

Analysis of HARPS Astro-Comb data

Dinko Milakovic, Luca Pasquini, Gaspare Lo Curto, G. Avila, A. Manescau, B.N. Canto Martins, I.C. Leão, J.R. De Medeiros, M. Esposito, J.I. González Hernández, R. Rebolo, R. Probst, T. Steinmetz, T. W. Hänsch, Th. Udem, R. Holzwarth

Analysis of HARPS Astro-Comb data

Which characteristics did we study?

Dinko Milakovic^{1,*}, Luca Pasquini¹, Gaspare Lo Curto¹, G. Avila¹, A. Manescau¹, B.N. Canto Martins², I.C. Leão^{1,2}, J.R. De Medeiros², M. Esposito³, J.I. González Hernández³, R. Rebolo³ R. Probst⁴, T. Steinmetz⁵, T. W. Hänsch⁴, Th. Udem⁴, R. Holzwarth⁴

Abstract

4.1e5 (a)

(b)

(c)

8.0 %

The laser frequency comb, or "Astro-Comb" (Steinmetz 2008), installed on HARPS (High Accuracy Radial velocity Planet Searcher) was repaired in October 2016 and is running under unsupervised operations since. In this poster we analyse the comb data gathered between October 2016 and December 2016. In particular, we focus on the wavelength dependent modulation of the signal envelope and background. We are able to characterise this background with wavelength, echelle order, and time. We show that the proper evaluation of the background is essential to optimise the performances, i.e. accuracy and precision, of the system.

The Astro-Comb produces a series of emission lines equidistant in frequency, such that the each line's frequency, fn, is uniquely determined by the equation of the comb: $f_n = f_0 + n f_r$, where $f_r=250$ MHz is the "repetition frequency", f₀ < f_r is the "offset frequency", and n is a large integer number. Details on the Astro-Comb's design can be found in Wilken et al. (2010.2012). The Astro-Comb shows a modulated and wavelength dependent envelope (background), identified by connecting line maxima (minima) of unknown origin. In this work, we characterise the these two features and we determine the background's effect on the accuracy of

the wavelength calibration.

Figure 1. shows a zoom-in (large) and the entirety (inset) of the

Astro-comb spectrum (green) for the 50th echelle order. Measures electron count values are shown as red circles. The envelope and background are shown as black dashed lines.

Envelope 	Do they change with wavelength?	Do they change in time?	Are the periods the same?
	The envelope and the background are shown on the top panels of Figure 2a and 2b, respectively. Both quantities show a periodic variation in intensity with wavelength	To investigate the stability of the envelope and background with time, we analysed 513 comb observations made between October and December 2016. We calculate the median	We performed a Fourier analysis of the B2E for all 513 comb observations to determine whether the envelope and background are modulated by the same function. The analysis
	within a single order, with the spacing of approximately 100 pixels increasing with pixel	intensity and the central 68% of the intensity distribution of the envelope, the background, and	showed that B2E has a flat spectrum, with a small feature corresponding to a period of
1024 2048 3072 4096 Pixel Background	number. The intensity of the comb varies with echelle order,	the B2E for each pixel. The envelope (background) varies	approximately 100 pixels, consistent with data in Figure 20
	but the same periodic trend is observed. We also calculate the background to envelope ratio (B2E, hereafter) to further explore the nature of the background, shown in Figure 2c. B2E is consistently below 5% for all echelle orders.	between 20% and 40% (30% and 80%), with no strong correlation with pixel number. B2E is stable to the 0.5% level, but shows larger variation for the bluest echelle orders, which also exhibit anti correlation with pixel number.	This implies that the envelope and the background shapes both have origin in the same underlying physical process.
1024 2048 3072 4096 Pixel Background / Envelope	What is the background's in Finally, we investigate the effect background the wavelength calibra accuracy. We calculate the difference the comb line positions with and we background subtraction, expressed determine the centre of the line in to and right the scells in Figure 3 for d	impact on wavelength accura to the The difference v and can not be expl between Median offset acros m/s. Therefore, a p background is esser accuracy.	CV? aries for each echelle order ained by a simple offset. s a single spectrum is ~ 0.2 roper evaluation of the tial for wavelength

background subtraction, expressed in m/s. We determine the centre of the line in the two cases and plot the results in Figure 3 for five echelle orders.

Figure 2. (LEFT) (a): The top panel shows median intensity of the envelope for 513 comb observations as a function of pixel number, for 5 echelle orders. The bottom panel shows central 68% of the intensity range, expressed as a percentage of the median intensity. (b): Same as (a), only for background. (c): Same as (a), only for the background to envelope ratio Figure 3. (RIGHT) Distribution of offsets between comb line centres (expressed as radial velocity) determined by fitting Gaussian profile with and without background subtraction.

Conclusions

1024

2048 Pixel

3072

Even if the source of the envelope and background in the comb spectra of HARPS are not fully understood, it is possible to characterise them in time and wavelength. The spacial and temporal behaviour suggest that they are intimately related, and of the same origin. In particular, the ratio of the background to the envelope for each order is basically stable in time and smooth in space. Nevertheless, we show that not subtracting the background signal in the data reduction would bring to non-negligible errors in the wavelength calibration.

4096

References Steinmetz et al. 2008, Science, 32, 5894, 1335-1337 Wilken et al. 2010, MNRAS, 405, L16-L20 Wilken et al. 2012, Nature, 485, 611-614

