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Abstract— As global solar radiation forecasting is a very
important challenge, several methods are devoted this goal with
different levels of accuracy and confidence. In tlsi study we
propose to better understand how the uncertainty ipropagated in
the context of global radiation time series forecdmg using
machine learning. Indeed we propose to decomposeetherror
considering four kinds of uncertainties: the error due to the
measurement, the variability of time series, the mzhine learning
uncertainty and the error related to the horizon. Al these
components of the error allow to determinate a gloél uncertainty
generating a prediction bands related to the prediion efficiency.
We also have defined a reliability index which coudl be very
interesting for the grid manager in order to estimde the validity
of predictions. We have experimented this method oa multilayer
perceptron which is a popular machine learning techique. We
have shown that the global error and its componentare essentials
to quantify in order to estimate the reliability of the model outputs.
The described method has been successfully applied four
meteorological stations in Mediterranean area.
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. INTRODUCTION

Solar radiation is one of the principal energy searfor
physical, biological and chemical processes, odogptye most
important role in many engineering applications Ttje process
of converting sunlight to electricity without congiion allows
to create power without pollution. The major praoblef such
energy source is its intermittence and its stoohas$taracter
which make difficult their management into an dieel
network [2]; Thereby, the development of forecastimodels is
necessary to use ideally this technology. By cansid their
effectiveness, it will be possible for examplederitify the most
optimal locations for developing a solar power pobjor to
maintain the grid stability and security of a powsnagement
system [3]. Thus the solar energy forecastingpsogess used
to predict the amount of solar energy availablevfmious time
horizons [4]. Several methods have been develogeskperts
around the world and the mathematical formalisnTibhes
Series (TS) has been often used for the short terecasting
(among 6 hours ahead) [5]. TS is a set of ordeuvedbers that
measures some activities over time. It is the Histbrecord of
global horizontal irradiance with measurementsraktsequally
spaced intervals with a consistency in the actidtd the
method of measurement. Some of the best predifiars] in
literature are Autoregressive and moving averagayeBian

inferences, Markov chains, k-Nearest-Neighbors iptexs,

support vector machine, regression tree, or adifioeural

network (ANN). All these approaches are relatetthéomachine
learning application. The most often used is thst faesented
method: the artificial neural network and particlylathe

multilayer perceptron (MLP) [6]. In the presentdstuwe focus
on this prediction method, the goal being to dethié

uncertainties related to the global radiation prain. These
uncertainties can be decomposed into several coemi®that
will be explained and developed.

. DATA

In Corsica Island, the data used to build the modet GHI
measured in the meteorological stations of Aja¢dit®55'N,
8°44’E, 4m asl) and Bastia (42°42'N, 9°27'E, 10n).a8hey
are located near the Mediterranean Sea and neashptains
(1000 m altitude at 40 km from the sites). The dapaesenting
the global horizontal solar radiation were measuoadan
hourly basis from 1998 to 1999 (exactly two yeaid)e two
last studied stations are Montpellier (43.6°N arg?B, 2 m asl)
and Marseille (43.4°N and 5.2°E, 5 m asl) concegitive years
2008 and 2009. All these stations are equipped with
pyranometers (CM 11 from Kipp & Zonen). The chaif¢hese
particular places is explained by their closed gapkical and
orographical configurations. These stations aratkxt near the
Mediterranean Sea and mountains. This specific rggbdcal
configuration of the four French meteorologicatistas makes
cloudiness difficult to forecast. Mediterraneanndie is
characterized by hot summers with abundant sunsimdenild,
dry and clear winters. Irradiance nighttime valaesnot being
used, the first morning data forecast are openatddthe day
before evening data

. PREDICTIONMETHODOLOGYAND ERROR
DECOMPOSITION

We chose to develop error propagation in the GEdjation
for the most common used predictor: the MLP. Theelf this
model is the time series approach (TS). A TS 1) lse defined
by a linear or non-linear model called fn (see Hgual where
t=n, n-1,..., p+1, p with n, the number of obseva and p
the number of parameters of the modeb; p; h is the horizon
of prediction and(t+h) the committed error)[1].

x(t+h)=fn (x(1), X(t-1)...., X(t-p+1))€(t+h) (1)



To estimate the fn model, a stationarity hypothesisften
necessary. This condition usually implies a staitcess [7].
This notion is directly linked to the fact that wher certain
feature such as mean or variance change over timentain
constant. Previous studies[ 8-11] show that theofiskar sky
index (CSI) allows to make stationary the timee®and so to
correctly use the MLP forecasting.

