric unit tensor. 

The variation D  is present only in (3) and 

(4), so that according to (15) we obtain: 

1
0

4

c
J Φ D g d

c G

  

 


 
      
 
 . 

The equation of gravitational field with the 

field sources follows from this as: 

2

4 G
Φ J

c

  




    or 

2

4 G
Φ J

c

  




  . 

(18) 

If we take into account the definition of the 

gravitational tensor: Φ D D       

D D       and take the covariant 

derivative of this tensor with subsequent cyclic 

interchange of the indices, the following 

equations are solved identically: 

0Φ Φ Φ           

or  0Φ  

     .          (19) 

Equation (19) without the sources and 

equation (18) with the sources define a complete 

set of gravitational field equations in the 

covariant theory of gravitation. 

Consider now the rule for the difference of 

the second covariant derivatives with respect to 

the covariant derivative of the electromagnetic 

four-potential A  : 

, ,

,

( )

( ) .

A

R A R A

R A A R F

 

   

     

     

     

   

     

   

    

 

With the rule in mind, the application of the 

covariant derivative   to (16) and (18) gives 

the following: 

0 .

F A A

R F j

     

     

 

 

       

    
 

2

4 G
R Φ J

c

 

 


   . 

This shows that field tensors F 
 and Φ

 

lead to the divergence of the corresponding four-

currents in a curved space-time. Mixed curvature 

tensor 
,R

  
 and Ricci tensor R  vanish only 

in Minkowski space. In this case, the covariant 

derivatives become the partial derivatives and 

the continuity equations for the gravitational and 

electromagnetic four-currents in the special 

theory of relativity are obtained: 

0j  , 0J 

  .          (20) 

We will note that in order to simplify the 

equations for the four-potential of fields, we can 

use expressions which are called gauge 

conditions: 

0D D 

    , 0A A 

    . (21) 

The acceleration field equations 

The variation of four-potential u  is 

included in (9) and (10). Therefore, according to 

(15), we obtain: 

1
0

4

c
J u u g d

c

  

 


 
      
 
 . 

2

4
u J

c

  




  , or 

2

4
u J

c

  




   . 

           (22) 

If we compare (18) and (22), it turns out that 

the presence of the four-vector of mass current 

J   not only leads to the occurrence of space-

time gradient of the gravitational field in the 

system under consideration, but also is generally 

accompanied by changes in time or by four-

velocity gradients of the particles that constitute 

this system. Besides, the covariant four-

velocities of the whole set of particles forms the 

velocity field u , the derivatives of which 

define the acceleration field and are described by 

the tensor u . As an example of a system, 

where it can be clearly observed, we can take a 

rotating partially-charged collapsing gas-dust 

cloud, held by gravity. An ordered acceleration 

field occurs in the cloud due to the rotational 

acceleration and contains the centripetal and 

tangential acceleration. 
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Due to its definition in the form of a four-

rotor of u , the following relations hold for 

acceleration tensor u : 

0u u u           

or 0u   

     .          (23) 

As we can see, the structure of equations (22) 

and (23) for the acceleration field is similar to 

the structure of equations for the strengths of 

gravitational and electromagnetic fields. 

In the local geodetic reference frame, the 

derivatives of the metric tensor and the curvature 

tensor become equal to zero, the covariant 

derivative becomes a partial derivative and the 

equations take the simplest form. We will go 

over to this reference frame and apply the 

derivative 
  to (23) and make substitution for 

the first and third terms using (22): 

2 2

0

4 4
.

u u u

J u J
c c

  

      

     

 

        

   
        

   

 

2 2

4 4
u J J

c c
     

    
      

   
. 

If we apply definition u u u         to 

four-d’Alembertian u  , where 


    is 

the  d'Alembert operator, it will give: 

( )u u u u u               . 

Comparing with the previous expression, we 

find the wave equation for the four-potential u  : 

2

4
u J

c
 


 . 

On the other hand, after lowering the 

acceleration tensor indices, we have from (22): 

2

4
( )

.

     

  

J u u u
c

u u

 

      



  



 

Comparing this equation with equation for 

u   leads to the expression: 

u u 

      , 

where   is some constant. 

In an arbitrary reference frame, we should 

specify the obtained expressions, since in 

contrast to permutations of partial derivatives, in 

case of permutation of the covariant derivatives 

from the sequence     to the sequence 

   , some additional terms appear. In 

particular, if we use the relation: 

0u u 

    ,          (24) 

then after substituting the expression 

u u u         in (22), the wave 

equation can be written as follows: 

2

4
.


 


     
  
       





s s

s s

s s

s s

g u

u u
g

u u

J
c

 

 

 

  

 

   



       (25) 

In the curved space, operator 


   acts 

differently on scalars, four-vectors and four-

tensors, and it usually contains the Ricci tensor. 

Due to condition (24), the Ricci tensor is absent 

in (25), but the terms with the Christoffel 

symbols remain. 

Equation (24) is a gauge condition for the 

four-potential u , which is similar by its 

meaning to gauge conditions (21) for the 

electromagnetic and gravitational four-

potentials. Both (24) and (25) will hold on 

condition that const  . 

In Appendix E, it will be shown that the 

acceleration tensor u  includes the vector 

components S  and N , based on which, 

according to (E6), we can build a four-vector of 

particles’ acceleration. 

The pressure field equations 

To obtain the pressure field equations, we 

need to choose in (15) those terms which contain 

the variation  . This variation is present in 

(12) and (13), which gives the following: 

1
0

4

c
J f g d

c

  

 
 

 
     
 
 . 
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2

4
f J

c

  



 
   or 

2

4
f J

c

  



 
   .                  

           (26) 

It follows from (26) that the mass four-

current generates the pressure field in bodies, 

which can be described by the pressure tensor 

f  
. The same relations hold for this tensor as 

for the tensors of other fields: 

0f f f           

or 0f   

     .          (27) 

The wave equation for the four-potential of 

the pressure field follows from (26): 

2

4
.


  


     
 
       





s s

s s

s s

s s

g

g

J
c

 

 

 

  

 

   





 

 

 

       (28) 

Equation (28) will be valid if there is gauge 

condition of the pressure four-potential: 

0 

     .          (29) 

The properties of the pressure field are 

described in Appendix F, where it is shown that 

the pressure tensor f  contains two vector 

components C  and I , which determine the 

energy and the pressure force, as well as the 

pressure energy flux. 

The equations of motion of particles 

The variation 
  that leads to the equations 

of motion of the particles is present in (3), (6), 

(9) and (12). For this variation, it follows from 

(15): 

1 1

0
1 1

Φ J F j
c c

g d

u J f J
c c

 

 


 

 



 
   

  
   
 

 , 

u J Φ J F j f J   

       . 

The left side of the equation can be 

transformed, considering the expression 

0J u   for the four-vector of mass current 

density and the definition of the acceleration 

tensor u u u      : 

 0

0 0 .

    



   


u J u u u

D u
u u

D

 

    



 



 


        (30) 

We used the relation 0u u

   , which 

follows from the equation 
2( ) ( ) 0u u c

      and the operator of 

proper-time-derivative as operator of the 

derivative with respect to the proper time 

D
u

D






  , where D  is a symbol of four-

differential in curved spacetime and   is the 

proper time [11]. Taking (30) into account, the 

equation of motion takes the form: 

0

Du
Φ J F j f J

D

   

  


   .        (31) 

We will note that the equations of field 

motion (16) – (19), of the acceleration field (22) 

and (23), of the pressure field (26) and (27) and 

the equation of the particles’ motion (31) are 

differential equations, which are valid at any 

point volume of spacetime in the system under 

consideration. In particular, if the mass density 

0  in some point volume is zero, then all the 

terms in (31) will be zero. 

