

Photometric Calibration of HST/WFC3

Susana Deustua Space Telescope Science Institute Baltimore, MD

And the Photometry Team J. Mack, A.S. Bowers, S. Baggett, V. Bajaj, T. Dahlen, M. Durbin, C. Gosmeyer, H. Gunning, **D. Hammer, G. Hartig,** H. Khandrika, J. MacKenty, R. Ryan, E. Sabbi, M. Sosey

1 orbit = ~90 mins 15-16 orbits per day ~5500 orbits per year

ESO Calibration Workshop 16-19 January 2017, Santiago Chile

S125E007372 ESO Calibration Workshop 16-19 January 2017, Santiago Chile

WFC3 in Summary

WFC3/UVIS Channel

- 0.2 1.0 microns
- 2 4kx4k e2v CCDs, 0.04"/pix
- 62 filters + 1 grism
- 12 subarray options

WFC3/IR Channel

- 0.9 1.7 microns
- 1kx1k H1RG MCT, 0.13"/pix
- 15 filters + 2 grisms
- 5 subarray options

Observing modes: Stare: UVIS and IR imaging and spectroscopy Scan: UVIS and IR imaging, IR spectroscopy, up to 7"/sec

WFC3 Optical Layout

WFC3 Optical Layout

ESO Calibration workshop 10-19 January 2017, Santiago Chile

Calibration Allocation

Time spent on calibration activities per cycle (averages)

- External orbit: on astrophysical sources
- Internal orbit: during occultation.
- 1 orbit ~ 45 min

Instrument: external/internal WFC3: 100/2000 ACS: 30/1000 STIS: 30/1400 COS: 40/320

HST Cycle	GO Programs* % of HST orbits	Calibration** # External orbits	Calibration** # Internal orbits
CY17	46%	256	>2000
CY18	42%	134	1719
CY19	49%	125	1497
CY20	56%	83	1833
CY21	54%	98	1907
CY22	48%	114	1620
CY23	46%	98	1619
CY24	40%	69	1557

WFC3 Calibration Orbits Since 2009

* excluding SNAP, MCT, Frontier Fields ** midcycle calibration programs excluded

Typical Calibration Plan

- UVIS: bias, dark, gain stability, bowtie, anneals, CTE, sink pixels, traps
- IR: linearity, dark, gain, persistence
- Photometric: flux calibration, flat fields, contamination
- Spectroscopic: wavelength and flux calibration
- Astrometric
- Other: e.g. non-linearity tests, new techniques, model testing

Principal UVIS Detector Effects

- CCD Charge Transfer Efficiency (CTE, or CTI)
 - Most affected:
 - Sources furthest from readout
 - Faint sources, can "disappear"
 - All CCD detectors on HST
 - Effect: bright stars < 0.1%, faint sources larger</p>
 - Mitigation:
 - Post-Flash (add background e- to fill traps)
 - Place science targets near readouts.

Calibration Pipeline

- CALWF3: bias & dark subtraction, flat fielding, CTE correction & Flash correction (UVIS), linearity correction (IR), up-theramp fit (IR), populates header keywords
- AstroDrizzle: applies geometric distortion, combines images from a visit.
- Calibration Products
 - UVIS: FLT, FLC, DRZ, DRC
 - IR: IMA, FLT, DRZ

WFC3/UVIS

Inverse Sensitivity (response)

- WF/PC: 8 CCDs, each calibrated independently
- WFPC2: 4 CCDs, each calibrated independently
- ACS: 2 CCDS, treated as a single detector
 - Diced from same wafer, same QE
- WFC3/UVIS: 2 CCDs, initially calibrated as ACS
 - Different wafers, different runs, different QE
 - Since March 2016, each CCD calibrated independently
 - Flat fields improved by 2x in UV.
 - Accuracy improved by almost 3% (astrodrizzle subtlety)
- NICMOS: 3 HgCdTe detectors, individually calibrated
- WFC3/UVIS: 1 HgCdTe detector

ACS/WFC

Figure 4.2: Pre-flight DQE Measurements on WFPC2 CCDs

ESO Calibration Workshop 16-19 January 2017, Santiago Chile

WFPC2 Response Ratios

WFPC2

Chip Dependent Photometry

- Each CCD's photometry is determined independently
 - i.e think of WFC3/UVIS as 2 instruments
- Each WFC3 CCD/filter has its own flat
- Each flat is normalized to the median value of the CCD
- Each CCD/filter has its own inverse sensitivity value UVIS1+ filter ≠ UVIS2 + filter

