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Abstract— For sound localization methods to be useful in real-
time scenarios, the processing power requirements must be low
enough to allow real time processing of audio inputs. we propose
a new binaural sound source localization technique based on
using only two microphones placed inside the ear canal of a
robot dummy head. The head is equipped with artificial ears
and is mounted on a torso. In contrast to existing 3D sound
source localization methods using microphone arrays, the novel
method presented employs only two microphone and is based
on a simple correlation approach using a generic set of HRTFs.
The proposed method is demonstrated through simulation and
is further tested in a household environment. This set up proves
to be very noise-tolerant and is able to localize sound sources in
free space with high precision.

I. INTRODUCTION

In the field of acoustic, determining the direction from
which a sound is coming in 3D space has been approached in
several ways [1], [2], [3]. Using standard techniques, a large
array of microphones can be used to localize sound sources
in a three-dimensional space.

However, most humans and other mammals use binaural
hearing to be able to accurately localize sound with only two
ears. From the viewpoint of signal processing, the human
hearing organ is a signal processor par excellence. Binaural
hearing not only has the capabilities to concentrate on one
sound source in a crowd of concurrent sound sources and
discriminate between the different sources, but also is able to
suppress noise, reverberance and sound colouration to a certain
extent [4]. When placed in a free sound field, a listener will
obstruct an incoming sound wave. The external sound field has
to couple into the listener’s ear canals. The relative positions
of the two ear canals and the sound sources lead to a coupling
that is strongly dependent on frequency, expect at very low
frequencies. In this context not only the two pinnae but also
the whole head and the torso have an important functional
role, which is best described as a spatial filtering process. This
linear filtering is usually quantified in terms of the HRTFs.
In the general definition of the HRTF all linear properties of
the sound transmission are included. All proposed descriptors
of localization cues, such as inter-aural differences in arrival-
time, ITD, in phase, IPD, in level/intensity, ILD/IID as well as
monaural cues, are contained in the HRTFs. They can thus be
derived from the HRTFs, whereas the opposite is not generally
the case [4].

More challenging for sound source detection systems, is the
ability of humans to localize sounds monaurally. A permanent

process of interpretation seems to be an essential part of
hearing, since hearing using only one ear cannot be explained
on the basis of binaural cues like ITDs and ILDs in the input
stimuli. This signifies that the interpretation of spectral cues
are very essential for localization and that the extraction of
such cues must be explained within the framework of any
localization model.

In a similar fashion to the decoding process which the
auditory system performs when transforming the two one-
dimensional signals at the eardrums back into a three-
dimensional space representation, it has been suggested that
robotics can benefit from the intelligence encapsulated within
the HRTFs to localize sound in 3D [5]. Motivitated by the
important role of the human pinnae to focus and amplify
sound, and since the HRTFs can also be interpreted as the
directivity characteristics of the two pinnae [4], a robot should
perform sound localization in three dimensional space using
only two microphones, two synthetic pinnae and a HRTF
database. The previously proposed system in [5] utilizes the
effects of pinnae and torso on the original sound signal
in order to localize the sound source in a simple matched
filtering process. In this paper, a new localization algorithm is
presented which produces better results and greatly reduces the
processing requirements compared to the previously proposed
algorithm.

II. HRTFS REDUCTION TECHNIQUES

Our goal is to build a binaural sound source localizer
using a set of generic HRTF measurements. We use these
measurements and develop a low-complexity model based on
simple correlation for estimating the azimuth and the elevation
for an impinging sound wave. Experiments have shown that
measured HRTFs from an individual can undergo a great
deal of distortion (i.e. smoothing, reduction, etc.) and still be
relatively effective at generating spatialized sound (Blauert,
1997). This implies that the reduced HRTF still contain all
the necessary descriptors of localization cues and is able to
uniquely represent the transfer of sound from a particular
point in the 3D space. We can take advantage of this fact to
greatly simplify the task of sound source localization by using
approximations of an individual’s HRTFs, shortening thus the
length of each HRTF and consequently reducing the overall
localization processing time.

One public set of HRTFs are those collected at MIT. Us-
ing the KEMAR (Knowles Electronics Manikin for Acoustic



Research) which is a standard manikin based on common
human anthropomorphic data, the research group gathered 710
accurate measurements taken over a broad range of spatial
locations, with each HRTF having a length of 512 samples.

The KEMAR HRTFs can be modeled as a set of linear
time-invariant digital filters, being represented either as Finite
Impulse Response (FIR) filters or as Infinite Impulse Response
(IIR) filters. We investigate three techniques for reducing the
length of the HRTF, two FIR and one IIR, which are applied to
the KEMAR dataset, and which lead to a significant reduction
in the size of the measured HRTF dataset. Using the reduced
dataset, we present a novel approach to localize sound sources
using only two microphones in a real environment.

The KEMAR dataset contains the impulse responses of
the actually measured HRTF filters. The 512 samples of
each HRTF-measurement can directly be considered to be
the coefficients of a FIR representation of the filter. However,
for real-time processing FIR filters of this order are compu-
tationally expensive. Moreover, the dataset is to be used to
perform localization of sound sources and to account for head
movements, which implies that the dataset has to be stored
to allow for fast switching between HRTFs. Using the 512
samples slows down the localization process and does not offer
memory savings. The original KEMAR HRTFs containing the
512 coefficients of the FIR filter will be denoted byHFIR

512 .