The quantity 
Du

D




 at the left side of (31) is 

the four-acceleration of a point particle, while 

the proper time differential D d   is 

associated with the interval by relation: 

ds cd  and the relation: Du dx u

     

holds. The first two terms at the right side of (31) 

are the densities of the gravitational and 

electromagnetic four-forces, respectively. It can 

be shown (see for example [3], [12]) that for 

four-forces exerted by the field on the particle, 

there are alternative expressions in terms of the 

stress-energy tensors (5) and (8): 

k

kΦ J U

   , 
k

kF j W

   .     (32) 

Similarly, the left side of (31) with regard to 

(30) is expressed in terms of stress-energy tensor 

of the acceleration field (11) as: 
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0

k

k

Du
u J B

D

 

 


    .         (33) 

To prove (33), we should expand the tensor 

kB  with the help of definition (11), apply the 

covariant derivative k  to the tensor products 

and then use equations (22) and (23). Equation 

(33) shows that the four-acceleration of the 

particle can be described by either the 

acceleration tensor u  or the tensor kB . 

For the pressure field, we can write the same 

as for other fields:  

k

kf J P

   .          (34) 

In (34), the pressure four-force is associated 

with the covariant derivative of the stress-energy 

tensor of the pressure field. 

From (31) – (34) it follows that: 

( ) 0k

k k k kB U W P         

or ( ) 0B U W P       

     .        (35) 

In Minkowski space  c,u    v , where 

2 2

1

1 v c
 


 is present, four-differentials D  

become ordinary differentials d , 

D d dt    , and the motion equation (31) 

falls into the scalar and vector equations, while 

the vector equation contains the total 

gravitational force with regard to the torsion 

field, the electromagnetic Lorentz force and the 

pressure force: 

2

0 0 0 0q

d
c

dt


        v Γ v E v C ,     (36) 

 

   

0 0

0 0

( )
[ ]

[ ] [ ] ,


   


      q

d

d t


 

 

v
Γ v Ω

E v Β C v I

        (37) 

where v  is the velocity of a point particle, Γ  

is the gravitational field strength, 0q  is the 

charge density, E  is the electric field strength, 

C  is the pressure field strength, Ω  is the 

torsion field vector, B  is the magnetic field 

induction and I  is the solenoidal vector of the 

pressure field. 

If during the time d t  the density 0  does 

not change, it can be put under the derivative’s 

sign. Then, at the left side of (36) the quantity 

rd E

dt
 appears, where 

2

0

2 21
r

c
E

v c




=  is the 

relativistic energy density. Similarly, at the left 

side of (37) the quantity 
d

d t

J
 appears, where 

0

2 21 v c





v
J =  is the mass three-current 

density. 

The equations for the metric 

Let us consider action variations (2), (3), (4), 

(6), (7), (9), (10), (12) and (13), which contain 

the variation g  . The sum of all the terms in 

(15) with the variation g   must be zero: 

 

1 1 1

2 2 2 2
0

1 1 1 1 1

2 2 2 2 2

k
kR R g k g D J g U A j g

c c c
g g d

W u J g B J g P
c c c c c

             

 

 
           

 





 
       
    
 
     
 

 . 

2 2

.

ckR ckR g ck g

D J g U A j g W u J g B J g P

     

                   

   

    

       
    (38) 

The equation for the metric (38) allows to 

determine the metric tensor g 
 by the known 

quantities characterizing the matter and field. If 

we take the covariant derivative   in this 

equation, the left side of the equation vanishes 
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on condition const . Taking (35) into 

account, we obtain: 

0
D J g A j g

u J g J g

     

 

      

 

  
  
   

, 

D J A j u J J   

        ,        (39) 

where   is a function of time and coordinates 

and the scalar invariant with respect to 

coordinate transformations. 

If we expand the scalar products of vectors 

using the expressions: 

0 0 ( )
dt dx dt

D J c D c
ds dt ds




      v D , 

0 ( )q

dt
A j c

ds



    v A ,         (40) 

0 ( )
dt

J c
ds



   v Π , 

then (39) can be written as: 

0 0

2

0 0

( ) ( )

( ) .


     


    


q

dt dt
c c

ds ds

dt
c c

ds

   

  

v D v A

v Π

    (41) 

If the system’s matter and charges are divided 

into small pieces and scattered to infinity, then 

there the external field potentials become equal 

to zero, since interparticle interaction tends to be 

zero, and at 0v  we obtain the following: 

2

0 0 0 0 0 0( )q c p         .        (42) 

Consequently,   is associated with the 

particle’s proper scalar potentials 0  and 0 , 

the mass density 0 and the pressure 0p  in the 

particle located at infinity. Expression (41) can 

be considered as the differential law of 

conservation of mass-energy: the greater the 

velocity v  of a point particle is, and the greater 

the gravitational field potentials   and D , the 

electromagnetic field potentials   and A  and 

the pressure field potentials  and Π  are, the 

more the mass density 0  differs from its value 

at infinity. For example, if a point particle falls 

into the gravitational field with the potential  , 

then the change in the particle’s energy is 

described by the term 0

dt
c

ds
  . According to 

(41), such energy change can be compensated by 

the change in the rest energy of the particle due 

to the change 0 . Since the gravitational field 

potential   is always negative, then the mass 

density 0  and the pressure inside the point 

particle should increase due to the field potential. 

This is possible, if we remember that the 

whole procedure of deriving the motion 

equations of particles, field and metric from the 

principle of least action is based on the fact that 

the mass and charge of the matter unit at varying 

of the coordinates remain constant, despite of the 

change in the charge density, mass density and 

its volume [7]. If the mass of a simple system in 

the form of a point particle and the fields 

associated with it is proportional to  , then 

according to (41) the mass of such a system 

remains unchanged, despite of the change in the 

fields, mass density 0  and pressure 0p . 

Conservation of the mass-energy of each particle 

with regard to the mass-energy of the fields leads 

to conservation of the mass-energy of an 

arbitrary system including a multitude of 

particles and the fields surrounding them. We 

will remind that this article refers to the 

continuously distributed matter, so that each 

point particle or a unit of this matter may have 

its own mass density 0  and its value  . 

We will now return to (38) and take the 

contraction of tensors by means of multiplying 

the equation by g  , taking into account the 

relation 4g g 

   , and then dividing all by 

2: 

4

2 2 2 2

ck R ck

D J A j u J J   

   

   


   
,   (43) 

where R g R 

   is the scalar curvature, and 

it was taken into account that the contractions of 

tensors U   , W   , B 
 and P 

 are equal to 

zero. 

In case if the cosmological constant   were 

known, based on (43), we could find the scalar 

curvature R . 
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In order to simplify equation (38) in [3] and 

[4], we introduced the gauge for  , at which the 

following equation would hold, if we 

additionally take into account the term with the 

pressure J 

 : 

2ck u J D J A j J   

         .  (44) 

In the gauge (44), the equation for the metric 

(38) takes the following form, provided that 
4

2
8

c
ck

G 
  , where   is a constant of order 

of unity: 

 4

1

2

8
.


  


  


R R g

G
U W B P

c

   

        
(45) 

We will note that if from the right side of (45) 

we exclude the stress-energy tensor of the 

gravitational field U
 

, replace the tensor B 
 

by the stress-energy tensor of the matter in the 

form 0u u      and neglect the tensor 

P 
, then at 1   we will obtain a typical 

equation for the metric used in the general theory 

of relativity: 

 4

1 8

2

G
R R g W

c

       
   .         (46) 

The equation for the metric (38) and 

expression (39) must hold in the covariant theory 

of gravitation, provided that const . If in 

(39) we remove the term D J 

 , then we will 

obtain an expression suitable for use in the 

general theory of relativity. In this case, given 

that 
2

0u J c

  , instead of (39), we obtain the 

following: 

2

0A j c J 

      .         (47) 

If in (47) we equate the term with the energy 

of particles in the electromagnetic field (in the 

case when the field is zero) to zero, then the sum 

of the rest energy density and the pressure 

energy of each uncharged point particle must be 

unchanged. It follows that the pressure change 

must be accompanied by a change in the mass 

density. If the system contains the 

electromagnetic field with the four-potential A  

acting on the four-currents j  generating them, 

then in the general case there must be an inverse 

correlation of the rest energy, pressure energy 

and the energy of charges in the electromagnetic 

field. 