Process

- All 2009 -2015 observations of standard stars, GD153, GD71, G191B2B
 - 4 corners, 1 middle subarrays.
- New flat fields made for each CCD, normalized to median
- Reprocess all data
- Perform aperture photometry, determine filter-based encircled energy fractions
- Compare measurements to SYNPHOT predictions
- Calculate inverse sensitivity for each CCD + filter, create new synphot tables, photometry reference files
- Update calwf3 (version 3.3) to handle chip dependent photometry
- Ingest into OPUS
- Reprocess all data

WFC3/UVIS Subarrays

Flat Fields (imaging)

Pixel-to-pixel variation (Pflats)

- Acquired during thermal-vaccuum testing on the ground
 - Minimal set of images at 20K+ electrons per filter
 - Limited by schedule, typically
- Low frequency spatial variation (Lflats)
 - Created in orbit
 - star cluster(s) on different locations on the detector(s)
 - limited by spectral type, crowding, time
- Sky flats
 - Created from on orbit images
 - Better fidelity to the actual data
 - Requires hundreds of observations, more for bandpasses with low natural background

Flat field ratios: 2016/2011

J. Mack

2016/2011 Flat ratios

J. Mack

After CTE Correction

Filter	Flat	Stddev	Stddev CTE-corr	P2P	P2P CTE-corr
F336W	2011	0.31%	0.28%	1.52 %	1.21 %
F336W	2016	0.37%	0.29%	1.73 %	1.22 %
F814W	2011	0.35%	0.29%	1.34 %	1.11 %
F814W	2016	0.42%	0.30%	1.74 %	1.15 %

		Sp.	Vega mag						
	Name	Туре	В	V	R	I.	J	Н	
iary ds	G191B2B	DA.8	-	11.69	11.93	12.108	12.543	12.669	CA
F Prin anda	GD71	DA1	12.783	13.032	13.169	13.337	13.728	13.901	LSPE
HS1 St	GD153	DA1.2	13.17	13.346	13.8	13.3	14.012	14.2	C PE
Irds	WD1657+343	DA1	16.12	16.16 (g)	16.69 (r)	17.06 (i)	>17	>17	DIGR
anda	WD1057+719	DA1.2	14.95	14.68	15.23	-	15.472	15.585	Ë
ary St	P330E	G2V	12.972	13.03	12.56	12.212	11.76	11.45	_stisn
sonda	SNAP-2	G0-5	17.09	16.23	16.41		14.97	14.59	nic_0
Sec	VB08	M7V	18.7	16.7	16.61	12.24	9.776	9.2	90

Spatial Variation: repeatability

Filter	Number of Steps	Poisson Error	Stddev (2011)	Stddev (2016)	P2P (2011)	P2P (2016)
F218W	44	0.2%	1.5 %	0.7 %	6.7 %	3.0 %
F225W	44	0.2%	1.3 %	0.4 %	4.5 %	1.8 %
F275W	41*	0.2%	0.8 %*	0.6 %	3.3 %*	2.7 %
F280N	44	0.2%	1.8 %	0.5 %	6.6 %	2.4 %
F336W	46	0.4%	0.3 %	0.4 %	1.5 %	1.7 %
F438W	50	0.2%	0.5 %	0.5 %	2.0 %	2.3 %
F606W	20	0.3%	0.7 %	0.7 %	2.7 %	2.7 %
F814W	50	0.3%	0.4 %	0.4 %	1.3 %	1.7 %

J. Mack, A. Bowers

27

ESO Calibration Workshop 16-19 January 2017, Santiago Chile

Filter Based EE curves

Delta EE curves

ESO Calibration Workshop 16-19 January 2017, Santiago Thig 2009, A Bowers, 2016

EE vs. Filter

FLT vs. DRZ EE

ACS-WFC3 EE comparison

Inverse Sensitivity

Per Bohlin 2014

The Photon weighted mean flux in a bandpass is $\langle F \rangle = \int F_{\lambda} \lambda R d\lambda / \int \lambda R d\lambda = S \times N_e$

