

Quantitative characterisation of sky conditions on Paranal with the microwave radiometer LHATPRO – five years and learning

F. Kerber, R. Querel, B. Neureiter, R. Hanuschik

ESO 2017 Calibration Workshop

Subjects & Questions

- Homogeneity of precipitable water vapour (PWV) across the sky
 - Q1: Is a measurement at zenith representative of my line of sight?
- Photometric sky quality classification
 - Q2: Can we help the weather officer with an automated process giving a quantitative and reliable result?
- Future: atmospheric characterisation
 - Q3: What does it take to characterise the relevant properties of the atmosphere and make precise, local, short-term forecasts?

- Median PWV on Paranal: 2.4 mm
- Low Humidity and Temperature Profiling Radiometer (LHATPRO); Kerber et al. SPIE 2012
 - > Built by Radiometer Physics GmbH (RPG)
 - > Operational since Nov 2011
 - > Precipitable water vapour (PWV): 183 GHz line
 - > Temperature: O_2 band 51–58 GHz
 - > range 0.1-25 mm, saturation setting in at 20 mm
 - \triangleright PWV accuracy: ca 0.1 mm, precision: ca 30 μm
 - > All-sky pointing, sidereal tracking

LHATPRO – IR channel

- IR camera
 - > Observes in lock step with PWV
 - > Sky brightness temperature at 10.5 μ m
 - ≻Range: down to -120°C
 - Capability to detect cold, high altitude, thin clouds
- Clouds on Paranal

Cirrus most frequent kind of clouds on Paranal
 Difficult to detect otherwise (moonless nights)

LHATPRO on Paranal

LHATPRO – IR channel

ESO 2017 Calibration Workshop 19.01.2017

+ES+ 0 +

LHATPRO - Operational scheme

7 💶 🖬 🛏 🖬 💻 🖬 🚍 🖬 🖬 🛤 🐼 🛀

PWV homogeneity

2013-05-06T08:07:49, Zenith PWV = 0.66 mm, PWV spread = 0.10 mm 0.25 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.30 0.75 90 80 70 Elevation [angle] ~0.6 mm 60 50 40 30 100 200 250 300 50 150 350 Azimuth [angle]

PWV homogeneity

From ca 2900 all-sky scans

Percentiles	PWV variation SDev [mm]	PWV variation SDev [%]	PWV variation PtV [mm]	PWV variation Ptv [%]
10	0.03	1.4	0.15	7
25	0.04	1.9	0.19	9
50	0.05	2.8	0.28	13
75	0.11	4.2	0.54	19
90	0.20	5.9	0.90	26

PWV homogeneity

- PWV is homogeneous to a few % across the sky
- User provided PWV constraint in place
- Measurement at zenith is adequate for Science Operations
- Line of sight support is an interesting option for high precision work
 > Implement as "on demand" capability

ESO Sky quality classification

Weather officer Empirical, qualitative experience

ESO 2017 Calibration Workshop 19.01.2017

LHATPRO IR

- > Automated, quantitative
- ≻Diagnostic tool

Time series analysis

- 24 months of zenith-staring data
 > July 2012 to June 2014
- Detrended Fluctuation Analysis (DFA)
 Tool for analysis of variation in time series
 DNA sequencing, financial systems, atmosphere
 Time series, sliced of equal length τ
 Each segment detrended, DFA function is power law with exponent alpha

$$F^{2}(\tau) = \frac{1}{\tau} \sum_{t=k\tau+1}^{(k+1)\tau} \{y(t) - z(t)\}^{2}$$

$$k=0,1,2,\ldots,\left(\frac{N}{\tau}-1\right)$$

ESO 2017 Calibration Workshop 19.01.2017

$$(F^{2}(\tau))^{1/2} \sim \tau^{\alpha}$$

13 🗖 🖬 🖿 🖬 🗖 🗖 🗖 🖬 🖬 🗮 🐼 🕒

Time series analysis

DFA

ESO 2017 Calibration Workshop 19.01.2017

DFA Diagnostic Diagram

DFA Diagnostic Diagram

ESO 2017 Calibration Workshop 19.01.2017

ESO Sky quality classification

Probability of detection

	Night log			
LHATPRO	CLR+PHOT	THN	ТНК	
CLR+PHOT	72.0	1.3	0.5	
THN	4.0	7.7	0.1	
ТНК	0.8	0.8	13.0	

Good matches (diagonal): 92.5%

Validated with:

> Night log and FORS 2 extinction measurements

Results & Limitations

Sky quality mapped onto DFA diagnostic diagram

- > Automated and quantitative description
- ≻Kerber et al. 2016
- Answer to 15 year old challenge
 - > Quantitative definition vs empirical evaluation

Current limitations:

- > Pencil beam (1.4 degrees) h/w not the method
- > DFA requires minimal number of data points
 - 2 h interval can be advanced every 15 or 30 min
- > Transition sky quality classes: slightly fuzzy
 - limited statistics in these regions
 - dedicated photometry in cloudy conditions (Calibration Proposal)

Implement as dynamic tool for SciOps

- > Update every ~15 min possible
- > Support work of weather officer
- Paradigm: PHOT is defined all-sky, "all night"

Astronomers need to know variation of extinction

- > along line of sight
- > during a given observation

Future: 24 h on Paranal

Future: low PWV Science

Future: low PWV Science

Future Atmospheric Characterisation

Tools:

- > ASM: Temperature, relative humidity, wind
- > LHATPRO: profiles (10 km) Temp, RH, PWV
 - RPG is developing improved IR (2 filters) channel
- Stereo-SCIDAR: C²_n profiles (J. Osborn et al. 2016)
- > AOF: telemetry of WFS, properties of Na layer
- Sophisticated atmospheric models (E. Masciadri et a;. 2013. 2016), etc

High fidelity local short-term forecast: 1 h

Questions & Answers

Homogeneity of precipitable water vapour (PWV) across the sky

Q1: Is a measurement at zenith representative of my line of sight? YES, PWV constraint in place

- Photometric sky quality classification
 - Q2: Can we help the weather officer with an automated process giving a quantitative and reliable result? YES, ready for implementation
- Future atmospheric characterisation
- Q3: What does it take to characterise the relevant properties of the atmosphere and make precise localised short-term forecasts? Unique instrument suite on Paranal to find out

- Line of sight support with LHATPRO
 - > PWV for optimum telluric correction
 - > IR sky brightness temperature precision photometry
- Sky Quality: Dynamic Diagnostic Tool
- Evaluate paradigm "PHOT" for future operations
- Enable low PWV Science as "observations of opportunity"
- Combine measurement and modeling to learn how to get the high-fidelity 1 h forecast
- And keep learning ...