

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BOLOGNA OSSERVATORIO ASTRONOMICO DI ROMA

THE SPECTROPHOTOMETRIC STANDARD STARS GRID FOR THE GAIA ABSOLUTE CALIBRATION

Giuseppe Altavilla & the CU5 Bologna Gaia Team

European Space Agency

Gaia objectives

- The largest and most precise 3D chart of our Galaxy (6D space survey: α, δ, π, μα, μδ + complementary radial velocities) + astrophysical parameters
- Composition, Formation and Evolution of our Galaxy, unraveling the chemical and dynamical history of our Galaxy... And much more!

Ground

Astrometric accuracy: the Hyades D~47 pc

Gaia will provide:

- in our Galaxy ...
 - the distance and velocity distributions of all stellar populations
 - a rigorous framework for stellar structure and evolution theories
 - a large-scale survey of extra-solar planets a large-scale survey of Solar System bodies ... and beyond
 - definitive distance standards out to the LMC/SMC
 - rapid reaction alerts for supernovae and burst sources QSO detection, redshifts, microlensing structure fundamental quantities to unprecedented accuracy: γ to 10-7 (10-5 present)

Gaia science:

Gaia The Gaia Spectrophotometric Standard Stars

2017 ESO Calibration Workshop

Gaia

- L2, 1.5 million km from the Earth (~2 months cruise)
- stable thermal environment,
- high observing efficiency,
- moderate radiation environment (launch worst phase).
- Ground Based Optical Tracking (GBOT needed for solar system only (accuracy 20mas, 150m in L2)

Lissajous orbit around L2 - 300 000 x 200 000 km - Avoid Earth eclipse for 6 years

Moon eclipses

- 10 to 15% sun light attenuation
- 10 to 20 hours long
- Apout 50 occurences over mission

Operations - ESOC Darmstadt

> Soyuz Fregat launch from Kourou - 180 km altitude parking orbit - 2050 kg ind. 100 kg ESA margin

Ground station :

Transfer to L2 - 4 months long

- Eclipse free

- ESA Cebreros 35 m
- X band communications
- 4.36/8.2 Mbps information rate
- 6.9 hours a day effective downlink

250 m/s including insention manoeuwre

2017 ESO Calibration Workshop

Gaia focal plane

0.93m

Gaia passbands

Examples of Gaia imaging capabilities

Examples of Gaia imaging capabilities

Examples of Gaia imaging capabilities

Messier 94

Examples of real Gaia "images"

An image of the sky as recorded by one of the sky mapper CCDs and the assignment of windows to all point-like sources detected and confirmed above a given threshold. The limiting magnitude of Gaia for this image is G = 20.7. Several symbols and colours encircling the sources are used for different ranges of magnitudes

Examples of real Gaia "images"

Left: HST ACS/WFC image of the Cat's Eye nebula (integration time 1.2 h; north is up and east is left). The scale of the image is ~1 x1 arcminute. Middle: the ~84,000 Gaia detections that were made in this area from 25 July to 21 August 2014. Right: a superposition of the two images

Examples of real Gaia "images"

ESA/Gaia/DPAC/Christine Ducourant, Jean-Francois Lecampion (LAB/Observatoire de Bordeaux), Alberto Krone-Martins (SIM/Universidade de Lisboa, LAB/Observatoire de Bordeaux), Laurent Galluccio, Francois Mignard (Observatoire de la Côte d'Azur, Nice)

Einstein Cross (left) and HE0435-1223 (right) with Gaia astrometric positions placed over HST images. Magnitude ranges: 17 to 19 ; astrometric accuracy of each position in this preliminary reduction is ~100 mas. It will be much improved during the global astrometric processing where spacecraft attitude will also be solved together with the source astrometry.

Examples of Gaia spectroscopic capabilities

2017 ESO Calibration Workshop

Examples of Gaia spectroscopic capabilities

A simulation of a crowded stellar field as observed by Gaia's photometric instruments.

Examples of Gaia spectroscopic capabilities

Blue and Red Photometer 2D spectra for 7 bright cool (~3000°C) and hot (~8000°C) stars.

2017 ESO Calibration Workshop

Gaia BP/RP spectra

Blue and Red Photometer 1D spectra for 7 bright cool (~3000°C) and hot (~8000°C) stars.

