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Abstract— For sound localization methods to be useful in real- process of interpretation seems to be an essential part of
time scenarios, the processing power requirements must be low hearing, since hearing using only one ear cannot be explained
enough to allow real time processing of audio inputs. we propose 5, the basis of binaural cues like ITDs and ILDs in the input
a new binaural sound source localization technique based on _.. - S . .
using only two microphones placed inside the ear canal of a stimuli. This S|gn|f|es that the |.nterpretat|on of spectral_ cues
robot dummy head. The head is equipped with artificial ears are very essential for localization and that the extraction of

and is mounted on a torso. In contrast to existing 3D sound such cues must be explained within the framework of any
source localization methods using microphone arrays, the novel |gcalization model.

method presented employs only two microphone and is based In a similar fashion to the decoding process which the

on a simple correlation approach using a generic set of HRTFs. dit t f h t f . the tw
The proposed method is demonstrated through simulation and auditory system performs when transiorming the two one-

is further tested in a household environment. This set up proves dimensional signals at the eardrums back into a three-
to be very noise-tolerant and is able to localize sound sources in dimensional space representation, it has been suggested that

free space with high precision. robotics can benefit from the intelligence encapsulated within
the HRTFs to localize sound in 3D [5]. Motivitated by the
important role of the human pinnae to focus and amplify

In the field of acoustic, determining the direction fronsound, and since the HRTFs can also be interpreted as the
which a sound is coming in 3D space has been approachedlirectivity characteristics of the two pinnae [4], a robot should
several ways [1], [2], [3]. Using standard techniques, a largerform sound localization in three dimensional space using
array of microphones can be used to localize sound sourcgdy two microphones, two synthetic pinnae and a HRTF
in a three-dimensional space. database. The previously proposed system in [5] utilizes the

However, most humans and other mammals use binaueffiects of pinnae and torso on the original sound signal
hearing to be able to accurately localize sound with only twin order to localize the sound source in a simple matched
ears. From the viewpoint of signal processing, the humdiitering process. In this paper, a new localization algorithm is
hearing organ is a signal processor par excellence. Binauabsented which produces better results and greatly reduces the
hearing not only has the capabilities to concentrate on opecessing requirements compared to the previously proposed
sound source in a crowd of concurrent sound sources adorithm.
discriminate between the different sources, but also is able to
suppress noise, reverberance and sound colouration to a certain Il. HRTFS REDUCTION TECHNIQUES
extent [4]. When placed in a free sound field, a listener will Our goal is to build a binaural sound source localizer
obstruct an incoming sound wave. The external sound field hasing a set of generic HRTF measurements. We use these
to couple into the listener’'s ear canals. The relative positiongeasurements and develop a low-complexity model based on
of the two ear canals and the sound sources lead to a coupkirgple correlation for estimating the azimuth and the elevation
that is strongly dependent on frequency, expect at very Idar an impinging sound wave. Experiments have shown that
frequencies. In this context not only the two pinnae but alsneasured HRTFs from an individual can undergo a great
the whole head and the torso have an important functiordgal of distortion (i.e. smoothing, reduction, etc.) and still be
role, which is best described as a spatial filtering process. Thigatively effective at generating spatialized sound (Blauert,
linear filtering is usually quantified in terms of the HRTFs1997). This implies that the reduced HRTF still contain all
In the general definition of the HRTF all linear properties athe necessary descriptors of localization cues and is able to
the sound transmission are included. All proposed descriptansiquely represent the transfer of sound from a particular
of localization cues, such as inter-aural differences in arrivgdeint in the 3D space. We can take advantage of this fact to
time, ITD, in phase, IPD, in level/intensity, ILD/IID as well asgreatly simplify the task of sound source localization by using
monaural cues, are contained in the HRTFs. They can thusdmproximations of an individual’s HRTFs, shortening thus the
derived from the HRTFs, whereas the opposite is not generdiyngth of each HRTF and consequently reducing the overall
the case [4]. localization processing time.

More challenging for sound source detection systems, is theOne public set of HRTFs are those collected at MIT. Us-
ability of humans to localize sounds monaurally. A permanemg the KEMAR (Knowles Electronics Manikin for Acoustic

I. INTRODUCTION



Research) which is a standard manikin based on commidter model of the HRTF from a high-order FIR filter response.
human anthropomorphic data, the research group gathered Al@etailed description of the BMT technique is given in [8].
accurate measurements taken over a broad range of spatiah brief description, we determine a linear time-invariant
locations, with each HRTF having a length of 512 samplesstate-space system, which realizes the filtdgt We start

The KEMAR HRTFs can be modeled as a set of lineaepresenting the 128-coefficient FIR filtef)if* as state-space
time-invariant digital filters, being represented either as Finitbfference equations, then a transformation matrix is found
Impulse Response (FIR) filters or as Infinite Impulse Responsach that the controllability and observability Grammians are
(IIR) filters. We investigate three techniques for reducing tregual and diagonal. This is the characteristic feature of a
length of the HRTF, two FIR and one IIR, which are applied tbalanced system. The corresponding system states are ordered
the KEMAR dataset, and which lead to a significant reducticaaccording to their contribution to the system response. The
in the size of the measured HRTF dataset. Using the reduaeder of the states is reflected in the Hankel Singular Values
dataset, we present a novel approach to localize sound souft&8V) of the system. Thus, the balanced system can be divided
using only two microphones in a real environment. into two sub-systems: the truncated system of ordex n,

