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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) is a power-
ful non-invasive tool for localizing and analyzing brain acti-
vity. This study focuses on one very important aspect of
the functional properties of human brain, specifically the es-
timation of the level of parallelism when performing com-
plex cognitive tasks. Using fMRI as the main modality,
the human brain activity is investigated through a purely
data-driven signal processing and dimensionality analysis
approach. Specifically, the fMRI signal is treated as a multi-
dimensional data space and its intrinsic ‘complexity’ is stu-
died via sparsity-promoting matriz factorization in the sense
of blind-source separation (BSS). One simulated and two
real fMRI datasets are used in combination with Indepen-
dent Component Analysis (ICA) for estimating the intrin-
sic (true) dimensionality via detection of statistically inde-
pendent concurrent signal sources. This analysis provides
reliable data-driven experimental evidence on the number
of independent active brain processes that run concurrently
when visual or visuo-motor tasks are performed. The re-
sults prove that, although this number cannot be defined as
a hard threshold but rather as a continuous range, howe-
ver when a specific activation level is defined, an estimated
number of concurrent processes or the loose equivalent of
‘brain cores’ can be detected in human brain activity.

Keywords
fMRI, Independent Component Analysis (ICA), human brain

1. INTRODUCTION

Human brain is the most advanced and efficient signal-
processing machine known today. It corresponds to only 2%
of the total body weight in adults (about 1.5 kg), yet it con-
sumes 20% of blood oxygen and 25% of glucose, with only
20W at power peak. It consists of roughly 100 billion neu-
rons with 1,000-10,000 synapse interconnections each, pac-
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ked in 1130-1260 cm? of volume, making it the most complex
organ in the human body [18, 7, 15]. Analyzing its struc-
ture and functionality, especially during the actual process
of some cognitive task or in relation to some mental impair-
ment, has been a scientific challenge for centuries. However,
only recent technological breakthroughs have enabled the
study of the inner workings of living brains. Even today, si-
mulating the structure and only basic neuron functionality
of a full-scale human brain in a digital computer is still an
infeasible task.

Functional Magnetic Resonance Imaging (fMRI) [16, 15,
19] is a powerful non-invasive tool for localizing and analy-
zing brain activity. Most commonly it is based on blood oxy-
genation level-dependent (BOLD) contrast, which translates
to detecting localized changes in the hemodynamic flow of
oxygenated blood in activated brain areas. This is achieved
by exploiting the different magnetic properties of oxygen-
saturated versus oxygen-desaturated hemoglobin. In order
to properly detect these brain activations and identify the
set regions that are relevant to a specific cognitive task, the
3-D space occupied by the brain is partitioned into a grid of
‘cubes’ or voxels. Each voxel constitutes the elementary spa-
tial unit that acts as a signal generator, recorded and regis-
tered as a low-resolution 1-D time series. Actual fMRI voxel
signals from brain scans can be considered as a mixture of
various components or sources with different temporal and
spatial characteristics. A typical voxel size of 3x3x3.5-5 mm?
corresponds to roughly 2.5-4 million neurons of several thou-
sands of synapse interconnections each, or /40000 to 1/25000
of the total brain volume.

This study focuses on one very important aspect of the
functional properties of human brain, specifically the esti-
mation of the level of parallelism when performing complex
cognitive tasks. In some very abstract sense, this is not much
different than trying to recover the (minimum) number of
actual ‘brain cores’ required to ‘run’ all the active cogni-
tive tasks that are registered in the entire 3-D brain volume
while performing a typical fMRI experimental protocol that
includes visual-only or visuo-motor tasks.

Using fMRI as the main modality, the human brain acti-
vity is investigated through a purely data-driven signal pro-
cessing and dimensionality analysis approach. Specifically,
the fMRI signal is treated as a multi-dimensional data space
and its intrinsic complexity is studied via blind-source sepa-
ration (BSS) methods. Section 2.1 provides an overview
of the fMRI experiments and the nature of sensory data;
section 2.2 defines a proper mathematical formulation for



the data unmizing task and its importance in understanding
the true sources of brain activity; section 3.2 provides hints
to proper data dimensionality reduction in fMRI; section
3.1 briefly describes ICA as a typical approach for blind-
source separation in signal processing; sections 4.1, 4.2.1 and
4.2.2 describe the simulated and real fMRI datasets used in
this study; section 5 includes the experiments and results,
using all the methods and datasets described earlier; finally,
section 6 concludes the study with discussion of the results
and their practical meaning.