Indeed, in the general theory of relativity, the 

mass density determines the rest energy density 

and spacetime metric, which represents the 

gravitational field. In (47), the energy of charges 

in the electromagnetic field is specified by the 

term A j , and the mass density and hence the 

metric are associated with this energy at a 

constant  . On the other hand, the metric is 

obtained from (46). Therefore, the occurrence of 

the electromagnetic field influences the metric in 

two relations — in (47) the mass density and the 

corresponding metric change, as well as in the 

equation for the metric (46) the stress-energy 

tensor of the matter 
   changes, while the 

stress-energy tensor of the electromagnetic field 

W    also makes contribution to the metric. 

A well-known paradox of general theory of 

relativity is associated with all of this — the 

electromagnetic field influences the density, the 

mass of the bodies as the source of gravitation 

and the metric, while the gravitational field itself 

(i.e., metric) does not influence the electrical 

charges of the bodies, which are the sources of 

the electromagnetic field. Thus the gravitational 

and electromagnetic fields are unequal relative to 

each other, despite the similarity of field 

equations and the same character of long-range 

action. Above, we pointed out the fact that the 

mass four-current leads to the gravitational field 

gradients, and the addition of the charge to this 

mass current generates additional 

electromagnetic (charge) four-current and the 

corresponding electromagnetic field gradients, 

depending on the sign of the charge. From this, 

we can see that the gravitational field looks like 

a fundamental, basic and indestructible field and 

the electromagnetic field manifests as some 

superstructure and the result of charge separation 

in the initially neutral matter. 

If we consider (44) to be valid, then from 

comparison with (39), we see that the equation 

2ck     must be satisfied. Thus, when   is 

considered as a cosmological constant, we can 

use it to achieve simplification of the equation 

for the metric (38) and bring it to the form of 

(45). At the same time, the relation (39) is 

symmetrical with respect to the contribution of 

the gravitational and electromagnetic fields to 



12 

 

the density, in spite of the difference in fields. 

We will remind that in the equation of motion 

(31), both fields also make symmetrical 

contributions to the four-acceleration of a point 

charge. 

Although the gauge for   in the form of (44) 

seems the simplest and simplifies some of the 

equations, in Section 7 the necessity and 

convenience of another gauge will be shown. 

 

 

Hamiltonian 

In this and the next sections, we rely on the 

standard approach of analytical mechanics. As 

the coordinates, it is convenient to choose a set 

of Cartesian coordinates: 
0x ct , 

1x x , 

2x y , 
3x z . 

Let us consider action (1) and express the 

Lagrangian from it: 

 

  1 2 3

2

0 1 2 3

2 2

1
2

16 4
.

16 16

      

 
    


   
 

    
  





L u J D J A j J g dx dx dx

c
c k R c k Φ Φ F F

G
g dx dx dx

c c
u u f f

   

   

 

 

 

 



 

 

    (48) 

The integration in (48) is carried out over the 

infinite three-dimensional volume of space and 

over all the material particles of the system. We 

assume that the scalar curvature R  depends on 

the metric tensor, and the metric tensor g , the 

field tensors Φ , F , u , f , the mass 

density 0 , the charge density 0q  and the 

pressure 0p  are functions of the coordinates 

, , ,t x y z  and do not depend on the particle 

velocities. Then, the Lagrangian in its general 

form (48) depends on the coordinates, as well as 

on the four-potential of pressure   and four-

potentials of the gravitational and 

electromagnetic fields D  and A .  

We will divide the first integral in the 

Lagrangian (48) into the sum of particular 

integrals, each of which describes the state of 

one of the set 
pN  of the system’s particles. We 

will also take into account that the Lagrangian 

depends on the three-dimensional velocities of 

the particles , , ( , , )
n dx dy dz

x y z
dt dt dt

 
  
 

v , 

where 1,2,3,... pn N  specifies the particle’s 

number, while the velocity of any particle is part 

of only one corresponding particular integral. If 

we denote by fL  the second integral in (48), 

which is associated with the energies of fields 

inside and outside the fixed physical system and 

is independent of the particles’ velocities, then 

we can write for the Lagrangian: 

1

( , , , , , , , )

,




   
p

n

N
n n

f n f

n

L L t x y z D A

L L L L

  v

 

where 1 2 3
  
  
   

nn u J D J

L g dx dx dx
A j J

 

 

 

 
 is 

a particular Lagrangian of an arbitrary particle.  

We will introduce now the Hamiltonian H  

of the system as a function of generalized three-

dimensional momenta 
n

P  of the particles: 

( , , , , , , , )
n

H H t x y z D A   P . Under the 

system’s generalized momentum, we mean the 

sum of the generalized momenta of the whole set 

of particles: 

1 2 3

1

.....
p p

N Nn n

n

n

      P P P P P P P . 

To find the Hamiltonian, we will apply the 

Legendre transformations to the system of 

particles: 

1

pN
n n n n

n n

H L L


   
        

   
 P v P v ,        (49) 

provided that: 
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1 1

p p

n
N N

n n
n n

L L

 

 
 

 
 P

v v

.          (50) 

The equality in (50) gives the definition of 

the generalized momentum P , and we can see 

that the generalized momentum of an arbitrary 

particle equals 

n
n

n

L




P

v

. On the other hand, the 

equations 

n
n

n

L




P

v

 allow to express the velocity 

n

v  of an arbitrary particle through the generalized 

momentum 
n

P . Then, we can substitute these 

velocities in (49) and determine H  only through 
n

P . 

In order to find 

n

n

L

v

 in (50), in each 

particular Lagrangian 
n

L , we should express J   

and j  in terms of the velocity 
n

v  and interval 

ds : 

0 0

dx dt dx
J c c

ds ds dt

 
    , 

0q

dt dx
j c

ds dt


  ,          (51) 

while ( , )dx cdt d  r , and we introduce the 

notation ( , ) ( , ) ( , )
nn
idx d

c c c v
dt dt



  
r

v , where 

the four-dimensional quantity 
dx

dt



 is not a real 

four-vector. With regard to the definition of the 

four-potential of the acceleration field 

,u
c



 
  
 

U , for each particle we obtain: 

0

n ndt
u J c

ds



  
 

   
 

v U .         (52) 

In (48), the unit of volume of the system in 

any particular integral can be expressed in terms 

of the unit of volume in the reference frame pK  

associated with the particle in the following way: 

 1 2 3 1 2 3

0

ds
g dx dx dx g dx dx dx

cdt
   .(53) 

From this formula in the weak-field limit in 

Minkowski space, when ds cdt  , it follows 

that the volume of a moving particle is decreased 

in comparison with the volume of a particle at 

rest. Given that ds cd , where   is the 

proper time in the reference frame pK  of the 

particle, the equality of four-volumes in different 

reference frames follows from (53): 

 

1 2 3

1 2 3

0
.

g cdt dx dx dx

g c d dx dx dx

 






 

This equation reflects the fact that the four-

volume is a four-invariant. 

Under the above conditions, (40), (51), (52) 

and (53) can be written for the Lagrangian (48) 

as follows: 

 
0 0

1 2 3

0
1

0 0

2

0 1 2 3

2 2

( )

( ) ( )

1
2

16 4
,

16 16



  
        

    
 

       

 

      
    
      





p

n n n n

N n

n n n nn

q

L g dx dx dx

c
c k R c k Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

   

  

 

  

v U v D

v A v Π

   (54) 
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as well as after partial volume integration: 
 

1

2

0 1 2 3

2 2

( )

( ) ( )

1
2

16 4
,

16 16



  
       

    
 

       
 

      
  
 
   
  





p

n n n n n n

N

n n n n n nn

m m
L

q m

c
c k R c k Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

 



 

  

v U v D

v A v Π

     (55) 

where  1 2 3

0
0

nn

m g dx dx dx   is the mass 

of an arbitrary particle, 

 1 2 3

0
0

nn

qq g dx dx dx   is the particle’s 

charge. In (55), the scalar and vector field 

potentials are averaged over the particle’s 

volume, which means that they are the effective 

potentials at the location of the particle. 

