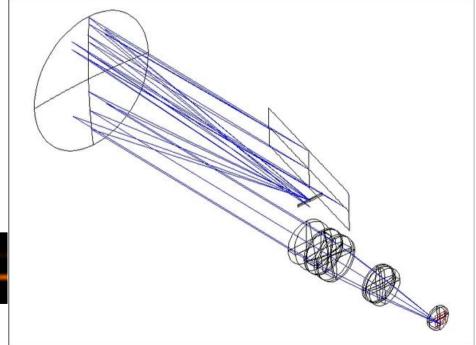
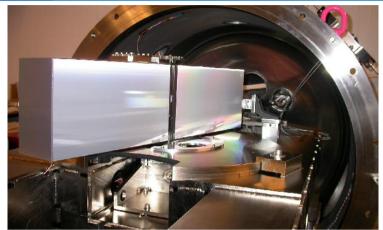



Instrument talk: HARPS

Gaspare Lo Curto ESO calibration workshop 17-01-2017


HARPS

- Pressure stability: <10⁻³mbar
- Temperature stability: <1mK RMS in one day ThAr reference spectrum



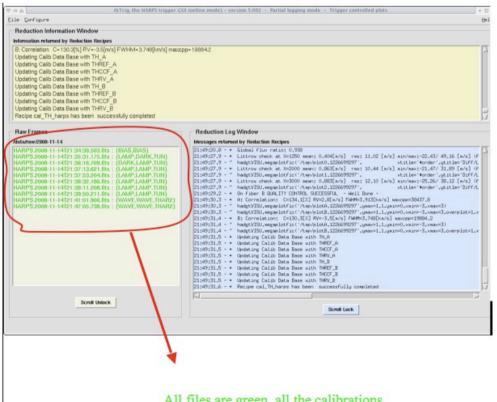
- Fiber fed (1"/1.4")
- High resolution (R = 115000/80000)
- Temperature stabilized
- In vacuum
- Echelle cross dispersed
- Simultaneous reference
- Fixed spectral format

Instrument modes

All modes are equipped with an online pipeline installed in La Silla

- □ HAM (High precision)
 - 1" fiber on sky, R~115000
 - "Double scrambler" for improved RV precision
 - Second fiber used for simultaneous reference
- □ EGGS (High efficiency, since 2005)
 - $\circ~$ 1.4" fiber on sky, R~80000
 - No "double scrambler" for improved throughput
 - Second fiber used for sky subtraction (not fully supported by pipeline)
- □ HARPSPOL (Polarimetry, since 2011)
 - $\circ~$ Linear and circular polarimetry
 - Second fiber used for the "extraordinary" polarimetric component

ESO calibration workshop - Santiago, 17-01-2017


Equipped with an online & offline pipeline running in La Silla on all inst. modes.

Since 2003 delivers science ready data products to the users. Since 2007 science ready data products are available from the archive.

The pipeline is also used for Quality Control by the instrument scientist.

Various pipeline upgrades, The online archive is updated with the data from the latest running pipeline.

A new release (3.8) is now under test.

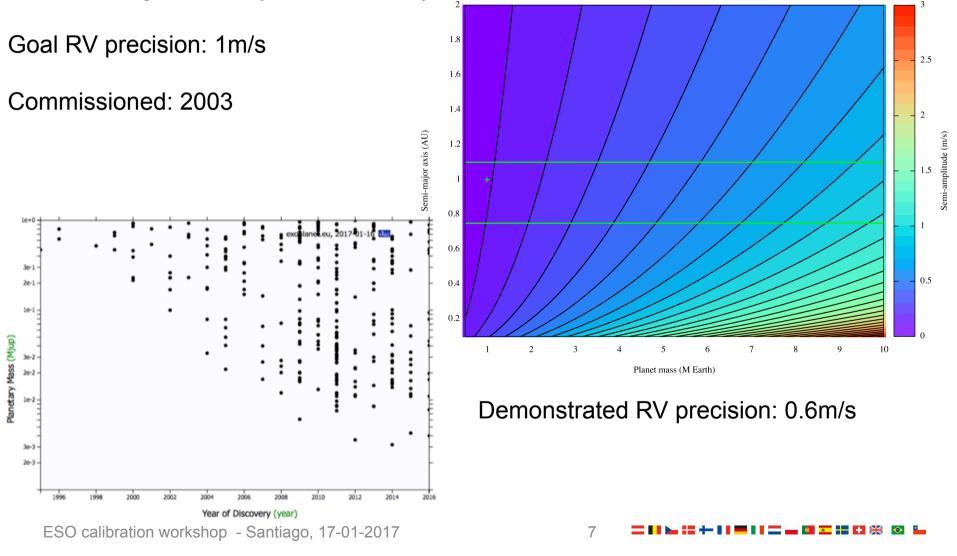
HARPS calibration plan day time

RV standard calib. (HAM mode, every day; 20 minutes)