2. PROBLEM DEFINITION
2.1 The nature of fMRI data

In experimental fMRI procedures, there are two common
activation schemes: the block paradigms and the event-related
paradigms [1]. In the block paradigm, the subject is presen-
ted with a specific stimulus for a specific time frame, e.g.,
a set of images of different placement, colors, patterns or
categories, and the subject has to press a switch to signal
positive or negative feedback as a response. In the event-
related paradigm, the subject is exposed to a series of rand-
omized short-time inputs, e.g., a noise or a pain stimulus,
with or without the need for specific response from the sub-
ject. In both cases, the external input is considered as a
primary ‘source’ and is temporally correlated with the brain
activity. Areas of high activation and correlation to the sti-
mulation/response pattern are considered as highly relevant
to the specific functional task (visual/motor centers, pain
receptors, etc).

The acquired fMRI signal is registered in both spatial (3-
D) and temporal (1-D) domain, resulting in a composite
4-D signal. Each spatial axis is registered as a grid of spa-
tial resolution 3-5 mm?>, resulting in a 3-D grid of voxels.
Typically, a complete volume of voxel data, e.g. 60x60x30
to 64x64x48, is recorded every 1-2 seconds for a sequence
of 100-150 time points [16, 15, 19]. This produces a to-
tal of roughly 108K-197K voxels for every time frame or,
equivalently, 11-30 million data points organized as a two-
dimensional matrix, where each row corresponds to a com-
plete ‘snapshot’ of brain activity. In practice, the number of
actual brain voxels is smaller, since non-brain areas of the
grid are masked out before any further processing; however,
the data volume still remains within the same order of mag-
nitude. Additionally, typical fMRI experimental protocols
involve several subjects, in order to exclude any subject-
specific characteristics that may affect the statistical pro-
perties of the fMRI data under consideration. Clearly, this
creates a high-volume data analysis process that makes it a
very complex and computationally demanding task.

2.2 Understanding brain activity

Special matrix factorization algorithms are required to re-
formulate the fMRI data as a multiplication of two other
matrices, where one is for the time courses of the estimated
signal ‘sources’ and one for the corresponding spatial maps
of related brain activity. Formally put, if Y € R™*™ is the
full fMRI data matrix with ¢ rows as time points and n brain
voxels ‘unwrapped’ into a linear vector, then the fMRI data
matrix can be factorized as Y =TS, T € R™*?, § € RP*",
where the p spatial maps are collected as rows in S and each
column of T contains the activation pattern along time for
the corresponding spatial map.

In terms of signal processing, the hemodynamic response
function (HRF) [16, 15, 19] of the activated neurons, i.e.,
the changes in oxygen-rich blood flow in the time domain,
acts as a low-pass filter in the temporal domain, which in
turn modifies the true activation signal that it is registered
as fMRI data. The HRF is known to be spatially-varying,
which means that there are slightly different hemodynamic
responses for different areas of the brain, as well as diffe-
rent HRFs between different brains. Therefore, traditional
regression approaches like General Linear Model (GLM) ap-
proximations [16, 19, 15] that require a pre-defined ‘design
matrix’ are clearly sub-optimal, since this is typically con-
structed as permutations, transformations, time-shifts and
derivatives of one (assumed) ‘universal’ HRF.

Although the GLM approach is sufficient when only speci-
fic sensory-related signal sources (external stimuli) are con-
sidered, in the general case it is not possible to define a
global design matrix for all signal sources and all (multiple)
subjects. Instead, ICA is the most commonly used alterna-
tive for this task, in the context of blind source separation
(BSS) [10, 3, 12] (see section 3.1). In either case, unmixing
algorithms are required to be both fast and accurate in iden-
tifying the signal ‘sources’ of fMRI data and the activated
areas in the brain corresponding to the specific paradigm
source.