In operations with three-vectors, it is 

convenient to write vectors in the form of 

components or projections on the spatial axes of 

the coordinate system using, for example, 

instead of the velocity v , the quantity 
iv , where 

1,2,3i  . Then,
1

xv v , 
2

yv v , 
3

zv v , and 

the velocity derivative can be represented as: 

iv

 


 v
. For the gravitational vector potential 

in particular, we obtain: ( , , )x y zD D DD  

1 2 3( , , )D D D . 

With this in mind, from (55) and (50), we 

find: 

1

1

,

p

p

n
N

i n
in

N
n n n n n n n n

ii i i

n

L
P

v

mU m D q A m






 



 
    

 





P

n n n n n n n n n

ii i imU mD q A m   P .         (56) 

Based on this, we find for the sums of the 

scalar products of three-vectors by summing 

over the index i : 

1

1

,

p

p

N
n n

n

n nn n n n
i iN

ii

n nn n n n
n i i

i i

mU v m D v

q A v m v





 
   

  


  
  

  
     





P v

        (57) 

From (49), taking (55) and (57) into account, 

we have: 

1

2

0 1 2 3

2 2

1
2

16 4
.

16 16



 
      

  
  

      
  
 
   
  





pN
n n n n

n

H m m q m

c
c k R c k Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

  

 

  

    (58) 

In (58), the Hamiltonian contains the scalar 

curvature R  and the cosmological constant  . 

As it will be shown in Section 6 about the 

energy, this Hamiltonian represents the 

relativistic energy of the system. To make the 

picture complete, we could also express the 

quantity 0cg u

   in (58) through the 

generalized momentum iP . We have described 

this procedure in [4]. 
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For continuously distributed matter, the 

masses and charges of the particles in (58) can 

be expressed through the corresponding 

integrals:  1 2 3

0
0

nn

m g dx dx dx  , 

 1 2 3

0
0

nn

qq g dx dx dx  . Also, taking (53) 

into account, in which we can substitute the 

expression 

0cdt u

ds c
 , where 0u  denotes the 

time component of the four-velocity of an 

arbitrary particle, from (58) we find: 

 

  0 1 2 3

0 0 0 0

2

0 1 2 3

2 2

1

1
2

16 4
.

16 16


      


  

      
   
  
    
  





qH u g dx dx dx
c

c
c k R c k Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      

 

  

    (59) 

Hamilton’s equations 

Assuming that the Hamiltonian depends on 

the generalized three-momenta of particles 
n

P : 

( , , , , , )
n n

H H t D A   r P  and the Lagrangian 

depends on three-velocity of particles 
n

v : 

( , , , , , )
n n

L L t D A   r v , where ( , , )
n

x y zr  

is a three-dimensional radius-vector of the 

particle with the number n , we will take 

differentials of L  and H , as well as the 

differentials of both sides of equation (49): 

1 1

.

 

  
   
  


     

   

 
p pN N

n n

n n
n n

L L L
DL Dt D D

t

L L L
DD DA D

D A
  

  




r v

r v (60) 

1

1

.





 
  

 


  
  

 
 
 

  






p

p

N
n

n
n

N
n

n
n

H H
DH Dt D

t

H H
D DD

D

H H
DA D

A





 

 




r

r

P

P

       (61) 

1 1

p pN N
n n n n

n n

DH D D DL
 

   
       

   
 P v P v .     (62) 

Substituting (60) and (61) into (62), we find: 

H L

t t

 
 

 
, 

n n

H L 
 

 r r

, 
H L

D D 

 
 

 
, 

H L

A A 

 
 

 
, 

H L

  

 
 

 
, 

n

n

H




v

P

, 

n

n

L




P

v

.           (63) 

The last equation in (63) leads to (50) and 

gives the expression (56) for the generalized 

momentum 
n

P  of an arbitrary particle of the 

system in an explicit form. 

We will now apply the principle of least 

action to the Lagrangian in the form 

( , , , , , )
n n

L L t D A   r v , equating the action 

variation to zero, when the particle moves from 

the time point 
1t  to the time point 

2t . 

2

1

2

1

1 1

( , , , , , )

0.

 


 




                  
 
      



 



p p

t
n n

t

N N
n n

n n
n n

t

t

S L t D A dt

L L

L L
D A dt

D A

L

  

 

 





  

 

 




r v

r v

r v   (64) 
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In (64), it was assumed that the time variation 

is equal to zero: 0t  . Partial derivatives with 

variations D , A  and   lead to field 

equations (16), (18) and (26). If we take into 

account the definition of velocity in the second 

term in the integral (64): 

n
n d

dt


r
v , then the 

integral for this term is taken by parts. Then, for 

the first and second terms in the integral (64), we 

have the following: 

2

1

2

2

1

1

1

1 1

.



 

  
  

     


       
 

     



 

p

p p

tN
n n

n n
n t

t
tN N

n n

n n n
n n t

t

L L
dt d

L L d L
dt

dt

 

 

r r

r v

r r

v r v

(65) 

When varying the action, the variations 
n

 r  

are equal to zero only at the beginning and at the 

end of the motion; that is at 1t  and 2t . Therefore, 

for vanishing of the variation S , it is necessary 

that the quantity in brackets inside the integral 

(65) would be equal to zero. This leads to the 

well-known Lagrange equations of motion: 

n n

L d L

dt

 


 r v

.           (66) 

According to (63), 
n

n

L




P

v

, as well as 

n n

H L 
 

 r r

. Let us substitute this in (66): 

n

n

H d

dt


 



P

r

.           (67) 

Equation (67) together with equation 
n

n

H




v

P

 from (63) represent the standard 

Hamiltonian equations describing the motion of 

an arbitrary particle of the system in the 

gravitational and electromagnetic fields and in 

the pressure field. According to (67), the rate of 

change of the generalized momentum of the 

particle by the coordinate time is equal to the 

generalized force, which is found as the gradient 

with respect to the particle’s coordinates of the 

relativistic energy of the system taken with the 

opposite sign. These equations are widely used; 

not only in the general theory of relativity, but 

also in other areas of theoretical physics. We 

have checked these equations in [4] in the 

framework of the covariant theory of gravitation 

by direct substitution of the Hamiltonian. 

The system’s energy 

We will consider a closed system which is in 

the state of some stationary motion. An example 

would be a charged ball rotating around its 

center of mass, which forms the system under 

consideration together with its gravitational and 

electromagnetic fields and the internal pressure. 

In such a system, the energy should be conserved 

as a consequence of lack of energy losses to the 

environment and taking into account the 

homogeneity of time; i.e., the equivalence of the 

time points for the system’s state. 

The system’s Lagrangian, taking the fields’ 

energy into account, has the form of (55). Due to 

the stationary motion, we can assume that within 

the system’s volume the metric tensor g , the 

scalar curvature R , the four-potentials of the 

field D , A  and of the pressure   do not 

depend on time. But, since any point particle 

moves with the ball, then its location and 

velocity are changed, being defined by the radius 

vector r  and velocity v , respectively. We may 

assume that the Lagrangian of the system does 

not depend explicitly on time and is a function of 

the form: ( , )
n n

L L r v . Now, we will take the 

time derivative of the Lagrangian, as it is done 

for example in [13], not only for one but for a set 

of particles, and will apply (66): 

1

1

1

1

1

.









 
   

 
  

 
   

 
  

 
   

 
  

 
 

 
 









p

p

p

p

N
n n

n n
n

n
N

n

n n
n

n
N

n

n n
n

N
n

n
n

dL L L
d d

dt dt

L L d

dt

d L L d

dt dt

d L

dt

r v

r v

v
v

r v

v
v

v v

v

v
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1

0
pN

n

n
n

d L
L

dt 

  
    

  
  

 v

v

. 

The quantity in the brackets is not time-

dependent and is constant. This gives the 

definition of relativistic energy as a conserved 

quantity for a closed system at stationary motion: 

1

pN
n

n
n

L
E L



 
  

 
 

 v

v

.          (68) 

With regard to (63) and (49), we find the 

following: 

1

pN
n n

n

E L H


 
    

 
 P v .         (69) 

It turns out that the relativistic energy can be 

expressed in a covariant form, since according to 

(69) the formula for the energy coincides with 

the formula for the Hamiltonian in (49). 