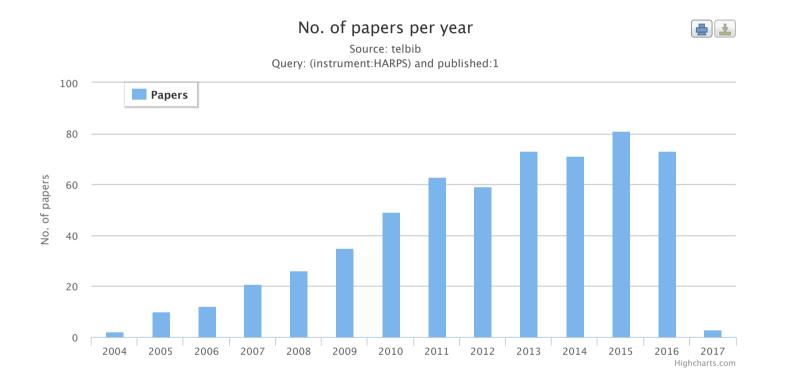
- Bias (health check)
- Flat field (SNR ~700)
- Fiber cross-contamination
- Wavelength calibration (ThAr1 ThAr2)
- ➢ Drift calibration (ThAr1 − FP)

EGGS calibrations (when needed / calib. Nights; 20 minutes)

- Polarimetric calib. (when needed; ~ 1-2 hours)
- High SNR observations (large number of flat fields)


HARPS calibration plan Night time

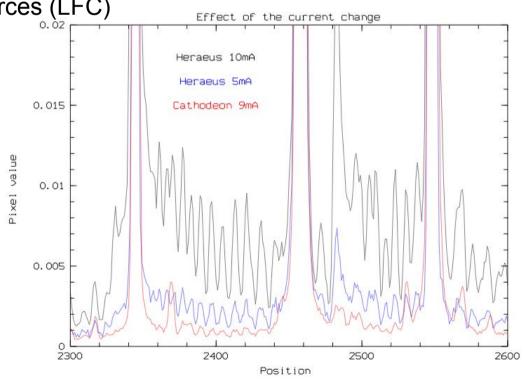
- Reference for drift measurement: simultaneous
- Spectro-photometric stds. (only programs requiring it <5%)
 - Observed also on "calibration nights"
- Parasitic light measurement (Na saturated stars), on calibration nights



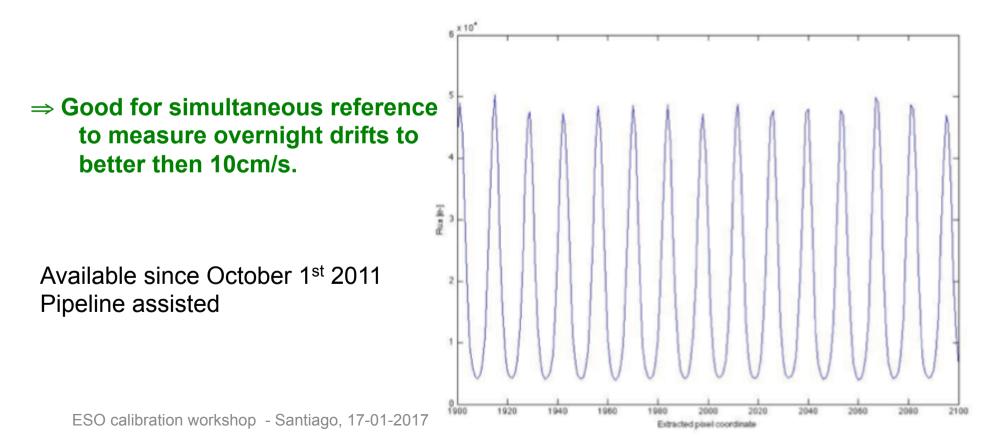
HARPS = High Accuracy Radial velocity Planet Search

~ $\frac{3}{4}$ related to exo-planets

Increasing the RV precision

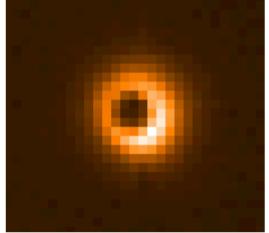

- ☆ High purity ThAr hollow cathod lamps
- ☆ Fabry Perot
- 🖈 Guiding
- ☆ Octogonal fibers
- ☆ Laser Frequency Comb

