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Abstract

This paper gives a new criterion for estimating the critical explosion parameter of a semilinear elliptic
equation with Dirichlet conditions on a bounded or unbounded domain, using simple evaluations of the
geometric part of the problem on one hand, and of an explosion time for a first order ordinary differential
equation on the other hand. This criterion is evaluated in the special case of a ball, and compared with other
usual criteria deduced from the properties of the first eigenfunction of the laplacien, and from Pohozaev’s
method.
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1. Introduction

Let Q be a C! domain in RN (N > 1), p be a strictly positive L120C function, and consider in H{(£2) the
following nonlinear eigenvalue problem l

—AU =X p(z)f(U) (1)

If we assume that
f is a Lipshitz non decreasing function on R* such that f(0) > 0 (H1)

then it is a well known result that, if Q is bounded and p belongs to L>(Q), there exists a A.,. > 0 such that
1) for each A € (0, \e), equation (1) has at least one solution in H}(£2); this solution belongs to L>(Q)
(for regularity results, see [ADN], [Mor])

2) equation (1) has no solution for A > A,

(see for example [Al], [A2], [B1], [CR], [FLNL1,2], [GS], [J], [IL], [JL], [KC], [Lio].) These results can be
extended to many (more technical) cases where Q is unbounded, p does not belong to L>°(Q) and the
laplacian is replaced by a more general elliptic operator. A.. is called the critical explosion parameter.

In this paper, we will give estimates on A, using a new point of view which separates clearly what arises
from the nonlinearity of f. and is caracterised by the explosion time of a first order ordinary differential
equation, and what arises from the geometry of the domain and from the measure p(z)dz. In Section 2, we
shall state our main result, giving an upper bound for the critical explosion parameter A... The method
also provides a necessary condition for the existence of a solution of equation (1). It is based on an estimate
(from below) of the solution, which in a sense gives a refinement of the Maximum Principle in the case of
semilinear elliptic equations with a nonlinear (and eventually non autonomous) term. The proof relies on
a "first order approximation” of the solution along the level surfaces of a linear problem. It is a kind of
rearrangement method (for general rearrangement techniques, see [B1], [HLP], [Mos] for instance).

In Section 3, we will focus on the radial case and explain more in details the strategy developped in
Section 2. The comparison with the "first order approximation”, explicitly written using a change of variables
(the rearrangement here is obvious, since the functions are monotones), will explain why the criterion is not
optimal. Section 4 is devoted to the comparison with two other common criteria for getting upper bounds for
the critical explosion parameter. Finally, let us just mention that the interest of our method lies in the fact
that it is easier to use than criteria deduced from Pohozaev’s method, and also takes the full nonlinearity,
and not only the value of an infimum (as it is the case for the method deduced from the comparison with a
principal eigenvalue), into account. The method works for a bounded domain as well as for an unbounded
one, and could be extended to more general Dirichlet boundary conditions, elliptic operators, etc (see the
conclusion).

2. An upper bound for the critical explosion parameter using ordinary differential equations

Let us consider two different problems. Let ¢/ be the solution in H{ () of the homogeneous Dirichlet problem
for the Poisson equation

—Ayp=p (2)
and ¢ — y(t) the solution of
dy , .
W) = fiun)
y(0)=0

We shall assume that € and p are choosen in a way such that

(3)

€ HY(Q) N CHQ) (H2)
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Here ¢ € Cj(Q) means : ¢ € C'(Q) and limy|—,; o, zeo ¥ (z) = 0 (if Q is unbounded). This regularity
condition is choosen in order to allow us to apply the usual Maximum Principle (to the domain Q. : see
below), but could probably be weakned a little bit (see [BNV] for Maximum Principles in general domains).
Condition (H2) is automatically satisfied if, for instance,  is a bounded regular domain in IR?. Now, let us
state our main result.

Theorem 1 : Let Q be a C! domain of RY (N > 1), p be a strictly positive L2 _ function on Q, and let

loc

us assume that f, p and Q satisfy assumptions (H1) and (H2). Then we have the following estimate
T
< U)o
M(Q,p)
where

M(Q,p) = supy(x)

rEQ
(¢ is the solution of equation (2)) and T(f) €]0,40o0] is the maximal existence time of the solution of
equation (3).

The proof is an immediate consequence of the

Lemma 2 : Under the same assumptions as in Theorem 1, for any X > 0, if equation (1) has a solution,

then ,
M(va) < (Tf)
and
yr) < nf : U(z) V7e0,AM(Q.p)]
zeQ), Y(x)=T1
so that

y(AM (2, p)) < ||ul|= (o)

Proof of Lemma 2 : For any 7 €]0,m[ with m = min(T(f)/X, M(Q, p)), let us define
Q ={ze€Q|yY(z)>7}
z(1) = wlenéf Ul(x)

where U is the solution of equation (1). Let v, be the solution in H!(€,) of

— Augle) = M=) plz) V€0,
Vrjoq, (z) = 2(1) Vz €,

Q, is a C! bounded domain because of (H2), and we can notice that
ve(z) = 2(7) + M (2(7)) - (Y(z)—7) VzeQ,
Because of the Maximum Principle, the minimum of U in €, belongs to 9, :

) > inf z) = inf )= = v, k T Q-
U(m)_mng U(zx) ot U(z) = 2(T) = vrpq. () Yz €l

and

—AU(z) =X p(x)f(U(2)) > Af(2(7)) - p(z) = —Avr(z) YzeQ,
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because according to (H1), t — f(t) is nondecreasing. According to the Maximum Principle,
Uz) > v, () VaeQ,
Let us choose 07 > 0. Using the definition of Q,, we get

Zr+dr)= inf U(z)= inf U(z)> inf v (z)= Inf o (z)=X\(2(1)) 07+ 2(7)

$€3Q(T+5T‘] 11652(.,.+5,) 1:652(.,.+5,) wEaQ(‘._'_&.)