To calculate the relativistic energy of the 

system with the matter, which is continuously 

distributed over the volume, it is convenient to 

pass from the mass and charge of the particle to 

the corresponding densities inside the particle. 

According to (59), we obtain: 

  0 1 2 3

0 0 0 0

2

0 1 2 3

2 2

1

1
2

16 4
.

16 16


      


  

      
   
  
    
  





qE u g dx dx dx
c

c
c k R c k Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      

 

  

    (70) 

Using expression (70), we can find the 

invariant energy 0E  of the system, for which we 

should use the frame of reference of the center of 

mass and calculate the integral. In addition, at a 

known velocity v  of the center of mass of the 

system in an arbitrary reference frame K , we 

can calculate the momentum of the system in 

K . This can be clarified as follows. We will 

define the invariant mass of the system taking 

the mass-energy of the fields into account using 

the relation: 0
0 2

E
m

c
 , where c  is the speed of 

light as a measure of the velocity of propagation 

of electromagnetic and gravitational interactions. 

If the four-displacement in K  has the form: 

ˆ ( , , , ) ( , ) ( , )dx cdt dx dy dz cdt d dt c   r v , 

then, for the four-velocity of the system in K , 

we can write: 
ˆ ˆ

ˆ
cdx cdt dx

u
ds ds dt

 
    

 ,
cdt

c
ds

 v . The four-vector 0
ˆp m u   

 0 0, ,
cdt E

m c m
ds c

 
   

 
v p  defines the 

four-momentum, which contains the relativistic 

energy 
2

0 0

cdt cdt
E m c E

ds ds
   and relativistic 

momentum 0
0 2

Ecdt cdt
m

ds ds c
p v v= = . This 

gives the formula for determining the 

momentum through the energy: 
2

E

c
p v= , and, 

correspondingly, for the four-momentum: 

2
, ,

E E E
p

c c c

    
    
   

p v . 

In the reference frame K  , in which the 

system is at rest 0v , 0p , dt d , and 

then 0E E , and also 0
0( ) ,0,0,0

E
p

c





 
  
 

v ; 

that is in the four-momentum in the reference 

frame K  , only the time component is non-zero. 

If we multiply the four-momentum by the 

speed of light, we will obtain the four-vector of 

the form  , ,
E

H c p E c E
c

   
    

 
p v , 

the time component of which is the relativistic 

energy, equal in value to the Hamiltonian. Thus, 

we find the four-vector, which in [4] was called 

the Hamiltonian four-vector. 
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The Cosmological Constant Gauge and 

the Resulting Consequences 

 

We will make transformations and substitute (43) and (39) in (70): 

  0 1 2 3

0 0 0 0

2

0 1 2 3

2 2

1

1
2 2

16 4
.

16 16

qE u g dx dx dx
c

c
ck Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      


 

  


      


  

     
   
  
    
  





     (71) 

If we choose the condition for the 

cosmological constant in the form: 

2 2 0ck    ,          (72) 

then the relativistic energy (71) is uniquely 

defined, since the dependence on the constants 

  and   disappears: 

  0 1 2 3

0 0 0 0

2

0 1 2 3

2 2

1

1

16 4
.

16 16


      


  

  
   
  
    
  





qE u g dx dx dx
c

c
Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      

 

  

      (73) 

We will remind that the quantities   and   

can have their own values for each particle of 

matter. But on condition of (72), the expression 

for the relativistic energy (73) becomes universal 

for any particle in an arbitrary system of 

particles and their fields. 

From (72) and (39), the following equation is 

obtained: 

2 2 2

2 2 .

ck D J A j

u J J

 

 

 

 

    


  

        (74) 

In order to estimate the value of the 

cosmological constant  , it is convenient to 

divide all of the system’s matter into small 

pieces, scatter them apart to infinity and leave 

them motionless. Then, the vector potentials of 

the fields and pressure become equal to zero and 

the relation remains: 

 
2

0 0 0 0 0 0( )qck c p           .  

It follows that  , just like   in (42), is 

associated with the rest energy, with the pressure 

energy and with the proper energy of the fields 

of the system under consideration. 

If in some volume there are no particles and 

the mass density 0  and the charge density 0q  

are zero, then in this volume there must remain 

the relativistic energy of the external fields: 
2

1 2 3

0

16

1

4

 
 
   
 
 
 

r f

c
Φ Φ

G
E g dx dx dx

F F













. 

           (75) 

Based on (73), we can express the energy of a 

small body at rest. For simplicity, we will 

assume that the body does not rotate as a whole 

and there is no motion of the matter and charges 

inside it (an ideal solid body without the intrinsic 

magnetic field and the torsion field). Under such 

conditions, the coordinate time of the system 

becomes approximately equal to the proper time 

of the body: dt d . Since the interval 

ds cd , then we obtain: ds cdt . Since 

there is no spatial motion in any part of the body, 

we can write: 
2

0 0

2 3
2

0 00 00( ,0,0,0) .

 

  

c dx
c g u g

ds

c c dt
g cdt g c g

ds ds




 





 

0
0 cdx

u c
ds

  . 
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With this in mind, we obtain from (73): 

 2 1 2 3

0 00 0 0 0 0

2

0 1 2 3

2 2

1

16 4
.

16 16

      

 
 


   
 

    
  





qE g c g dx dx dx

c
Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

     

 

 

      (76) 

In the weak field limit in (76), we can use 

00 1g  , 1g  . The tensor product u u

  

in the absence of matter motion inside the ideal 

solid body vanishes. Using (F5) and (F6), we can 

write: 

0

0

p



 
  

 
C , 0I , 

2
2 2 2

2

0

0

1
( )

16 8

1
.

8

  

  
    

  

c
f f C c I

p




   

 

 

Besides, in [4] it was found that in the weak 

field for a motionless body in the form of a ball 

with uniform density of mass and charge, the 

following relations hold for the body’s proper 

fields: 

2
21

16 8

c
Φ Φ

G G




 

   , 

20

0

1

4 2
F F E






  , 

1 2 3

0

2 1 2 3

1

2

1
,

8

 
 

 

 
  
 





dx dx dx

dx dx dx
G

 



 

1 2 3

0

2 1 2 30

1

2

.
2

q dx dx dx

E dx dx dx

 



 
  

  


  
    





       (77) 

According to (77), the potential energy of the 

ball’s matter in the proper gravitational field 

which is associated with the scalar potential   

is twice the potential energy associated with the 

field strength Γ . The same is true for the 

electromagnetic field with the potential   and 

the strength E  both in the case of uniform 

arrangement of charges in the ball’s volume and 

in case of their location on the surface only. 

Substituting (77) into (76) in the framework of 

the special theory of relativity gives the invariant 

energy of the system in the form of a fixed solid 

spherical body with uniform density of mass and 

charge, taking into account the energy of their 

proper potential fields: 

 

2

0 0

1 2 3

0 0 0

2

0

0

1

2

1
.

2

1

8

 
 
 
 
   
 
 

   
    

   

 qSR

c

E p dx dx dx

p

  

 

 

 

           (78) 

This calculation is apparently incomplete, 

since in reality inside any body there are 

particles, which cannot be as motionless as the 

body itself is. Therefore, in (78), in addition to 

the pressure and its gradient within the body, it is 

necessary to add the kinetic energy of motion of 

all the particles which constitute the body. 

The metric 

Substituting (74) and (39) into (43), we find 

the expression for the scalar curvature R : 

2 2

2 2

2 ,

  


  


  

c k R D J A j

u J J

 

 

 

 



        (79) 

while 

4

16

c
ck

G 
  , where   is a constant 

of the order of unity.  
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As it can be seen, the scalar curvature is zero 

in the whole space outside the body. The 

equation 0R   does not mean, however, that 

the spacetime is flat as in the special theory of 

relativity, since the curvature of spacetime is 

determined by the components of the Riemann 

curvature tensor. 

We will now substitute (74) into the equation 

for the metric (38): 

2

,

  


    


    

c k R c k R g

D J g U A j g W

u J g B J g P

   

         

 

         

 

 (80) 

that also can be written using (39) as follows: 

2

.