3. DIMENSIONALITY ANALYSIS OF THE
FMRI DATA SPACE VIA ICA

3.1 Independent Component Analysis (ICA)

In blind source separation (BSS), ICA has been success-
fully applied to fMRI data for many years [10, 3, 12, 6].
Since the fMRI consists of a mixture of unknown compo-
nents, corresponding to different brain sources of activity,
the unmixing procedure is essentially a BSS problem. Ho-
wever, due to the relatively low temporal and spatial reso-
lution of fMRI data, the non-stationary properties of the
signal due to brain- and machine-state variations, as well as
the unknown number and exact statistical properties of the
sources, the BSS of fMRI data is not a trivial task.

ICA is based on identifying non-Gaussian properties be-
tween the sources and separating them from the mixture,
essentially reconstructing the original signal as a linear com-
bination of identified components (signal sources), i.e., si-
milarly to the previously discussed formulation Y = TS,
T € R™P S € RPX™, In this case, S is the matrix of inde-
pendent components, i.e., spatial maps of brain activity, and
T is the mixture matrix, i.e., the corresponding time courses.
In fMRI, the ICA can be performed in the spatial or tem-
poral dimension of the (vectorized) voxel data, producing
either spatial or temporal components in matrix S. Several
studies have been conducted in whether spatial or temporal
ICA works better for BSS in fMRI data [3]; however spa-
tial maps, i.e., retrieving S as spatial components, seem to
be more accurate and useful in most clinical applications of
fMRI. The two most common approaches for ICA are the
Infomax [2] and fastICA [11, 9, 10] algorithms. Throughout
this study, spatial map decomposition is employed via the
fastICA algorithm.

In practice, ICA does not include any explicit sparsity-
aware constraints, although it is considered sparsity-promoting
by enforcing statistical independence between the discovered



components (sources). At the same time it assumes specific
statistical properties for the underlying signal sources, i.e,
at most one Gaussian distribution and minimal noise arti-
facts. Hence, ICA unmixing of fMRI data which do not
fully satisfy these constraints will construct factorizations
that include the maximum allowable number of components
for the minimum-error reconstruction of the original (mixed)
data. In other words, as described in section 3.2, when the
fMRI data include non-trivial mixtures of sources, e.g., as
in the case of the simulated dataset (see section 4.1), ICA
will construct a factorization model Y ~ TS, T € R'*?,
S € RP*"™ with p = pmaz and non-zero reconstruction error.
Similar problems emerge when using explicit sparsity-aware
approaches, since they typically produce factorizations with
P K Pmaz but with larger reconstruction errors, as expected.

3.2 Data decimation and intrinsic dimensio-
nality

One way to deal with the high complexity of the BSS task
in fMRI data is to reduce the number of voxels under consi-
deration. Specifically, adjacent neurons in the brain can be
considered highly correlated in terms of their responses to
external stimuli, provided that the blood vessel networks at
very small scales actually introduce some spatio-temporal
correlation. If the spatial resolution of the fMRI signal is
high, adjacent voxels in the original 2-D or 3-D volume scan
can be considered statistically dependent and, hence, redun-
dant. Therefore, some form of decimated voxels set can be
used instead as input for the unmixing task, without sacri-
ficing the accuracy of identifying the true inherent sources
of the data.

Spatio-temporal correlations between voxels and statis-
tical dependencies are essentially the reason why the fMRI
data space has an intrinsic (true) dimensionality much smal-
ler than the number of voxels, i.e., the data matrix Y € R**™
is of column rank ¢ < n. However, for proper unmixing of
the fMRI data, the column rank of matrix Y should be
retained even when some decimation process is employed.
In other words, the selection of a smaller subset of voxels
(instead of all) should be conducted in a way that does not
destroy the information content of the full data, but instead
exploit the the fact that the number of voxels n is very large
and their inherent statistical properties can be properly re-
tained with a much smaller subset.

In the cases when only a small set of the signal sources
are considered, i.e., the time series of some external stimuli
(plus some transformations of it), then regression methods
like GLM can be easily formulated with the proper ‘design
matrix’ to recover the related brain activity. When the ana-
lysis is conducted in the BSS sense, i.e., all major signal
sources are to be recovered (including the stimuli time se-
ries), then decomposition methods like ICA provide a well-
formulated statistical framework for this task, as long as
the proper constraints are asserted as valid (most impor-
tantly, the assertion of at most one Gaussian signal source).
However, when these statistical assertions are not fully sa-
tisfied or when there is a large number of signal sources that
are ‘exponentially decaying’ in terms of importance (contri-
bution to the mixed signal’s variance, power spectrum and
approximation error), then the number of independent com-
ponents that ICA or other similar algorithms is limited only
by some external pre-defined threshold. In other words, the
data matrix Y € R**™ can be factorized only approzimately