A. Diffuse-Field Equalization

Our goal is to shorten the length of the original filters in or-
der to reduce the computational burden for convolution, while
preserving the main characteristics of the measured impulse
responses. To this end, we adopt the algorithm proposed by
[6] for a diffuse-field equalization (DFE). In DFE, a reference
spectrum is derived by power-averaging all HRTFs from each
ear and taking the square root of this average spectrum.
Diffuse-field equalized HRTFs are obtained by de-convolving
the original by the diffuse-field reference HRTF of that ear.
This leads to the fact that the factors that are not incident-
angle dependent, such as the ear canal resonance, are removed.
The DFE is achieved according to the following four steps:
1) Remove the initial time delay from the beginning of the
measured impulse responses, which typically has a duration
of about 10-15 samples. 2) Remove features from modeling
that are independent of the incident angle [6]. 3) Smooth the
magnitude response using a critical-band auditory smoothing
technique [7]. 4) Construct a minimum-phase filter, ensuring
thus stability for the final filter and its inverse.

This way we shorten the length of the FIR representation
of the original KEMAR HRTFs, HFIR

512 , from 512 to 128
coefficients. The resulting HRTF database is denoted as HFIR

128 .

B. Balanced Model Truncation

In order to examine to which extent the HRTF can be
reduced while still preserving the characteristic information
which makes it unique, we reduce the previously derived
diffused-field HRTF dataset further by adopting the balanced
model truncation (BMT) technique to design a low-order IIR

filter model of the HRTF from a high-order FIR filter response.
A detailed description of the BMT technique is given in [8].
In a brief description, we determine a linear time-invariant
state-space system, which realizes the filter HFIR

128 . We start
representing the 128-coefficient FIR filter HFIR

128 as state-space
difference equations, then a transformation matrix is found
such that the controllability and observability Grammians are
equal and diagonal. This is the characteristic feature of a
balanced system. The corresponding system states are ordered
according to their contribution to the system response. The
order of the states is reflected in the Hankel Singular Values
(HSV) of the system. Thus, the balanced system can be divided
into two sub-systems: the truncated system of orderm < n,
where the firstm HSVs are used to model the filter, and the
rejected system of order(n −m). For every value ofm we
have a truncated HRTF dataset denoted as HIIR

m .

C. Principal Component Analysis

As an alternative to the previous BMT approach a Principal
Component Analysis (PCA) is used to reduce the number of
samples required to represent each 128-sample diffuse-field
equalized HRTF. A thorough description of the PCA technique
in modeling HRTFs is available in [9]. The PCA aims at
minimizing the amount of storage space needed for the HRTF
dataset by selectingm representatives from the whole dataset,
the obtained HRTF database is denoted by HFIR

m .

III. PREVIOUS SOUND SOURCELOCALIZATION

TECHNIQUE

We now recollect in detail the localization method which
was suggested in [5]. The main idea in this algorithm was
to first minimize the HRTFs and remove all redundancy. The
resulting minimized HRTFs are then used for localizing sound
sources in the same way the full HRTFs would be used.
The algorithm relies on a straight-forward matched filtering
concept.

We assume that we have received the left and right signals
of a sound source from a certain direction. The received signal
to each ear is therefore the original signal filtered through the
HRTF that corresponds to the given ear and direction.

Match Filtering the received signals through the correct
HRTF should give back the original mono signal of the sound
source. Although the system has no information about what
the sound source is, the result of filtering the left received
signal by the correct inverse left HRTF should be identical
to the the right received signal filtered by the correct inverse
right HRTF.

In order to determine the direction from which the sound
is arriving, the two signals must be filtered by the inverse of
all of the HRTFs. The inverse HRTFs that result in a pair of
signals that closely resemble each other should correspond to
the direction of the sound source. This is determined using a
simple correlation function. The direction of the sound source
is assumed to be the HRTF pair with the highest correlation.
This method is illustrated in Figure 1.



Due to the computational complexity of filtering in time
domain, the algorithm is applied in the frequency domain.
The signals and reduced HRTFs are all converted using the
Fast Fourier Transform (FFT). This changes all the filtering
operations to simple array multiplications and divisions.

We assume that the reduced HRTFs, i.e. using diffused,
BMT and PCA, have already been calculated and saved.
Once the audio samples are received to the left and right
inputs, they must also be transformed using FFT. Then, the
transformed signal is divided (or multiplied by a pre-calculated
inverse) by each of the HRTFs. Finally, the correlation of
each pair from the left and right is calculated. There are 1420
array multiplications, 1420 inverse Fourier transforms, and 710
correlation operations. After the correlations are found, the
direction that corresponds to the maximum correlation value
is taken to be the direction from which the sound is arriving.
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Fig. 1. Flowchart of the sound localization algorithm as proposed in [5]

IV. SOURCECANCELATION ALGORITHM

In the previous algorithm, the main goal was to pass the
received signal through all possible inverse filters. The set of
filters from the correct direction would result in canceling the
effects of the HRTF and extracting the original signal from
both sides.