   


    

ck R ck R g

U W B P g

   

         
      (81) 

If we take the covariant derivative of (81), the 

left side of the equation vanishes due to the 

property of the Einstein tensor located there. The 

right side, with regard to the equation of motion 

(35) and provided that the metric tensor g 
 in 

covariant differentiation behaves as a constant 

and   is a constant, vanishes too. 

In (80), we can use (79) to replace the scalar 

curvature: 

2

.

  


  


  


  

c k R D J g U

A j g W

u J g B

J g P

      



    



    



    



       (82) 

If we sum up (80) and (82) and divide the 

result by 2, we will obtain the following equation 

for the metric: 

1

4

1
( ),

2


  


   


R R g

B U W P
ck

   

       

    (83) 

while with regard to (79) 0R  , according 

to (35) ( ) 0B U W P       

      and 

1
0

2
R R g   



 
   

 
 as the property of the 

Einstein tensor. 

In empty space according to (83), the 

curvature tensor R 
 depends only on the 

stress-energy tensors of the gravitational and 

electromagnetic fields U    and W   , so these 

fields change the curvature of spacetime outside 

the bodies. We will note that in equation (83), 

the cosmological constant   and the tensor 

product of the type D J g  

  are missing. This 

fact makes determination of the metric tensor 

components much easier. 

If we compare (83) with the Einstein equation 

(46), then two major differences will be found 

out — at the right side of (83) stress-energy 

tensors U
 

, B 
 and P 

 are present, and in 

addition the coefficient in front of the scalar 

curvature R  is two times less than in (46). 

The Energy Components 

In Newtonian mechanics, the relations for the 

Lagrangian and the total energy are known: 

kL E U  , t kE E U  , where kE  denotes 

the kinetic energy, which depends only on the 

velocity, and U  denotes the potential energy of 

the system, depending both on the coordinates 

and the velocity. In relativistic physics, instead 

of individual scalar functions and three-

dimensional vectors, four-vectors and four-

tensors are used, in which the scalar functions 

and three-dimensional vectors are combined into 

one whole. In addition, instead of the negative 

total energy tE , the positive relativistic energy 

E  is usually used. While we have already 

determined the energy E  in (73), then for the 

Lagrangian (54) we should additionally replace 

the scalar curvature R  with the help of (79) and 

the cosmological constant   with the help of 

(74). Taking the relation:  1 2 3

0
g dx dx dx   

0
1 2 3u

g dx dx dx
c

   into account this will 

give the following: 
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      (84) 

Calculating the energy VE , which is 

associated with the four-dimensional motion, as 

a half-sum of the relativistic energy (73) and the 

Lagrangian (84), we find: 
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V
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q

n

E E L

u g dx dx dx
c

   v U v D v A v Π

     (85) 

where 
n

v  is three-velocity vector  of the particle 

with the number n . 

If in (57) we replace the masses 
n

m  and 

charges 
n

q  by the corresponding integrals in the 

form:  1 2 3

0
0

nn

m g dx dx dx  , 

 1 2 3

0
0

nn

qq g dx dx dx  , and transform 

the volume units in the form 

 
0

1 2 3 1 2 3

0

u
g dx dx dx g dx dx dx

c
   , then 

we obtain the relation 
1

1

2

pN
n n

V

n

E


 
  

 
 P v . As we 

can see, the kinetic energy VE  of the system in 

the reference frame of the center of mass 

vanishes only when the velocities 
n

v  of all the 

system’s particles at the same time vanish. 

We will determine the potential energy PU  as 

a half-difference of the relativistic energy (73) 

and the Lagrangian (84): 
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q

U E L u g dx dx dx
c

u g dx dx dx
c

c c c
Φ Φ F F u u f f g dx dx dx

G

   

   

      

 

 

    
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  (86) 

For a solid body in the limit of the special 

theory of relativity, when 1g  , 
0

n

u c , 
2 2

1

1

n

n

v c

 



, the expression for the kinetic 

energy (85) of the system is as follows: 
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       (87) 

The main part of the kinetic energy is 

proportional to the square of the velocity, and 

vector potentials of all fields, including the 

velocity field and pressure field, make 

contribution to this part of the energy. 

For the potential energy (86) of a solid body 

in the limit of special theory of relativity, the 

tensor product u u

  according to (E8) tends 

to zero. We will also take into account the values 

of other tensor products: 

 
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2 2 21
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16 8
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It gives the following: 
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The potential energy depends also on the 

velocity. If 0
n

v  for all material particles of the 

system, then the potential energy of the system 

remains, taking the field energy into account: 

 

 

2 1 2 3

0 0 0 0

2 2 2 2 2 2 2 2 2 1 2 30

( )

1 1
( ) ( ) .

8 2 8

    

 

        
  





P SR qU c dx dx dx

c E c Β C c I dx dx dx
G

     




  

   (88) 

In the absence of external fields and internal 

motions in the fixed system, in (88) the fields 

 , B , I  become equal to zero. As a result, 

with regard to (77), the potential energy becomes 

equal to the relativistic energy (78) for a fixed 

ideal solid body. 

Conclusions 

We have presented the Lagrangian of the 

system as consisting of one term for the 

curvature and four pairs of terms of identical 

form for each of the four fields: gravitational and 

electromagnetic fields, acceleration field and 

pressure field. As a result, for each field we have 

obtained equations coinciding in form with each 

other. The spacetime is also represented by its 

proper tensor metric field g  . The mass four-

current J 
 interacts with the specified fields, 

gaining energy in them. Moreover, the 

electromagnetic field changes the energy of 

electromagnetic four-current j . However, the 

fields also have their proper energy and 

momentum, which are part of the tensors U  
 

(5), W  
 (8), B 

 (11) and P 
 (14), 

respectively. 

The similarity of field equations implies the 

necessity of gauge; not only of the four-

potentials of the gravitational and 

electromagnetic fields, but also of the four-

potentials of the acceleration field and pressure 

field, as well as of the mass four-current J 
 and 

electromagnetic four-current j . From the 

standpoint of physics, the meaning of such 

gauges is that the source of divergence of the 

three-velocity vector of small volume may be the 

time changes in the particle’s energy in any 

fields which are present in the given volume. 
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This may be the particle’s energy in the velocity 

field, the energy in the pressure field or the 

energy in the gravitational or electromagnetic 

fields. 

In contrast to the standard approach, we do 

not use any of the variety of known forms of 

stress-energy tensors of matter. Instead, the 

energy and momentum of the matter are 

described based on the acceleration field, the 

acceleration field tensor and the stress-energy 

tensor of the acceleration field. The contribution 

of pressure to the system’s energy and 

momentum, respectively, is described through 

the pressure field with the help of the pressure 

field tensor and the stress-energy tensor of the 

pressure field. In this case, the acceleration field 

and the pressure field, as well as the 

electromagnetic and gravitational fields, are 

regarded as the four-dimensional vector fields 

with their own four-potentials. 

Representation of the gravitational field as a 

vector field is performed within the covariant 

theory of gravitation [3-4], in contrast to the 

general theory of relativity, where gravitation is 

described indirectly through the spacetime 

geometry and is considered as a metric tensor 

field. We consider as an advantage of our 

approach the fact that the energy and momentum 

of the gravitational field at each point are 

uniquely determined with the help of the stress-

energy tensor of the gravitational field; whereas, 

in the general theory of relativity, we have to 

restrict ourselves only to the corresponding 

pseudotensor, such as the Landau-Lifshitz stress-

energy pseudotensor [13]. 

In order to uniquely identify the relativistic 

energy of a particle or a matter unit, we used a 

special gauge of the cosmological constant, 

giving this constant the meaning of the rest 

energy of the particle with “turned-off” external 

fields and influences. This led to the expression 

for the relativistic energy of the system (73) and 

to the equation for the metric (83), the right side 

of which is the sum of four stress-energy tensors 

of the fields. 

In the absence of the cosmological constant in 

the Lagrangian (1), it would be impossible to 

perform the specified calibration, the physical 

system’s energy would be uncertain and the 

presented theory would remain unfinished. In 

our approach, the cosmological constant does not 

reflect the energy density of the empty cosmic 

space, or the so-called dark energy, but rather the 

energy density of the matter scattered in space. 