as Y ~ TS, T € R**P § € RP*™ with the reconstruction
error becoming smaller as the number of recovered compo-
nents p increases. In theory, if the true sources of the mixed
signal are perfectly separable in the BSS sense, then ICA
will stop after recovering exactly p = ¢ components, where
¢ € n is the column rank of the data matrix Y. This means
that there are exactly p components, i.e. time courses and
corresponding activation maps, that can fully reconstruct
the fMRI data for the entire brain activity. Hence, the defi-
nition of the optimal value for p by means of non-parametric
(data-driven) estimation procedure is of utmost importance
in the BSS task for fMRI unmixing.

4. DATASETS

The investigation of fMRI space complexity and intrin-
sic dimensionality was conducted with two separate types
datasets, namely one of simulated fMRI data and two of
real fMRI data from carefully designed experiments. The
simulated data were introduced as the means to verify the
recoverability of the intrinsic dimension when the real sig-
nal sources are known and well-defined, while the real data
were used as guidelines for estimating the true brain acti-
vity in two typical cognitive tasks (visual recognition task
and visuo-motor task).

4.1 Simulated fMRI datasets

In this study, an adapted version [14] of the real-valued
fMRI data generator code from the MSLP-Lab [17] toolbox
was used for creating artificial fMRI data as a mixture of
eight main sources [6]. Using the basic knowledge of the
underlying statistical characteristics of the underlying sour-
ces, the components include three highly super-Gaussian
sources (S1, S2, S5), a Gaussian source (S4) and a sub-
Gaussian source (S3), plus two more super-Gaussian sources
(S6, S8) and a sub-Gaussian source (S7). The time course
for each component defines the temporal characteristics of
the corresponding source, namely one task-related (S1), two
transiently task-related (S2, S6) and several artifact types
(S3, S4, S5, S7, S8), including respiration, cardiac pulsation,
scanner drift, background noise, etc. These sources can be
considered as spatial maps that are activated according to
their time course and mixed linearly to produce the final
(simulated) fMRI data.

Although in typical fMRI experiments there is only one
sensory ‘input’ (stimulation), here the full set of eight sour-
ces (S1...S8) was considered throughout the evaluation. Spe-
cifically, the simulated fMRI data included eight spatial maps
of size 60x60 voxels (2-D ‘slices’) and a 100-point time course,
with statistical properties as described above. Each spatial
map was linearized by row-concatenation into a (row) vec-
tor of 3600 voxels, registered along its time course (column)
vector of 100 points. Finally, these eight 100x3600 matri-
ces of spatio-temporal maps were mixed linearly to produce
the final eight-source mixing of simulated fMRI data into
one matrix of that same size. Hence, in terms of the pro-
blem formulation presented in section 2.2, the final matrix
of (simulated) fMRI data is registered as Y € R**™, where
t = 100 time points and n = 60? = 3600 voxels. Since the
final data matrices are always linearized in a similar way
before applying any unmixing algorithm like GLM or ICA,
using 2-D ‘slices’ of (simulated) voxels instead of full 3-D
(real) brain scans in each time point affects only the volume
of the data and not the task itself.



4.2 Real fMRI datasets

4.2.1 dsl01 —The ‘Simon’ task

The ‘NYU Simon Task’ dataset [13] comprises of data col-
lected from 21 healthy adults while they performed a rapid
event-related Simon task. In this study, the data from nine
(out of 21) low-noise subjects were used, including two runs
each, for a total of 18 fMRI scans. Each dataset was masked
for exclusion of non-brain areas and subsequently threshol-
ded for exclusion of brain areas with near-zero activity, in
order to suppress any noisy artifacts. The resulting number
of voxels ranged roughly between 28K and 39K, while the
number of snapshots was fixed to 151 time points. In terms
of the formulation of section 2.2, each fMRI data matrix is
Y € R with t = 151 time points and 27631 < n < 38735
‘non-zero’ voxels.