F in ergs s⁻¹ cm⁻² Å⁻¹, N_e in e-/s,

If the instrument throughput parameters and the source flux density is known, the count rate can be predicted from: $N_e = \frac{A}{hc} \int F_{\lambda} \lambda R d\lambda$

And
$$S = \frac{\langle F \rangle}{N_e} = \frac{hc}{A \int \lambda R \, d\lambda}$$
 S= ergs cm⁻² Å⁻¹ e⁻¹
photflam = flam / N_e

Synthetic Photometry

'fixed' Instrument parameters:

- optical telescope assembly (OTA)
- pick off mirror reflectivity (POM)
- Mirror 1 & Mirror 2 (mir1, mir2)
- Outer and Inner dewar window (owin, iwin)
- Filter transmission
- Detector quantum efficiency
- 'inflight' parameters
 - Detector gain
 - Encircled energy
 - Flat fields
- Spectrum
 - Model stellar atmosphere for the primary standard stars: GD153, GD71, G191B2B

Observed to Synthetic Photometry

UVIS1/UVIS2 Inverse Sensitivity Ratios

2016 to 2012 Comparison

CALWF3

Header Keywords

- PHOTFLAM: inverse sensitivity for UVIS 1
- PHTFLAM1: inverse sensitivity for UVIS1
- PHTFLAM2: inverse sensitivity for UVIS2
- PHTRATIO: PHTFLAM1/PHTFLAM2
- CAL Switches
 - PHOTCORR
 - = PERFORM then PHTRATIO is calculated and keywords are populated in the header
 - FLUXCORR
 - =PERFORM then chip2 is scaled to chip1

Photometry Lookup Table IMPHTTAB

	EXT 1	EXT 2	EXT 3	EXT 4	EXT 5	FORMAT
Col 1	OBSMODE	OBSMODE	OBSMODE	OBSMODE	OBSMODE	CH*40
Col 2	DATACOL	DATACOL	DATACOL	DATACOL	DATACOL	CH*12
Col 3	PHOTFLAM	PHOTPLAM	PHOTBW	PHTFLAM1	PHTFLAM2	D (25.16g)
Col 4	PEDIGREE	PEDIGREE	PEDIGREE	PEDIGREE	PEDIGREE	CH*30
Col 5	DESCRIP	DESCRIP	DESCRIP	DESCRIP	DESCRIP	CH*110

row	OBSMODE	DATACOL	PHTFLAM2	PEDIGREE	DESCRIP
1	wfc3,uvis2,f336w	PHTFLAM2	1.27E-18	INFLIGHT	Chip Dependent
2	wfc3,uvis2,f275w	PHTFLAM2	3.14E-18	INFLIGHT	Chip Dependent

ESO Calibration Workshop 16-19 January 2017, Santiago Chile

Results

- Flat fields improved by up to 2-3 x (0.6%)
- Measured EE spatial variation is ~ 0.1% at r > 5 pixels
- Spatial repeatability is ~0.3%
- Inverse sensitivities are more accurate by 3%

Accuracy and Precision

Systematic Error Estimates:

- Uncertainty in Vega Flux: ~0.7% @ 5557Å
- Uncertainty in models : <1% in UVIS, ~ 2% in NIR

Statistical Error Estimates (Measurement Precision):

- **Poisson: 0.2%**
- Flat fields: ~0.4%-0.6% (filter/detector dependent)
- Repeatability: 0.2-0.5% (detector dependent)
- Other: = 0.5% 1%
 - Processing noise (bias & dark subtraction, flatfielding), gain, readnoise, CTE(CCDS), persistence (HgCdTe), count rate and count non-linearities
- WFC3/UVIS: 1.3% (stat)+ 1.22%(syst)
- WFC3/IR: ~1.6% (stat) + 2.1%(syst)

ESO Calibration Workshop 16-19 January 2017, Santiago Chile

HST Standard Stars

- Normalized to Vega flux at 5557Å
 - 3.44 × 10^{?9} erg cm⁻² s⁻¹ Å (Bohlin, 2014 AJ, 147, 127)
 - Kurucz Vega Model (2013 kupdated)
- Originally LTE WD models (Finley, Hubeny)
- Now use NLTE WD models (Rauch)