The KEMAR dataset contains the impulse responses where the firstn HSVs are used to model the filter, and the
the actually measured HRTF filters. The 512 samples wdjected system of ordgmn — m). For every value ofn we
each HRTF-measurement can directly be considered to tmve a truncated HRTF dataset denoted AS*H
the coefficients of a FIR representation of the filter. However,
for real-time processing FIR filters of this order are compu&. Principal Component Analysis

tationally expensive. Moreover, the dataset is to be used tong an alternative to the previous BMT approach a Principal
perform localization of sound sources and to account for heé%mponent Analysis (PCA) is used to reduce the number of
movements, which implies that the dataset has to be Sto"seﬂnples required to represent each 128-sample diffuse-field
to allow for fast switching between HRTFs. Using the 512 ,55i;ed HRTF. A thorough description of the PCA technique
samples slows down the localization process and does not Oﬂ‘?rmodeling HRTFs is available in [9]. The PCA aims at
memory savings. The original KEMAR HRTFs contellpl?ll%ng thehinimizing the amount of storage space needed for the HRTF
512 coefficients of the FIR filter will be denoted Bs,5™.  gataset by selecting: representatives from the whole dataset,

A. Diffuse-Field Equalization the obtained HRTF database is denoted Wy

Our goal is to shorten thg length of the original filtgrs in or- lIl. PREVIOUS SOUND SOURCE L OCALIZATION
der to reduce the computational burden for convolution, while TECHNIQUE
preserving the main characteristics of the measured impulse
responses. To this end, we adopt the algorithm proposed byVe now recollect in detail the localization method which
[6] for a diffuse-field equalization (DFE). In DFE, a referenc#vas suggested in [5]. The main idea in this algorithm was
spectrum is derived by power-averaging all HRTFs from ead® first minimize the HRTFs and remove all redundancy. The
ear and taking the square root of this average spectrui@sulting minimized HRTFs are then used for localizing sound
Diffuse-field equalized HRTFs are obtained by de-convolvirgpurces in the same way the full HRTFs would be used.
the original by the diffuse-field reference HRTF of that eafthe algorithm relies on a straight-forward matched filtering
This leads to the fact that the factors that are not inciderfoncept.
angle dependent, such as the ear canal resonance, are removde assume that we have received the left and right signals
The DFE is achieved according to the following four step®f a sound source from a certain direction. The received signal
1) Remove the initial time delay from the beginning of théo each ear is therefore the original signal filtered through the
measured impulse responses, which typically has a duratidRTF that corresponds to the given ear and direction.
of about 10-15 samples. 2) Remove features from modelingMatch Filtering the received signals through the correct
that are independent of the incident angle [6]. 3) Smooth thRTF should give back the original mono signal of the sound
magnitude response using a critical-band auditory smoothiasgurce. Although the system has no information about what
technique [7]. 4) Construct a minimum-phase filter, ensuritbe sound source is, the result of filtering the left received
thus stability for the final filter and its inverse. signal by the correct inverse left HRTF should be identical
This way we shorten the length of the FIR representatidn the the right received signal filtered by the correct inverse
of the original KEMAR HRTFs, HLF, from 512 to 128 right HRTF.
coefficients. The resulting HRTF database is denoted/d$’H  In order to determine the direction from which the sound
) is arriving, the two signals must be filtered by the inverse of
B. Balanced Model Truncation all of the HRTFs. The inverse HRTFs that result in a pair of
In order to examine to which extent the HRTF can bsignals that closely resemble each other should correspond to
reduced while still preserving the characteristic informatiotie direction of the sound source. This is determined using a
which makes it unique, we reduce the previously derivesimple correlation function. The direction of the sound source
diffused-field HRTF dataset further by adopting the balancésl assumed to be the HRTF pair with the highest correlation.
model truncation (BMT) technique to design a low-order IIRThis method is illustrated in Figure 1.



Due to the computational complexity of filtering in timethe original signal from the received inputs so that only the
domain, the algorithm is applied in the frequency domaiRTFs are left may be possible. Such an approach is denoted
The signals and reduced HRTFs are all converted using the the Source Cancelation Algorithm (SCA) and is illustrated
Fast Fourier Transform (FFT). This changes all the filterinip Figure 2. Basically, the received signals at the microphones

operations to simple array multiplications and divisions.