Three variants of each dataset were used, regarding the
smoothing pre-filtering. Specifically, according to standard
fMRI acquisition practice, a Gaussian smoothing kernel was
applied to the original 3-D voxel space, in order to sup-
press noise artifacts and enhance the spatial continuity of
the voxel data. With respect to their Full Width at Half
Mazimum (FWHM) [4, 5], or 2v2-In2 -0 ~ 2.35482 - o
for Gaussian kernels, two different spatial sizes were used:
4 mm?® and 8 mm?. In practice, since the voxel resolution
in this dataset is 3x3x4 mm?, the smaller kernel performs
(softer) averaging on 1-1.33 neighboring voxels, while the
larger kernel performs (more aggressive) averaging on 2-2.67
neighboring voxels. These two ‘smoothed’ versions, plus the
original non-smoothed version, are the three variants of each
fMRI scan, used throughout the experiments (see section 5
for details).

4.2.2 dsl05 - Visual object recognition task

The ‘Visual Object Recognition Task’ dataset [8] com-
prises of data collected from six healthy adults while they
performed a visual recognition task. The selection, pre-
processing and smoothing stages performed here are the
same as for the ‘ds101’ dataset. The data from six (all)
subjects were used, including three (out of 12) runs each,
for a total of 18 datasets of fMRI scans. Each dataset was
masked for exclusion of non-brain areas and subsequently
thresholded for exclusion of brain areas with near-zero acti-
vity. The resulting number of voxels ranged roughly between
22K and 47K, while the number of snapshots was fixed to
121 time points. In terms of the formulation of section 2.2,
each fMRI data matrix is Y € R™*™ with ¢t = 121 time points
and 22387 < n < 47192 ‘non-zero’ voxels. Three variants of
each dataset were used, i.e., the original and two smoothed
versions of each fMRI scan, described above.

S. EXPERIMENTS AND RESULTS

5.1 ICA analysis of the datasets

The ICA experiments that were conducted with the si-
mulated fMRI data included two distinct realizations of the
dataset, generated by the same procedure and the same spe-
cifications as described in section 4.1. Since the data gene-
ration includes several noise components, the two realizati-
ons were used as an additional verification check to validate
that slightly different mixtures of (artificial) fMRI data do
not produce significant differences in the ICA error-versus-
components plots.

Figure 1: Ideal (blue) and ICA-recovered (red) time
courses of the eight sources in the simulated fMRI
dataset.
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Figure 2: ICA-recovered activation maps of the

eight sources in the simulated fMRI dataset.
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Figure 1 presents the time courses of the ICA factorization
(matrix T'), with the blue curves representing each of the
eight ideal (true) sources and the red curves representing
the corresponding ICA-recovered sources. Ideal (blue) and
ICA-recovered (red) time courses of the eight sources in the
simulated fMRI dataset are illustrated. Parameter r is the
correlation coefficient between the original (ideal) and the
recovered time course, p is the corresponding p-value and
rmse is the matching error. The first component (upper-left
corner) corresponds to the pre-defined external stimuli.

Figure 2 presents the corresponding activation maps (ma-
trix S) recovered by ICA, spatially reshaped into proper 2-D
brain ‘slices’, where the reconstruction errors are visible as
artifacts (‘ghost’ artifacts). ICA-recovered activation maps
of the eight sources in the simulated fMRI dataset are il-
lustrated, spatially reshaped into proper 2-D brain ‘slices’.
The lower-left box corresponds to the activation areas for
the pre-defined external stimuli. The lower-right box illus-
trates the complete reconstructed fMRI mixture at the final
time point ¢ = 150.

Figure 3 presents the plot of reconstruction error (RMSE)
versus the number of ICA components used. Specifically,
after the ICA unmixing model is complete, the ICA com-
ponents are used one by one in rank-1 reconstructions of



Figure 3: Reconstruction error versus number of
used components.
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the original data and the corresponding errors are used for
sorting the components in ascending order (smallest RMSE
first). Subsequently, a set of components starts from the
first one (top of the list) and increased by adding the next
one in each step, while estimating and registering the corre-
sponding reconstruction error. The plot illustrates the total
reconstruction error decreasing almost exponential-linearly
as the number of used components increases, as expected.
It should be noted that for ‘perfect’ ICA factorizations, as
in the case of simulated fMRI data, the number of compo-
nents recovered by ICA is exactly the same as the number of
signal sources (true) used in the mixture that created these
data (see section 4.1).