A. Sationary process

In previous studies [1,12], it was demonstrated the clear
sky index calculated with the simplified Solis mbfes] is the
most reliable for our locations. The Solis modeigrates a clear
sky hourly irradiation (CS) expressed by Eq. (8% tise of this
model requires fitting parameter (g), extrateriaktradiation
(10), solar elevation (h) and total measured aphesc optical
depth f):

CS() = I, (¢). exp (W) sin(h(@®) ()
The simplified “Solis clear sky” model is basedradiative
transfer calculations and the Lambert-Beer relafiofi. The
expression of the atmospheric transmittance isdvalith
polychromatic radiations, however when dealing witbbal
radiation, the Lambert-Beer relation is only anragpmation
because of the back scattered effects. Accordinffltahis
model remains a good fitting function of the globatizontal
radiation. The new computed time series (CSI) caudlibectly
used with the MLP forecasting and is describedheyetquation
3:

CSI(t)=GHI(t)/CS(t)

B. MLP prediction

Although a large range of different architecturé&\NN is
available [9], MultiLayer Perceptron (MLP) remaitigee most
popular. In particular, feed-forward MLP networkséthwtwo
layers (one hidden layer and one output layerpfies used for
modeling and forecasting time series. Several studi5]
validated this approach based on ANN for the npedr
modeling of time series. To forecast the time ser& fixed
number p of past values are set as inputs of thE,Nte output
is the prediction of a future value [16]. Considgrithe initial
time series equation (Equation 1), this equationkm adapted
to the non-linear case of one hidden layer MLP Witelated to
the biases, f and g to the activation functionhaf dutput and
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hidden layer, andvto the weights. The number of hidden nodes

(H) and the number of the input node (In) allowdetail this
transformation. The number of layer 1 and 2 is give
superscript. (Equation 4):

CSI(t + 1) = f(TLL,y;i wf + b®) with

yi = g(Xn, CSI(t —j + D w}j + b)) 4

In the presented study, the MLP has been computbadive
Matlab® software and its Neural
characteristics chosen and related to previous vewek the
following: one hidden layer, the activation functgoare the
continuously and differentiable hyperbolic tangg@idden) and
linear (output), the Levenberg-Marquardt learningogthm
with a max fail parameter before stopping traingggial to 5.

Network toolbox. The

This algorithm is an approximation to the Newtamathod. The
prediction of the GHI is obtained using the equatio

(GHI)(t+1)=(CSI)(t+1).CS(t+1) (5)

To customize the input layer of the MLP we chodeeuse
of the mutual information to determine In as ddseuliin [1,17—
20]. According the results obtained in these papeesuse H
equal to In for all the experiments conducted iis thtudy.
Furthermore in order improve the learning of the it is a
common practice to filter out the data removinghhigours.
Indeed we consider only periods between sunrissanset. We
have chosen to apply a selection criterion basethersolar
zenith angle (SZA): solar radiation data for whitte solar
zenith angle is greater than 80° have been remfMed his
transformation is equivalent to a filtering relatedthe solar
elevation angle lower than 20.

C. Error decomposition

In these section, we propose to decompose the error
considering four kinds of uncertainties: the erdue to the
measurement, the error due to the variability efttme series,
the error related to the machine learning uncestaamd the
error related to the horizon.

In our assumption, all the previoaserms are independent
random variables that are normally distributed (dmetefore
also jointly so), then their sum is also normaligtdbuted and
the global form of the standard deviatiog,(t + 1) becomes
(in this equation the quick fluctuations are taketo account
with a,,4,-, but it is also possible to consiagy;,):

Ot (t+1) =
J(Umeas)z + (O—samp(tL + 1))2 + (O—ini(tL + 1))2 + (Uvar(t + 1))2
(6)

Considering that there is a persistence of theakidity for a
short horizong,,,,-(t) = G, (t + 1)

thus:
Oroe(t+ 1) =

J(Umeas)z + (asamp (t + 1))2 + (aini (t + 1))2 + (avar(t))z
)

With Omeas = 0(CSD (14 (BN 0F})?)'”%, gqmy and
om; are computed respectively with k-fold and 50 rando
initializations andr ., = GHI(t + 1). g(Vol2(t)). For an
easier computing, it is also possible to aigg replacings,,, (t)
with a less robust result but not dependent ornirtsiant of the
prediction.