However, a more direct approach can be taken to localize a
sound source. Instead of attempting the retrieve it, discarding

the original signal from the received inputs so that only the
HRTFs are left may be possible. Such an approach is denoted
as the Source Cancelation Algorithm (SCA) and is illustrated
in Figure 2. Basically, the received signals at the microphones
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Fig. 2. Flow chart of the SCA sound localization algorithm.

inside the ear canals could be reasonably modeled as the
original sound source signal convolved by the HRTF. Looking
at the signals in frequency domain, we see that if we divide
the left and right transformed signals, we are left with the left
and right HRTFs divided by each other. The sound source is
canceled out.

With two Fourier transforms and one array division op-
eration, the original signal is removed and the HRTFs are
isolated. The resulting ratio can then be compared to the
ratios of HRTFs which are stored in the system. These ratios
are assumed to be pre-calculated offline and saved in the
system database, since they do not change. Additionally, the
correlation operation is performed in the frequency domain to
eliminate the need for inverse Fourier transforms.

In a hardware-based application, using the Source Cancela-
tion Algorithm would greatly reduce hardware complexity as
well as speed up processing. Compared to the original algo-
rithm, this new approach eliminates 1420 array multiplications
and 1420 inverse Fourier transforms, and replaces them with
one single array multiplication.



V. SIMULATION AND EXPERIMENTAL RESULTS

The simulation test consisted of having a broadband sound
signal filtered out by the effect of the 512-sample HRTF at
a certain azimuth and elevation. Thus, the test signal was
virtually synthesized using the original HRTF set. For the
test signal synthesis, a total of 100 random HRTFs were
used corresponding to 100 different random source location
in the 3D space. In order to insure rapid localization of
multiple sources, small parts of the filtered left and right
signal is considered (about 350msec). These left and right
signal parts are then transformed using FFT and divided,
the division result is then correlated with the available 710
reduced HRTF ratios, i.e.HRTFLi

HRTFRi
. Basically, the correlation

should yield a maximum value when the saved HRTF ratio
corresponds to the location from which the simulated sound
source is originating. Therefore, we base our localization on
the obtained maximum for the correlation factor. The reduction
techniques, namely, diffuse-field equalization, BMT, and PCA
were used to create three different reduced models of the
original HRTFs. The performance of each of these models
under the SCA is illustrated in Figure 3. The solid lines and
the star sign in the Figure shows the SCA percentage of
correct localization versus the length of the HRTF in samples.
For comparison, the dashed lines and the plus sign in the
figure refer to the previous method performance [5]. Using
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Fig. 3. Percentage of correct localization using SCA compared with the
method in [5]

the diffuse-field equalized 128 samples HRTF set, the SCA
simulated percentage of correct localization is around 97%,
this means that out of 100 locations, 97 where detected by
our SCA algorithm compared to 96% for the previous method.
Using the BMT-reduced set, the SCA localization percentage
was between 59% to 93% compared to 53% to 92% for
the previous method, with the HRTF being within 10 to 45
samples. The PCA-reduced set yielded a correct localization
of 45% to 92% compared to 42% to 91% for the previous
method, with the HRTF dataset being represented by 10 to 80
samples. It should be noted that, while using 30 samples PCA-
reduced and 35 BMT-reduced HRTFs, all the falsely localized

angles fall within the close neighborhood of the simulated
sound source locations.

In our household experimental setup, several binaural
recordings from different directions were obtained using a
dummy head and torso with two artificial ears in a reverberant
room. The microphones were placed at a distance of 26 mm
away from the ear’s opening. The recorded sound signals, also
containing external and electronic noise, were used as inputs
to our SCA localization algorithm. Only 30 samples of PCA-
reduced and 35 samples of BMT-reduced HRTFs were used.
All the estimated azimuth and elevation angles turned out to
be either at or in the vicinity of the target angles. Due to
the differences between the dummy manikin model used in
the experiment and the KEMAR model used to obtain the
HRTF dataset, some angles are not exactly detected at the
target location where they originated from.

VI. CONCLUSION

We have addressed the binaural sound source localization
problem. We proposed an efficient sound source localization
method that demonstrates the ability of precise azimuth and
elevation estimation, using a generic HRTF database. The
HRTF dataset is measured on the horizontal planes from 0◦to
360◦with a minimum of 5◦increments and on the vertical plane
from -40◦to 90◦with 10◦increments. Therefore, the results
indicate that we can localize the sound source with an accuracy
of about 5◦. If we construct the HRTF dataset with smaller
increments, the resolution of estimation will be increased.
Additionally, the new algorithm was developed to further
decrease the computational requirements of the method in [5].
Compared to the previous method, the SCA algorithm is able
to achieve remarkable reduction in the processing requirements
while increasing the accuracy of the sound localization. The
efficiency of the new algorithm, suggests a cost-effective
implementation for robot platforms and allows for a fast
localization of multiple sources. Using the presented method,
many venues for future work are to be considered, mainly
range estimation and robotic monaural localization.
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