The ICA experiments that were conducted with the real
fMRI data included two distinct datasets, ‘ds101’ and ‘ds105’,
as described in sections 4.2.1 and 4.2.2, respectively. Instead
of a single 2-D brain ‘slice’ as in the case of the simulated
fMRI data, here the datasets employ full 4-D fMRI data,
i.e., 3-D voxel grid of the brain volume evolving in 1-D time
course.

Figure 4 illustrates the top-10 of the 50 ICA-recovered
time courses of components in a sample run with the ‘ds101’
dataset. Although the ICA converged successfully with the
minimum attainable reconstruction error, the unmixing mo-
del failed to detect one single component that closely mat-
ches the ideal time course of the stimuli. However, it is evi-
dent that one component (third from top-left) matches com-
ponent no.7 and two components (upper/lower left) match
component no.8 of the simulated fMRI data as illustrated in
Figure 1 in terms of overall shape and noise characteristics.

With respect to reconstruction error versus number of
used components, Figure 5 and Figure 6 illustrate how the
RMSE changes (drops) as the size of the ICA mixture be-
comes larger. Red curves represent the RMSE against the
number of used components up to an upper limit of 10, 25,
50 and 100. The final (right-most) point in blue represents
the maximum-size, lowest-RMSE in each case. Hence, the
general slope of the red curves, as well as the dotted blue
line connecting the end points, illustrate the robustness of
the ICA unmixing process in each of the real fMRI datasets.

6. DISCUSSION

This study presents a purely data-driven approach to the
estimation of the level of parallelism in human brain. In

Figure 4: ‘ds101’ (non-smoothed), top-10 of the 50
ICA-recovered time courses of components in a sam-
ple run.
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Figure 5: ‘ds101’ (non-smoothed), ICA recon-
struction error versus number of used components.
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Figure 6: ‘ds105’ (non-smoothed), ICA recon-
struction error versus number of used components.
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some very abstract sense, the experimental protocol descri-
bed here is not much different than trying to recover the
(minimum) number of corresponding ‘brain cores’ required
to ‘run’ concurrently all the active cognitive tasks that are
registered in the entire 3-D brain volume while performing
visuo-motor cognitive tasks.

The results show that ICA can indeed address the unmix-
ing task with moderate to good performance, especially with
regard to the signal sources related to well-defined external
stimuli (see component no.7 in Figure 1 and Figure 2). For
the simulated fMRI dataset, the total RMSE for the ICA
mixture, reconstructing the original signal with all the reco-
vered (eight) components, is practically zero (see Figure 3).
The most important results in this case are: (a) the number
of ICA components recovered matches the number of true
sources used to construct the original mixture and (b) one
of the recovered components closely matches (highly corre-
lated) with the well-defined external stimuli (square-shaped
time course). This is extremely important in real fMRI ex-
perimental protocols, where specific stimuli types are to be
correlated to specific brain areas for constructing ‘global’
brain atlases.

As described in sections 3.1 and 3.2, in the case of real
fMRI datasets the ICA factorization is only approximate
(RMSE is never zero) and the minimum reconstruction error
is achieved only when using the maximum allowable number
of components. On the other hand, from Figure 5 and Figure
6 it is clear that the reconstruction error rises sharply when
the number of used components is much lower than this
upper limit. For the ‘dsl01’ dataset, this number seems
to be somewhere in 25 < p < 50 (see Figure 5), while for
the ‘ds105’ dataset it is p ~ 50 (see Figure 6). In both
cases, the non-smoothed variants of the datasets were used,
hence there is no loss of fine-detail activations and these
estimations can be considered as realistic and consistent.

In short, analysis of the non-smoothed variants of the real
fMRI datasets (i.e., no information loss) proved that even
when performing complex visuo-motor tasks, the number of
independent brain processes are in the order of 50. This
means that, in theory, an artificial equivalent of a brain-
like cognitive structure may not require a massively parallel
architecture at the level of single neurons, but rather a pro-
perly designed set of limited processes that run concurrently
on a much lower scale. Hence, although current state-of-the-
art VLSI technologies still include very limited features and
processing power when compared to the real human brain,
the assertion of employing actual parallelism level of much
lower order can provide useful hints to future projects.
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