

Atmospheric characterisation with Stereo-SCIDAR at Paranal

James Osborn

Centre for Advanced Instrumentation

Durham Atmospheric Characterisation

Statistics

On-sky atmospheric parameters

Durham Atmospheric Characterisation

- Site characterisation (E-ELT)
- Instrument / algorithm development and design
- PSF reconstruction (field varying PSF and field aberration)
 - Model of atmosphere, telescope (adaptive?, rubber?), AO, instrument
- Wide-field AO optimization, calibration and performance validation
- Instrument performance monitoring
- Instrument comparisons
- Instrument automation and robustness
- Minimize dome seeing and structure induced turbulence
- AO reconstructor pre-computation
- Predictive AO controller
- Scintillation noise for time-resolved photometry
- Others?

Atmospheric Parameters

- Vertical profile of turbulence strength
- Vertical profile of turbulence velocity
- Vertical profile of the outer scale of turbulence
- Local dome turbulence
- Temporal evolution of these parameters

Atmospheric turbulence

- Global and local scales

Turbulence Strength

Turbulence Velocity

Outer Scale

- Vertical profile of outer scale
 - Important for all model based analysis
 - PSF reconstruction
 - AO optimization

Methods of measurement

- Adaptive Optics telemetry
 - Preferred
 - Can be complicated (lots of calibrations, AO, telescope, convergence...)
- Numerical Model
 - Convenient
 - Awaits thorough validation
- Dedicated Profiler Instrument
 - Unbiased measurement
 - Different line of sight

Methods of measurement

AO telemetry vs dedicated profiler vs numerical model

Methods of measurement

- Use the right tool for the right job
- Correlations for validation
- Not for calibration/correction

Atmospheric

Characterisation at Paranal

8 layers, 0-300 m

100 layers, 0-25 km

Stereo-SCIDAR

ESO Stereo-SCIDAR

- Developed a Stereo-SCIDAR for ESO, Paranal (April 2016)
 - Located on an AT (1.8 m) focal station
 - Will be used ~5 nights per month for at least one year

- 20 km from site of E-ELT

Stereo-SCIDAR on AT3

ESO/F. Kamphues

Stereo-SCIDAR on AT3

ESO/F. Kamphues

SLODAR and SCIDAR

- Profile from fit of covariance with set of response functions
- Position of peak -> Altitude of turbulent layer
- Magnitude of peak -> Strength of optical turbulence

Stereo-SCIDAR

Profile sensitivity

Overlapping pupils:

Generalised SCIDAR with each pupil image separated by reflective prism near focal plane

- Higher visibility of covariance peaks
- Better SNR
- Can use stars with different brightness with no loss of precision
- Better clarity of covariance peaks for turbulence velocity profiling

Turbulence Velocity

Stereo-SCIDAR cross covariance function

Turbulence Velocity

Stereo-SCIDAR cross covariance function with temporal offset

- -> Turbulence velocity profile
- Dome turbulence
- Complicated structure near the ground
- Continuous turbulence
- Layer dispersion (especially at the tropopause)
- Complicated profile
- Increased altitude resolution
- Reduced false positive layer detection
- Detection of weak layers

Atmospheric parameters

Measured parameters:

- Optical turbulence profile, $C_n^2(h)$
- Turbulence velocity profile, V(h)
- Scintillation decorrelation time

Derived parameters:

- r₀, seeing
- Coherence time
- Isoplanatic angle
- Scintillation index

 $\mathrm{C_n^2}$ (m $^{-2/3}$)

 C_n^2 (m $^{-2/3}$)

 C_n^2 (m $^{-2/3}$)

Turbulence Velocity

-ECMWF comparison

	Correlation	Bias	RMSE
Speed	0.90	-0.8 m/s	1.9 m/s
Direction	0.93	-2.6 degrees	12.5 degrees

Turbulence Structure

2 layers with different velocity

Velocity dispersion

Turbulence Structure

Median Profile

Not enough data yet...

13 nights in April July November December

SCIDAR – DIMM Seeing

SCIDAR – SL-SLODAR

SCIDAR Integrated Free-Atmosphere Cn2 1e-13

SL-SLODAR - UT

ESO Stereo-SCIDAR

Measured parameters:

- Optical turbulence profile, $C_n^2(h)$
- Turbulence velocity profile, V(h)
- Scintillation decorrelation time

Derived parameters:

- r_0 , seeing
- Coherence time
- Isoplanatic angle
- Scintillation index

Applications:

- Instrument design
- Performance monitoring
- Optimisation

ESO operations:

- 4 or 5 nights per month
- Every month (not clustered)
- At least one year

Tomographic AO

External profiler for:

Reconstructor performance modelling (development and monitoring), robustness, automation, optimisation and pre-computation

Wide-field AO

- Tomographic reconstructor optimisation
- (Make volumetric model of atmospheric turbulence)

Ground layer suppressed for clarity

- Simultaneous fitting of:
- Turbulence strength
- Outer scale
- AO Performance depends on fidelity of this model

Independent Profiler

Eg Stereo-SCIDAR, turbulence strength, velocity

- Turbulence strength
- Turbulence velocity
- No convergence issue
- No outer scale issue
- Unbiased
- Validated
- Different line of sight

Canary comparison with

Tomographic AO

Durham

LQG tomographic MOAO:

first on-sky results with CANARY

Simple perturbation model that relies on wind norm in each layer

[G. Sivo PhD Thesis, 2013] [SPIE 2014]

ESO Stereo-SCIDAR

Measured parameters:

- Optical turbulence profile, $C_n^2(h)$
- Turbulence velocity profile, V(h)
- Scintillation decorrelation time

Derived parameters:

- r_0 , seeing
- Coherence time
- Isoplanatic angle
- Scintillation index

Applications:

- Instrument design
- Performance monitoring
- Optimisation

ESO operations:

- 4 or 5 nights per month
- Every month (not clustered)
- At least one year