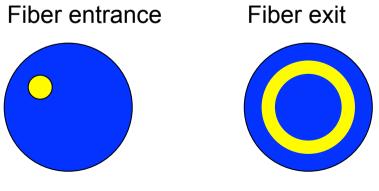
HARPS ThAr lamps


In 2006 new EU regulations impacted the way ThAr hollow cathode lamps are produced. The new lamps do not have the purity level needed to reach high RV precision / accuracy. Contaminants in some cases bury Th lines.

- \Rightarrow Limit strictly the use of ThAr lamps
- \Rightarrow Use FP for drift measurments
- \Rightarrow Search for alternative calibration sources (LFC)

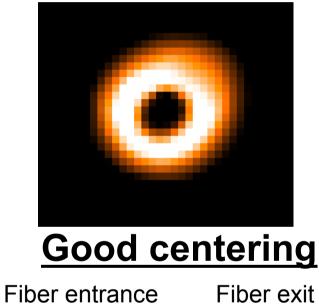
Fabry Perot for drift measurement

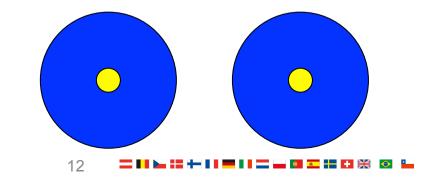

- Stabilized etanol illuminated by a LDLS
- Well distributed, uniform spectrum across the detector
- Better than 3cm/s photon noise on a single frame
- Less than 10cm/s drift per night
- Lines positions "unknown" => not good for wavelength calibration



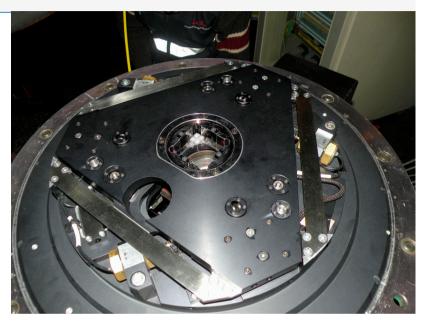
Guiding I

"Bad" guiding, 0.5" de-centering, ~3 m/s contribution to RV




Bad centering

ESO calibration workshop - Santiago, 17-01-2017

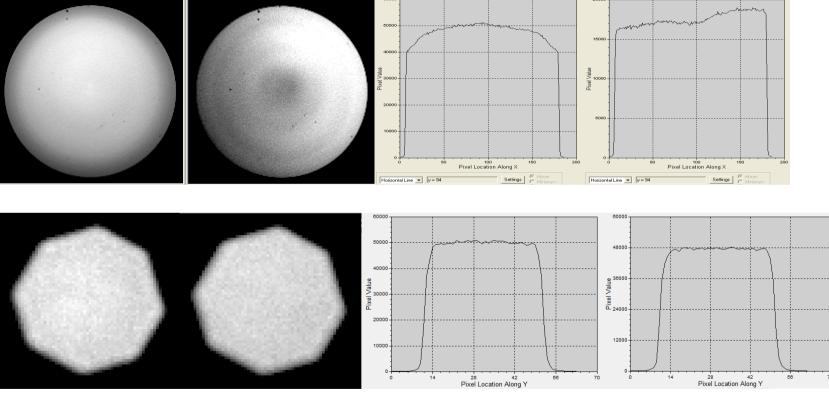

"Good" guiding, 0.1" RMS, ~30 cm/s contribution to RV

Guiding II

200 tons telescope

2 kg tip-tilt table

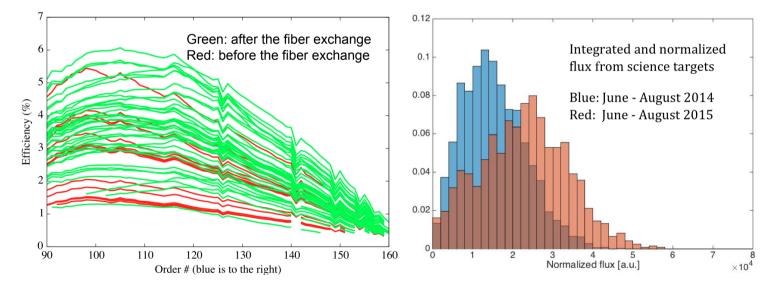
- Increase: guiding accuracy, speed
- Correct for "slow" (up to 10 Hz) perturbations