Given that 

4

2
8

c
ck

G 
  , where   is a 

constant of the order of unity, it follows from 

(74) that 0

2

16 G

c

  
  . Substituting here the 

standard estimate of the cosmological constant 
5210  m-2, we find the corresponding mass 

density: 
27

0 3 10   kg/m. This density is 

sufficiently close to the density of cosmic matter, 

averaged over the entire space. 

It can be noted that our expression for the 

relativistic energy and the equation for the metric 

differ substantially from those obtained in the 

general theory of relativity. For the energy it 

follows from the fact that instead of the stress-

energy tensor of matter we use the stress-energy 

tensors of the acceleration field and the pressure 

field, while the gravitational field is directly 

included in the energy, and not indirectly 

through the metric. 

Let us take the Einstein equation for the 

metric with the cosmological constant from [14]. 

In the general case, the right-hand side of this 

equation contains the stress-energy tensor of the 

electromagnetic field W
 

 and the stress-energy 

tensor of matter 
  : 

 4

1

2

8
.

R R g g

G
W

c

     

   



   





        (89) 

The simplest form of the stress-energy tensor 

of matter without taking the pressure into 

account is the expression in terms of the mass 

density and the four-velocity: 0u u     . 

Contraction (89) with the metric tensor g   

gives the following: 

4

8

4 4

G R

c

 
   , 

where g  

   . 

After substituting   in (89), the equation for 

the metric is transformed as follows: 
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Now, equation for the metric (90) in the 

general theory of relativity can be compared with 

our equation for the metric (83). The main 

difference is that in (83) all the tensors at the 

right side act the same way, and in contraction 

with the metric tensor they vanish. But, it is not 

the case in (90) – if the expression 0g W 

    

is valid for the electromagnetic stress-energy 

tensor, then for the stress-energy tensor of matter 

the relation 0g  

    does not hold, so that 

in (90) one more term 
4

g 
  is needed. As a 

result, in the general theory of relativity, not only 

the gravitational field is represented in a special 

way, through the metric tensor, which differs 

from the method of introducing the 

electromagnetic field into the equation for the 

metric, but also the stress-energy tensor of 

matter 
   is asymmetric with respect to the 

metric, in contrast to the stress-energy tensor of 

the electromagnetic field W
 

. 

Appendix A. Variation of the sixth term in the action function 

We need to find the variation for the sixth 

term in (1): 

 6

1
S u J g d

c



     .        (A1) 

We will need the expressions for variation of 

the metric tensor and the four-vector of the mass 

current, which can be found, for example, in [7], 

[9] and [14]: 

g g g g   
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In view of (A2) and (A3), we have the 

following: 
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We will transform the first term in (A4) with 

the help of functions’ product differentiation by 

parts: 
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In action variation, the term with the 

divergence can be neglected; the remaining term 

can be transformed as follows: 

 

( )

.

    

    



g J J u

u u J g

u J g

   

 

 

   

 



 





 

Substituting these results in (A4) and then in 

(A1), we find: 
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Appendix B. Variation of the seventh term in the action function 

Variation for the seventh term in (1) for the 

special case, when   is a constant, taking into 

account (A2) will be equal to: 
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Since u g g u  

  , the tensor u   is 

antisymmetric, then using the expression for 

g   from (A2), we find: 
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Substituting this expression in (B1) gives the 

following: 
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We will denote by B 
 the stress-energy 

tensor of the acceleration field: 
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Given that u u u        

u u       , using differentiation by parts, 

as well as the equation which is valid for the 

antisymmetric tensor: 
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u u u g

u u u g

u g u

u g u u g u

u g u u g u

 

 

 

   

 

   

 

 

   

   

   

   





 



 

 
 

 

The term  4 u g u 

    in the last 

expression is the divergence, and it can be 

neglected in the variation of the action function. 

Substituting the remaining term in (B2) and 

then in (B1) and using (B3), we find: 

7

4
.

1

2

c
u u

S g d

B g
c

 

 

 

 








 
  

   
 
 
 

  

Appendix C. Variation of the eighth term in the action function 

Action variation for the eighth term in (1) has 

the form: 

 8

1
S J g d

c



      . 

Acting like in Appendix A, taking (A2) and 

(A3) into account, we find: 

 

 
1

.
2



     

    
 

   

J g

g J J g J g

g J J

J g g g J g





  

  

   

 

   

   

 

    

  

  
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 

 

  .

   
 

    
 

   

g J J

g J J

g J J

   

 

   

 

   

 

  

  

  

 

In action variation, the term with the 

divergence is insignificant; the second term is 

transformed further: 

 

( )

.

   

    

 

g J J

J g

f J g

   

 

 

   

 



  

  



 

As a result, the variation of the eighth term 

equals: 

8

1 1

.
1

2

 
  
   
  
 



f J J
c c

S g d

J g g
c

  

 

  

  

 



 

 

Appendix D. Variation of the ninth term in the action function 

In the special case when   is a constant, for 

the variation of the ninth term in (1), with regard 

to (A2), we have: 

 9
16

c
S f f g d

 
 

    , 

 
 

1
.

2



   



    

 


f f g

f f g f f g

f f g f f g

f f g g g





 

 

 

 

  

  



 

 



   (D1) 

Replacing f g g f  

   and using 

g   in (A2), we transform the first term of the 

equation and then substitute it in (D1): 

 

2

2 .



 

 
  

  

   

   

f f g

f g g f g

g g f g f g
f g

g f g

f f g f g f g g

f f g g f f g g





 

  

   

   

  

 

   

    

    

    





 



 

 

 

 
2

2

1
.

2



 

 

 

f f g

f f g

g f f g g

f f g g g





 

 

  

  

  

  









 

We will denote by P 
 the stress-energy 

tensor of the pressure field: 

2

1
4

4

 
 


 
 
 

g f f
c

P
g f f

  


 

  


 

.       (D2) 

We will transform the term 

2 f f g 

   , given that 

f        , using differentiation by 

parts as well as equation 

 f g g f   

       which is valid 

for the antisymmetric tensor: 

 

 

 

 

 

2

2

2

4

4

4

4

4 .

f f g

f g

f g

f g

f g

f g

f g p

f g

 

 

 

   

 

   

 

 

 

 

 

 

 

 

 

 



  

 













    

    

  

  

  

  

  

 

In the latter equation, the term with the 

divergence can be neglected, since it does not 

contribute to the variation of the action function. 

Substituting the results in (D1), we find the 

required variation: 
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9

4

1

2

 
 

   
 
 
 



c
f

S g d

P g
c

 

 

 

 


 





. 

Appendix E. Acceleration tensor and equations for the acceleration field 

By definition, the acceleration field appears 

as a result of applying the four-rotor to the four-

potential: 

u u u u u             . 

The tensor u  is antisymmetric and includes 

various components of accelerations. By its 

structure, this tensor is similar to the 

gravitational tensor Φ  and the electromagnetic 

tensor F , each of which consists of two vector 

components depending on the field potentials 

and the velocities of the field sources. 

In order to better understand the physical 

meaning of the acceleration field, we will 

introduce the following notations: 

0 0 0

1
i i i iu u u S

c
    , 

i j i j j i ku u u N     ,         (E1) 

where the indices , ,i j k  form triples of non-

recurring numbers of the form 1,2,3 or 3,1,2 or 

2,3,1; three-vectors S  and N  can be written by 

components:  

1 2 3( , , ) ( , , )i x y zS S S S S S S  S ; 

1 2 3( , , ) ( , , )i x y zN N N N N N N  N . 

