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 VISTA survey telescope

VISTA:
4m, fov: 1.65° Ø, px: 0.34”

VIRCAM:
ZYJHKs+NB
16x20482 Raytheon dets
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 What do we want?

Magnitudes (or fluxes) that are physically

consistent between themselves and with other

measurements. 



  

 What do we want?

m=ZP−2.5⋅log ( f i / t)

We measure mags as:

Normally:

f i=F [S (x , y)]=∑
i

S i−∑
j

S j



  

First callibration steps

But not all pixels are created equal:

● Some variation you can correct with a good flat:

The sky is always right.



  

First callibration steps

But not all pixels are created equal:

● Some variation you can correct with a good flat.

● Some you can correct even before you start observing.



  

 What do we want?

m=ZP−2.5⋅log ( f i / t)

We measure mags as:

ZP looks deceptively simple:

ZP=log [a(t , x ,λ ; SED)]+log [T (λ ; t , SED)]+ZP ref

This is easy to calculate, if
everything goes well

For this we normally use
reference standard stars



  

 What calibrators to use

Ideally:

● Well distributed in the sky and in magnitude.

● Measured in the same system being calibrated.

● They should be primary calibrators (ZP
ref

).



  

 What calibrators to use

2MASS, SDSS, APASS, Gaia... 

But in reality:

● Well distributed in the sky and in magnitude.

● Measured in the same system being calibrated.

● They should be primary calibrators (ZP
ref

).

a similar



  

 What if the phot. systems differ?

We need to transform from 2MASS into ours.

Under no reddening:

Sometimes requires
risky extrapolation.

mV=m2+C⋅(J−K s)2

ZV=J 2+(0.86±0.08)⋅(J−K s)2

Y V=J 2+(0.46±0.02)⋅( J−K s)2

J V=J 2−(0.031±0.006)⋅( J−K s)2

H V=H 2+(0.015±0.005)⋅(J−K s)2

KsV=Ks2−(0.006±0.007)⋅(J−K s)2



  

 What if the phot. systems differ?

If there is reddening, things can get really
complicated, really soon:

Y V=J 2+CY⋅(J−K s)2+E (B−V )⋅[AY−AJ−CY⋅(AJ−AK )]



  

 ...and into a standard system

We need to check our mags. against the standard that

defines the system (Vega, AB, etc.)



  

 ...and into a standard system

But good A0V stars with low reddening and not too
bright are hard to find, particularly in the SH.

Two steps:
● Internal colour:

● Absolute ZP

ZV−J V=−0.039±0.006
Y V−J V=−0.035±0.004
H V−J V=0.008±0.006
KsV−J V=−0.010±0.006

(J V−J 2)=0.005±0.007
(H V−H 2)=0.03±0.01
(KsV−Ks2)=0.00±0.01



  

 Implementing the calibration

ZP=m2−A2+C 2⋅(J−K s)2+κ⋅(χ−1)+ΔmCHIP+mi

There are two alternative ways to calibrate large datasets:

1.- Real-time (-ish): one ZP per image + one absolute cal.



  

 Implementing the calibration

There are two alternative ways to calibrate large datasets:



  

 What's the precission you get?

Two types of error:

Absolute Internal 
(J V−J 2)=0.005±0.007
(H V−H 2)=0.03±0.01
(KsV−Ks2)=0.00±0.01



  

 Implementing the calibration

There are two alternative ways to calibrate large datasets:

1.- Real-time (-ish): one ZP per image + one absolute cal.

2.- Once enough observations are taken: übercal

ZP=m2−A2+C 2⋅(J−K s)2+κ⋅(χ−1)+ΔmCHIP+mi



  

 Implementing übercal(-ish)

Übercal (Padmanabhan et al. 2007) relies on repeated
observations:

m1=ZP1−κ⋅(χ1−1)+(ΔmCHIP)1−(mi)1

m2=ZP 2−κ⋅(χ2−1)+(ΔmCHIP)2−(mi)2

Δ(mi)=Δ(ZP)−κ⋅Δ(χ)+Δ[Δ(mCHIP)]
(mi)1−m2MASS=ZP1−κ⋅(χ1−1)+(ΔmCHIP)1



  

 Implementing übercal(-ish)

Δ(mi)=Δ(ZP )−κ⋅Δ(χ)+Δ[Δ(mCHIP)]
(mi)1−m2MASS=ZP1−κ⋅(χ1−1)+(ΔmCHIP)1

(1 −1 Δ(χ) 1 −1
1 0 χ1−1 1 0 )⋅(

ZP1

ZP2
κ

ΔmC1

ΔmC2

)=( Δ(mi)
(mi)1−m2MASS

)

Übercal (Padmanabhan et al. 2007) relies on repeated
observations:



  

 Implementing übercal(-ish)

(
1 −1 0⋯ Δ(χ) 1 −1 0⋯

⋮
1 0 0⋯ (χ−1) 1 0 0⋯

⋮
)⋅(

ZP1

ZP 2

⋮
κ

ΔmC1

ΔmC2

⋮
)=( Δ(mi)

⋮
(mi)1−m2MASS

⋮
)

X⋅b=Y

These are extremely large matrixes (108-109 mag. diffs.
and 103 coefficients) but mostly empty, so amenable to
sparse methods that can solve for b:



  

 Implementing übercal(-ish)

Why go through all this work?

● Übercal is a single-step calibration.

● Uses all the data available:
- Repetitions homogeneize the survey (without worrying

about interstellar extinction, passbands, etc.)
- Obs. of standards (that can be selected on well

behaved lines-of-sight) set ZPs.

● Allows for a great liberty fine-tuning the cal. eq.



  

 Implementing übercal(-ish)

ZP=m2−A2+C 2(t)⋅(J−K s)2+
+κ(x , y)⋅(χ−1)+ΔmCHIP (t )+mi+ f ( x , y , t )



  

 Implementing übercal(-ish)

ZP=m2−A2+C 2(t)⋅(J−K s)2+
+κ(x , y)⋅(χ−1)+ΔmCHIP (t )+mi+ f ( x , y , t )



  

 Implementing übercal(-ish)

But it comes at a price:

● Although simple code, computationally demanding:
- Crossmatching & building matrixes can take several

days.
- Some DB design may be required.

● You need to wait until enough observations are taken, or
even until they are totally finished.

● It requires a careful planning of the observations,
sometimes in a way that is not PI science-optimized.



  

 Some incomplete conclussions

● Classical calibration is required, it offers real-time
monitoring and quick science, including ToO programs.

● Classical schemes are complicated to push below
precissions & accuracies of a few percent. 

● Übercal-like schemes offer added value products once
observations/surveys are completed.

● Übercal is the only realistic way to break the 1%
precission threshold.

● Accuracy is limited by the availability of true standards. 
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