RMS ~ 0.05"

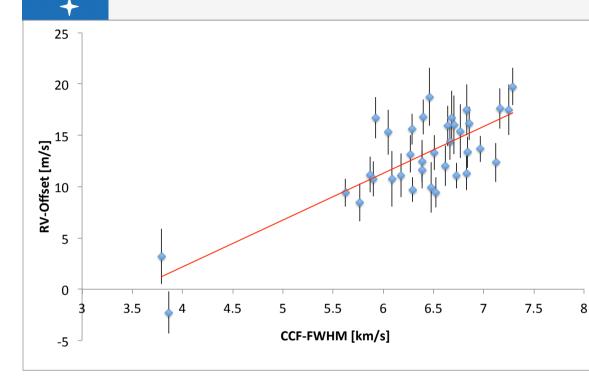
HD20794	e. m. mean	e.m.max	e.m.RMS	SNR	RV	RV Noise
TTT	293k 28k	402k 39k	52k 7k	161 8	- 54cm/s	51cm/s -
AG	272k 37k	397k 47k	56k 10k	154 11	- 76cm/s	53cm/s -

Octogonal fibers I

Excellent scrambling ! Near field:



From G. Avila


Octogonal fibers II: installation on HARPS

- RV became insensistive to de-centering of the star in the fiber
- RV became insensistive to slight de-focussing of the telescope
- Increased throughput by 30% 40%

G. Lo Curto et al., ESO Messenger, 2015, 162, 9C

RV offset pre / post fiber exchange

The fiber exchange of June 1st 2015 generated a RV offset dependent on the star. Users with data sets spanning in time before and after the upgrade are advised to fit the offset from their data.

	Star	Spectral	RV-Offset	Dispersion	CCF-FWHM
	name	type	[m/s]	[m/s]	[km/s]
-	GI701	M2.0V	3.219	2.713	3.790
	GI588	M2.5V	-2.281	2.042	3.866
	HD104006	K0.5V	9.413	1.358	5.622
	HD104006 HD154577	KU.SV K2.SV	9.413 8.444	1.358	5.767
				1.762	
	HD144628	K1V	11.182		5.873
	HD109200	K1V	10.776	1.714	5.903
	HD26965A	K0.5V	16.732	2.017	5.927
	HD55	K4.5V	15.297	2.178	6.049
	HD142709	KSV	10.778	2.727	6.087
	HD131653	G5	11.088	2.123	6.181
	HD123265	G8	13.186	1.838	6.270
	HD10700	G8.5V	15.619	1.509	6.287
	HD165920	K1IV	9.696	1.201	6.293
	HD147518	G4V	12.494	2.041	6.387
	HD134088	GOV	11.637	1.802	6.388
	HD20794	G8V	16.807	1.702	6.401
	HD23249	K1III-IV	18.740	2.817	6.460
	HD207869	G6V	9.934	2.459	6.477
2	HD199288	G2V	13.309	1.732	6.509
·	HD78747	G5V	9.423	1.462	6.528
	HD124292	G8V	12.020	1.955	6.618
	HD199604	G2V	15.916	1.946	6.643
	HD210752	GO	14.371	1.745	6.665
_	HD38858	G2V	16.736	2.571	6.682
	HD196892	F6V	16.023	2.855	6.704
	HD97343	G8.5V	11.057	1.252	6.729
	HD206998	G0	15.422	2.623	6.768
	HD213628	G8V	11.337	1.655	6.829
	HD177565	G6V	17.491	2.489	6.833
	HD161612	G8V	13.361	1.531	6.839
	HD210918	G2V	16.145	1.622	6.858
	HD183658	GO	13.667	1.251	6.969
	HD190248	G8IV	12.358	1.895	7.121
	HD65907A	F9.5V	17.632	1.965	7.162
	HD3823	GOV	17.488	2.449	7.252
	HD1581	F9.5V	19.753	1.838	7.291

G. Lo Curto et al., ESO Messenger, 2015, 162, 9C

16 🔤 🖬 🛏 🖬 💻 💷 💷 💷 💷 🖽 🗮 🐼 🛀

Laser Frequency Comb

As many as possible, non-blended, equally spaced lines
(line spacing tuned to the resolution of the spectrograph)

Smooth intensity distribution across the spectrum

♦ Unresolved lines

♦ Extreme stability and accuracy (better than 2*10⁻¹¹)