Then, the tensor u  can be represented as 

follows: 

0

0

0

0

yx z

x
z y

y

z x

z
y x

SS S

c c c

S
N N

c
u

S
N N

c

S
N N

c



 
 
 
 
  

  
 
 
 
 
   
 

.        (E2) 

In order to simplify our further arguments, we 

will consider the case of the flat spacetime; i.e., 

Minkowski space or the spacetime of the special 

theory of relativity. The role of the metric tensor 

in this case is played by the tensor 
  , the non-

zero components of which are 
00 1  , 

11 22 33 1      . With its help, we will 

raise the indices of the acceleration tensor: 

0

0

0

0




 
   

 
  

  
 
 
 
  

 

yx z

x
z y

y

z x

z
y x

u u

SS S

c c c

S
N N

c

S
N N

c

S
N N

c

     

 

.       (E3) 

We will expand the four-vector of the mass 

current:  0 0 ,J u c      v , where 

2 2

1

1 v c
 


. In equations (22) and (23), we 

can replace the covariant derivatives   with 

the partial derivatives  . Now, with the help of 

the vectors S  and N , these equations can be 

presented as follows: 

04  S , 0

2 2

41

c t c

 
  



vS
N , 

0 N , 
t


  



N
S .         (E4) 

The equations (E4), obtained in the 

framework of the special theory of relativity for 

the case const  , are similar in their form to 

Maxwell equations in electrodynamics. 

If we multiply scalarly the second equation in 

(E4) by S , multiply scalarly the fourth equation 
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by N  and sum up the results, we will obtain 

the following: 

2 2 2

2

0

2

1 ( )
[ ]

2

4
.

S c N

c t

c

 

 
   




 


S N

v S
       (E5) 

Equation (E5) contains the Poynting’s 

theorem applied to the acceleration field. The 

meaning of this differential equation is that if in 

a system the work is done to accelerate the 

particles, then the power of this work is 

associated with the divergence of the 

acceleration field’s flux and the change in time 

of the energy associated with the acceleration 

field. The relation (E5), in a generally covariant 

form according to (33), can be written as 

follows: 

0 0B u J 

    . 

We will now substitute (E2) in (30) and write 

the scalar and vector relations for the 

components of the four-acceleration 

0( , )ia a a  : 

0 0
0 0 0 0

du
a u J

d c





 
 


     S v , 

 

0 0

0 [ ] .

i

i i

du
a u J

d



 


 


   


   S v N

        (E6) 

The components of the four-acceleration are 

obtained from these relations after canceling 0 . 

As we can see, both vectors S  and N  make 

contribution to the space component ia  of the 

four-acceleration, the vector S  has the 

dimension of an ordinary three-acceleration and 

the dimension of the vector N  is the same as 

that of the frequency. 

If we take into account that the four-potential 

of the acceleration field ,u
c



 
  
 

U  in the 

case of one particle can be regarded as the 

covariant four-velocity, then from (E1) in 

Minkowski space, it follows: 

2 ( )
c

t t


 

 
      

 

U v
S , 

   N U v .         (E7) 

The vector S  is the acceleration field 

strength and the vector N  is a quantity similar 

in its meaning to the magnetic field induction in 

electrodynamics or to the torsion field in the 

covariant theory of gravitation (the 

gravitomagnetic field in the general theory of 

relativity). At the constant velocity constv , 

the vectors S  and N  vanish. If there are non-

zero time derivatives or spatial gradients of the 

velocity, then the acceleration field with the 

components S  and N  and the acceleration 

tensor u  appear. In this case, it is possible to 

state that the non-zero tensor u  in the inertial 

reference frame leads to the corresponding 

inertia forces as the consequence of any 

acceleration of bodies relative to the chosen 

reference frame. 

If we substitute the tensors from (E2) and 

(E3) into (B3), then the stress-energy tensor of 

the acceleration field B 
 will be expressed 

through the vectors S  and N . In particular, for 

the tensor invariant u u

  and the time 

components of the tensor B 
, we have: 

2 2 2

2

2
( )u u S c N

c



    , 

00 2 2 21
( )

8
B S c N


  , 

0 [ ]
4

i c
B


 S N . 

           (E8) 

The component
00B , after its integration over 

the volume in the Lorentz reference frame, 

determines the energy of the acceleration field in 

the given volume, and the vector 
2

0 [ ]
4

i c
cB


  K S N  is the density of the 

energy flux of the acceleration field. Therefore, 

to calculate the energy flux of the acceleration 

field, the vector K  should also be integrated 

over the volume. 
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Appendix F. The pressure tensor and equations for the pressure field 

The pressure tensor is built by antisymmetric 

differentiation of the four-potential  : 

f                . 

We will introduce the following notations: 

0 0 0

1
i i i if C

c
     , 

i j i j j i kf I       ,         (F1) 

where the indices , ,i j k  form triples of non-

recurring numbers of the form 1,2,3 or 3,1,2 or 

2,3,1; the three-vectors C  and I  in the 

Cartesian coordinates have the components: 

1 2 3( , , ) ( , , )i x y zC C C C C C C  C ; 

1 2 3( , , ) ( , , )i x y zI I I I I I I  I . 

In the specified notations, the tensor f  can 

be represented by the components: 

0

0

0

0

yx z

x
z y

y

z x

z
y x

CC C

c c c

C
I I

c
f

C
I I

c

C
I I

c



 
 
 
 
  

  
 
 
 
 
   
 

.        (F2) 

In Minkowski space, the metric tensor does 

not depend on the coordinates and time and 

consists of zeros and ones. In such space, the 

components of the tensor f 
 repeat the 

components of the tensor f  and differ only in 

the signs of the time components: 

0

0

0

0

yx z

x
z y

y

z x

z
y x

CC C

c c c

C
I I

c
f

C
I I

c

C
I I

c



 
   

 
 

 
  
 


 
 
  
 

.        (F3) 

Substituting in equations (26) and (27) the 

covariant derivatives   with the partial 

derivatives  , we can represent these equations 

in the form of four equations for the vectors C  

and I : 

04  C , 

0

2 2

41

c t c

  
  



vC
I , 0 I , 

t


  



I
C .           (F4) 

We will remind that the equations (F4), 

obtained in the framework of the special theory 

of relativity, are valid for the case of const  . 

Similarly to (E5), we obtain the equation of local 

pressure energy conservation: 

2 2 2

2

0

2

1 ( )
[ ]

2

4
.

C c I

c t

c

 

 
   




 


C I

v C
 

This equation also follows from equation (34) 

and can be written with the help of the tensor 

P 
 according to (D2) as follows: 

0 0P f J 

    . 

Tensor invariant f f 

  and the time 

components of the tensor P 
 are expressed 

with the help of (F2) and (F3) through the 

vectors C  and I : 

2 2 2

2

2
( )f f C c I

c



    , 

00 2 2 21
( )

8
P C c I


  , 

0 [ ]
4

i c
P


 C I . 

           (F5) 

The component 
00P  of the stress-energy 

tensor of pressure determines the pressure 

energy density inside the bodies, and the vector 
2

0 [ ]
4

i c
cP


  F C I  defines the density of 

the pressure energy flux. 
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We will now estimate the quantity if J 

  

with the index 1,2,3i  . According to (31), this 

quantity determines the contribution of the 

pressure field into the total density of the force 

acting on the particle. In view of (F2), it turns 

out that the density of the pressure force has two 

components: 

 0 [ ]if J

     C v I . 

For comparison, the time component is the 

density of the pressure force capacity divided by 

the speed of light: 

0
0f J

c





  


v C
. 

The vector C  has the dimension of 

acceleration and the vector I  has the dimension 

of frequency. These vectors, with the help of 

(F1) and the definition of the four-potential of 

the pressure field 0

2

0

,
p

u
c c

 


 
   

 
Π  

in Minkowski space, can be written as follows: 

0 0

2

0 0

p p

t t c

 

 

    
       

    

vΠ
C , 

0

2

0

p

c





 
    

 

v
I Π ,         (F6) 

where u  denotes the four-velocity, 0p  is the 

pressure in the frame of reference associated 

with the particle, 
2 2

1

1 v c
 


 is the Lorentz 

factor and v  is the particle velocity. 

The vector I , according to its properties, is 

similar to the magnetic induction vector, and the 

vector C  is similar to the electric field strength. 

Motionless particles do not create the vector I , 

and for the vanishing of the vector C  it is also 

necessary that the relation 0 0p   would not 

depend on the coordinates. In this case, the 

contribution of the pressure field into the 

acceleration of the particles will be zero. 
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