We assume that the reduced HRTFs, i.e. using diffused,
BMT and PCA, have already been calculated and saved.
Once the audio samples are received to the left and right
inputs, they must also be transformed using FFT. Then, the
transformed signal is divided (or multiplied by a pre-calculated
inverse) by each of the HRTFs. Finally, the correlation of
each pair from the left and right is calculated. There are 1420
array multiplications, 1420 inverse Fourier transforms, and 710
correlation operations. After the correlations are found, the
direction that corresponds to the maximum correlation value
is taken to be the direction from which the sound is arriving.
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Fig. 2. Flow chart of the SCA sound localization algorithm.

inside the ear canals could be reasonably modeled as the
original sound source signal convolved by the HRTF. Looking
at the signals in frequency domain, we see that if we divide
the left and right transformed signals, we are left with the left
and right HRTFs divided by each other. The sound source is
canceled out.

With two Fourier transforms and one array division op-
eration, the original signal is removed and the HRTFs are
isolated. The resulting ratio can then be compared to the

Fig. 1. Flowchart of the sound localization algorithm as proposed in [5] ratios of HRTFs which are stored in the system. These ratios

IV. SOURCECANCELATION ALGORITHM

In the previous a|gorithm' the main goa| was to pass ﬂ%iminate the need for inverse Fourier transforms.
received signal through all possible inverse filters. The set ofln a hardware-based application, using the Source Cancela-
filters from the correct direction would result in canceling thi#on Algorithm would greatly reduce hardware complexity as
effects of the HRTF and extracting the original signal fronwvell as speed up processing. Compared to the original algo-

both sides.

are assumed to be pre-calculated offine and saved in the
system database, since they do not change. Additionally, the
correlation operation is performed in the frequency domain to

rithm, this new approach eliminates 1420 array multiplications

However, a more direct approach can be taken to localizeaad 1420 inverse Fourier transforms, and replaces them with
sound source. Instead of attempting the retrieve it, discardiage single array multiplication.



V. SIMULATION AND EXPERIMENTAL RESULTS angles fall within the close neighborhood of the simulated

The simulation test consisted of having a broadband souf!nd source locations. .
signal filtered out by the effect of the 512-sample HRTF at In our household experimental setup, several binaural
a certain azimuth and elevation. Thus, the test signal wigcordings from different directions were obtained using a
virtually synthesized using the original HRTF set. For thdummy head and torso with two artificial ears in a reverberant
test signal synthesis, a total of 100 random HRTFs wef@om. The mlcrop’hones were placed at a distance of 26 mm
used corresponding to 100 different random source locatigay from the ear's opening. The recorded sound signals, also
in the 3D space. In order to insure rapid localization dfontaining external and electronic noise, were used as inputs
multiple sources, small parts of the filtered left and rigHf our SCA localization algorithm. Only 30 samples of PCA-
signal is considered (about 350msec). These left and rigffluced and 35 samples of BMT-reduced HRTFs were used.
signal parts are then transformed using FFT and divigedyll the estimated azimuth and elevation angles turned out to
the division result is then correlated with the available 71@f €ither at or in the vicinity of the target angles. Due to
reduced HRTF ratios, i.eHRTELi Basically, the correlation the differences between the dummy manikin model used in
i mum el ’ fhe experiment and the KEMAR model used to obtain the
should yield a maximum value when the saved HRTF rat
corresponds to the location from which the simulated souftRTF dataset, some angles are not exactly detected at the
source is originating. Therefore, we base our localization §a'get location where they originated from.
the optained maximum for thg correlati(_)n fgctor. The reduction VI. CONCLUSION
\t/(\?g:]emﬂgz(sj’ tnoar(r:]ree:)a/\,t gIftfrl:rseee.:flgilgeerzngllrzezt:ﬁ:g dBrMnIazlr;d OPfCA We have addressed the binaural sound source localization
original HRTFs. The performance of each of these mod
under the SCA is illustrated in Figure 3. The solid lines anéiI
the star sign in the Figure shows the SCA percentage 9

correct localization versus the length of the HRTF in sampl 5CPwith a minimum of Bincrements and on the vertical plane

Eor comparison, the dff‘ShEd lines and the plus sign in_ 6m -40°to 9C°with 1CPincrements. Therefore, the results
figure refer to the previous method performance [5]. USiNgicate that we can localize the sound source with an accuracy

foblem. We proposed an efficient sound source localization

ethod that demonstrates the ability of precise azimuth and
vation estimation, using a generic HRTF database. The
TF dataset is measured on the horizontal planes fram 0

100 ‘ ‘ ‘ ‘ ‘ of about 5. If we construct the HRTF dataset with smaller
| | | | | poF increments, the resolution of estimation will be increased.
I T i S S R | Additionally, the new algorithm was developed to further
| i | | decrease the computational requirements of the method in [5].
© 1 1 1 1 1 Compared to the previous method, the SCA algorithm is able
! | | | | 1 to achieve remarkable reduction in the processing requirements
| | | | | while increasing the accuracy of the sound localization. The
0 N/ . 7 efficiency of the new algorithm, suggests a cost-effective
‘ | | | | | implementation for robot platforms and allows for a fast
60 T A S + ] localization of multiple sources. Using the presented method,
| ‘ ‘ roiows | g~ poA many venues for future work are to be considered, mainly
50 e S S S — range estimation and robotic monaural localization.
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