Gaia RVS spectrum

HIP 86564 (K5, V=6.6), RVS & Narval@Bernard Lyot 2m spectra

R=11500

First Gaia BP/RP deblended spectra

DSS coloured image of the double star HD270801. Bottom left: the observed BP spectrum in black and the two extracted spectra in magenta and blue; in red the extraction residuals. Bottom right: the same for RP

Tales of two clusters retold by Gaia

John Herschel, 1835 L. E. Dreyer, NGC2451 in 1888

S. Röser and U. Bastian 1994 Proper Motions Catalogue (PPM) more than 100 years of position measurements! The cluster was finally proven to be non-existent

Tales of two clusters retold by Gaia

Tales of two clusters retold by Gaia

Gaia DPAC

DPAC: Data Processing and Analysis Consortium

- CU1: System Architecture
- CU2: Data Simulations
- CU3: Core Processing
- CU4: Object Processing
- CU5: Photometric Processing
- CU6: Spectroscopic Processing
- CU7: Variability Processing
- CU8: Astrophysical Parameters
- CU9: Catalogue Access

Gaia DPAC

DPAC: Data Processing and Analysis Consortium

- CU1: System Architecture
- CU2: Data Simulations
- CU3: Core Processing
- CU4: Object Processing
- CU5: Photometric Processing
- CU6: Spectroscopic Processing
- CU7: Variability Processing
- CU8: Astrophysical Parameters
- CU9: Catalogue Access

Gaia @ INAF-OABo

CU5 - photometric processing

- DU13: Instrument absolute response characterization: ground-based preparation (E. Pancino, G. Altavilla deputy)
- DU14: Instrument absolute response characterisation: definition and application (C. Cacciari)

G. Cocozza, S. Galleti, S. Ragaini,

M. Bellazzini, A. Bragaglia, L. Federici, P. Montegriffo, E. Rossetti

• **DU17:** Flux and classification-based science alerts

CU7 - variability processing (G. Clementini)

The Bologna CU5-DU13 goal

- Provide a grid of ~200 Spectro-Photometric Standard Stars (SPSS) for the absolute spectro-photometric calibration of the Gaia G-band and low resolution (BP/RP) spectrophotometry
- Existing grids are not sufficient, we need:
 - Spectral type coverage (all spectral types)
 - Well distributed in the sky
 - Precision and accuracy of 1-3%
 - Good statistics (100-200)
 - Full coverage of Gaia range (330-1100 nm)

See Pancino et al., 2012, MNRAS, 426, 1767, Altavilla et al. 2015, AN, 336, 515

Gaia Absolute Calibration

2017 ESO Calibration Workshop

Astraatmadja, 2015, GAIA-C8-TN-MPIA-TLA-001

Gaia Absolute Calibration

LSF smearing

Sample

instruments for FoV 1 and CCD row no 4: each column of the matrices represents a $LSF_{\lambda j}$ centred on the dispersion function at the corresponding wavelength, while the profile of the rows reveals the shape of the photometric band if seen from the edge

The RP dispersion matrix lambda

LSF smearing

Dispersion matrix for BP and RP instruments for FoV 1 and CCD row no 4: each column of the matrices represents a $LSF_{\lambda j}$ centred on the dispersion function at the corresponding wavelength, while the profile of the rows reveals the shape of the photometric band if seen from the edge

The RP dispersion matrix

lambda

Gaia LSF smearing

• dots: fitted model

Gaia LSF smearing

The Gaia apparent interstellar extinction laws for different effective temperatures.

Gaia Absolute Calibration

Same principle as for classical spectrophotometry but much more complicated instrument model

~100-200 calibrators needed to model instrument response mmag internal accuracy, a few % external accuracy

Gaia Absolute Calibration

NTT 3.58m

- Almost 5000 hours (the equivalent of 500 nights)
- Spread in >900 different nights in 66 observing runs from 2006 to 2015
- Using 6(+1) different telescopes and instruments
- Comparable to one of the large modern surveys (GES)

Instruments characterization Altavilla et al. 2015AN.336.515A

2017 ESO Calibration Workshop

Menu: user altavilla

Advanced spectroscopy reductions

V0 release

The pre-launch (internal) release, October 2013

94 SPSS Goal:

- testing pipelines
- No fringing correction
- No narrow-slit spectra
- Cut borders (blue and red)
- Already exceeding DPAC requirements

Major problem : Missing borders induce calibration errors > 0.1mag

The V1 release, July 2015

94 V0 SPSS

- Extended with
 theoretical or empirical
 template spectra
 (CALSPEC,
 - Gaia spectral libraries, Public libraries)
- No new observational data
- Calibrate 1st, 2nd Gaia release Only G and only ZP in 1st