Oroe(t+1) =
\/(Umeas)z + (Usamp (t+ 1))2 + (Uini (t+ 1))2 + (Uinh)z
(8)

It is possible to define a prediction band takinig iaccount
all the uncertainties (Eq 9).

GHI(t + 1) = GHIyp(t + 1) + 00 (t + 1)
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Such prediction intervals were often proposed ie th
literature [21-23]; they refer to machine learningethod
(O (t + 1)) = (Gramp(t + D) + (Ot + 1)?  [21,23]
or to volatility andao,,,-(t) [22] but rarely both to the two kinds
of uncertainty and never concerning,,s. Note that in the case
of other machine learning method used the tefm can be
equal to zero (e.g. support vector regression,essjpn tree
etc.). The ideal case would be to systematicallgppse a
confidence interval of prediction related to theeth sorts of
uncertainty (withopg = 0,4, (t) or a;,,;, considering the desired
reliability).

Orot(t + 1) = \/(‘Tmeas)2 + (op (E + 1))? + (o75(6))?
(10)

Now, considering the horizon of prediction, we defithe
new global uncertainty with the equation 30 with,, =
GHI(t + h).a(h).

Otoc(t+h) =
\/(ameas)z + (UML (t + 1))2 + (O-TS)2 + (ahor(h))z
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IV. RESULTS

The previous components allows to calculate thdévailo
uncertainty and to propose two prediction bands:ftfBupper
band and LB lower band [24]. Thus, the qualitytaf prediction
can be defined by the tripleGHI(t + h); LB; UB} [25]. We
can also estimate the reliability of the predictomsidering that
the prediction is efficient when UB-LB is very low¢han
GHI(t + h) and inefficient when UB-LB is equal or upper to

GHI(t + h) value. From this hypothesis, we can define the

reliability n as n(t+1)=1- (UB(t+1)-LB(t+1)YGHI(t + h).
Lower is this parameter, more efficient is the prgéon. We
construct a reliability index between 0 and 1 cdesng that if
(UB(t+1)-LB(t+1)YGHI(t + h) > 1, thenn(t+1)=0, i.e. the
prediction is not sutel he final prediction becomes:

-GHI(t + h) = (GHI(t + h)), average of 50 simulations (50
training and initialization weights, 50 differendining sets)

LB=

\/(Jmeas)z + (G/I'\”min (t + h) - (G’I'\”(t + h)))z + (Jinh)z + (O_hor(h))z

(12)
UB=
J (Omeas)? + (CHlpgy (t + B) = (GHIE + 1)))* + (03)? + (Ghor ()2
(13)

With 0,00 (G’ﬁl(t + 1)) =1%.GHI(t+1), 0Oy =
GHI(t + 1).nRMSE (GHlyeng (t) — GHI(t)),  Opor(h) ==
GHI(t + h). a(h) andGH I yin/max (t + h) are the min and max
values of the 50 predictions generated with 50 Eitians. Fig.
1. shows for Ajaccio an example of the predicticends,
considering all the kind of uncertainty with honizb=1 hour.
Line represents measurement and dashed lines ther apd
lower bands concerning each kind of uncertainties.
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Fig 1. Uncertainty in the GHI predictions for therizon h=1 for Ajaccio case

We see that,,.., iS the parameter the less interesting for the
bands construction and that it is necessary toidenghe
coupling ofa;,, andoy, (related targ,y,, and ;) for a good
prediction interval definition. For other sites thistained curve
are similar and no more information is observedrim 2, the
top curve (same prediction configuration that poesly)
compared the average predicti@HI (t + h) (marks) versus the
GHI measurement (line). The bottom curve showssiseciated
reliability index (t+1)).
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Fig. 2. Comparison for the horizon h=1 for AjacoioGHI predictions (mark)
and GHI measurement (line) on the top and assdciaf@bility index in the
bottom

We see that when the variability is low (two fidgty from
3711 to 3726) the reliability is important (close 70%) but
when cloud occurs the value is much lower and eanhr 0%.

V. CONCLUSIONS

In this paper we have shown that it is possibleaimpute a
prediction band in the context of global radiatiime series
forecasting using machine learning. We have deforea
popular machine learning technique, the multilgyenceptron,
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