July 2015

94 SPSS

- Extended with theoretical or empirical template spectra (CALSPEC, Gaia spectral libraries,
 - Public libraries)
- Calibrate 1st Gaia
 release (Sept. 14 2016),
 G band only, and 2nd
 Gaia release
- Already exceeding DPAC requirements

July 2015

94 SPSS

- Extended with theoretical or empirical template spectra (CALSPEC,
 - Gaia spectral libraries, Public libraries)
- Calibrate 1st Gaia
 release (Sept. 14 2016),
 G band only, and 2nd
 Gaia release
- Already exceeding
 DPAC requirements

V2 release

July 2015

End 2017

VO - October 2013 The V2 release, end 2017 for Gaia 3rd release

Including

- constancy assessment •
- absolute photometry •

Improvements:

- Quality •
- Quantity

Relative Photometry

Constancy assessment:

- Short-term (1-2 h series)
- 173 SPSS monitored
- Found 12 variables
- >1 good curve per SPSS (a dozen exceptions)
- Marinoni et al.
 2016MNRAS.462.3616M

Relative Photometry

Marinoni et al. <u>2016MNRAS.462.3616M</u>

Absolute Photometry

ZP calibration of (grey) spectra:

- Synthetic photometry
- Night solutions
 - 32 good nights
 - 27 usable nights
 - 36 non-photometric
- Instrumental magnitudes
- First pass calibration

Now comparing internally and with literature

First release: Sept 14, 2016	Positions (α , δ) and G magnitudes (single-star and good astrometric behaviour). Photometric data of Ecliptic Poles Scanning RR Lyrae and Cepheid variable stars. The five-parameter astrometric solution - positions, parallaxes, and proper motions - for stars in common with the Tycho-2 Catalogue. The catalogue is based on the Tycho-Gaia Astrometric Solution (TGAS)
Second release: late 2017	Five-parameter astrometric solutions (single-star). Integrated BP/RP photometry. Mean radial (no radial-velocity variation).
Third release: summer 2018 (TBC)	Orbital solutions, system radial velocity and five-parameter astrometric solutions, for binaries having periods between 2 months and 75% of the observing time will be released. Object classification and astrophysical parameters, together with BP/RP spectra and/or RVS spectra they are based on (well-behaved objects). Mean radial velocities (no radial-velocity and with available atmospheric-parameter estimates).
Fourth release: summer 2019 (TBC)	Variable-star classifications will be released together with the epoch photometry used for the stars. Solar-system results will be released with preliminary orbital solutions and individual epoch observations. Non-single star catalogues.
Final release: 2022 (TBC)	Full astrometric, photometric, and radial-velocity catalogues. All available variable-star and non-single-star solutions. Source classifications, astrophysical for stars, unresolved binaries, galaxies, and quasars. An exo-planet list. All epoch and transit data for all sources. All ground-based observations made for data-processing purposes.

First release: Sept 14, 2016 Positions (α , δ) and G magnitudes (single-star and good astrometric behaviour). Photometric data of Ecliptic Poles Scanning RR Lyrae and Cepheid variable stars. The five-parameter astrometric solution - positions, parallaxes, and proper motions - for stars in common with the Tycho-2 Catalogue. The catalogue is based on the Tycho-Gaia Astrometric Solution (TGAS)

GDR1 available at archives.esac.esa.int/gaia

Also at ASDC <u>http://gaiaportal.asdc.asi.it/</u>

- Gaia data (GaiaSource, TgasSource, GaiaVariable, GaiaAuxQSO-ICRF2match);
- External Catalogues matched with Gaia (2MASS PSC, UCAC4, PPMXL, GSC2.3, SDSSdr9, AllWISE, URAT-1);
- Cross-Match Results tables;
- External Catalogues not matched with Gaia (RAVE4).
- Working at advanced science enabling tools (visualization, data analysis, statistics, data mining)

Gaia imaging... from Loiano (Italy)

Gaia Image of the Week 01 Dec 2014

www.cosmos.esa.int/web/gaia/iow_20141201

Gaia (R~21) observed with BFOSC@1.52m G.D. Cassini telescope at Loiano Observatory, Italy, on 17 October 2014

"Optical tracking of deep-space spacecraft in Halo L2 orbits and beyond: the Gaia mission as a pilot case" A. Buzzoni, G. Altavilla, S. Galleti, 2016 2016AdSpR..57.1515B

Thanks for your attention

2017 ESO Calibration Workshop

2017 ESO Calibration Workshop