% <z(7- +07) — Z(T)) > Af(=(1))

Of course z(0) = 0, and therefore, if y is the solution of equation (3), then
for all 7 € [0,m = min(T(f)//\, M(Q,p))[
z(1) > y(Ar)

which proves that
y(Ar) < iné Uz) < ||U|lgey Y7 €[0,m]
) EAS )

T(f) < AM(LQ,p) is impossible, because in this case, we would have

+o0 = lim y(AT) < ||U|| 00
sty YO < 0@

Therefore M (2, p) < T(f)/X and we have

y(AM(SZ,p)) < 1iHlT—>M(s’z,p), iIlfme.Q, U(i) < ||U||L°°(Q) O

3. The radial case

In this section, we will explain more in details what happens in the simpler case of a ball. The simplifi-
cation here is due to the fact that the functions are all radial : one has to deal with their value (on a sphere),
and not the values of infima taken on the boundary of a domain (9€2, with the notations of the previous
section). This explain why we can write for these functions explicit equations after appropriate changes of
variables.

Let us assume that & = B(R) is a ball of radius R and center 0, that p is a radial, bounded, strictly
positive decreasing function and that f is of class C1. (We shall use the non rigourous notation p(z) = p(|z|)).
According to the results contained in the Gidas, Ni and Nirenberg famous paper (see [GNN1]), any solution
U of equation (1) is radial and therefore u(|z|) = U(z) satisfies

1 d, yqydu, o ] )
_7“1\’——1%(7 ar (7)) =X~ p(r)flul(r))
du (4)
= (0)=0
u(R)=0
The solution ¥ of
1 d ,N—1d7/) N
_rN—ldr(7 (lr(7))_p(7)
dyp (5)
o (0)=0
P(R)=0
is stricly decreasing on ]0, R] because
dyp 1

Y=—— | tNT1lp) dt
)= = [ Yl
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For all 7 € [0,4/(0)], let us define
w(r) =u(yp~ (7))

w satisfies ) R
)
dw . (d’ d>w
—(7) = Af(w(t))=~—r——L—  — (7T
(],7'( ) fw(7)) p(p=1(1)) de( ) (6)
w(0) =
%(0) =p
where p is defined by 5
pzéﬁR)_A,ng*<»ﬂ(w)w

IF Ry JErN=1p(r) dr

P @) e ) fw(r) - (S ($H))) dr
KW o)™ o) - () e

Conversely, if w is a solution of equation (6) for some p € IR on the interval [0,(0)], then the condition

or

(7)

p=2A

du
—(0)=0
dr( )
is automatically satisfied because
du . dw L dy ) dz/) B
E(O) = dT((/)(O))- o (0) and (0) 0

We can now state the

Proposition 3 : Let us assume that p is a radial bounded strictly positive nonincreasing function and such
that the solution in H} (B(R)) of equation (5) is bounded in L™ (B(R)), that f is of class C'!, nondecreasing
on R* and such that f(0) > 0. Then if equation (4) has a solution, there exists a solution w of equation (6)
on [0 ¥(0)] satisfying condition (7), and we have the following properties

(i) 42 (1(0)) = X f (w(4(0))

m>”<>>Aﬂww»vTemwmn

(iii) —T( ) > A f(w(r)) V7 €[0,4(0)] if f is strictly increasing

(iv) if fl;;’ (1) =X f(w(r)) V7 €[0,4(0)[, then f is constant on [0, 4(0) ]

Proof of Proposition 3 :

(1) is a straigtforward consequence of equations (5) and (6) : dw(

0) = 0 implies

9

p(z/)—l(r)) ’ F(T)\T:z/;(()) =0

(ii) Let us assume that (ii) is false : there exists a 79 € [0,%(0)] such that

dw

(1) <A f(w(m))

T)jr=r, < 0, and w beeing of class C?, there exists a neighbourhood [19, 7y + ¢[ of To+ such that

(]7'2

=
d? u(

dw

= 7) < 0. Then it proves that 7 E(T) is strictly decreasing on [19, 79 + ¢[. On the other hand,
fliw(r) > 0 for all 7 €]0,4(0)] because

dw
dr

=g ) (—o [ sy a) >0

lr=1=1(7)
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This implies that 7 = w(7) is increasing, and therefore 7 — %(7) - A f(w(r)) is strictly decreasing on

[70, 70 + &[. Using the same arguments for 7 = 79 + ¢, we prove that 7 — %(7’) - A f(w(T)) is strictly

decreasing on [1y,1(0)] and therefore that fli—i’ (1(0)) < X f(w((0))), in contradiction with (i).
(iii) The proof of (iii) is similar to the proof of (ii). Let us assume that there exists a 79 € [0,(0)[ such that

dw

E(TO) =X f(w(m)) = Af(0)>0

In a neighbourhood of 74+, ‘é—“’ >0: 7 fli—?;’(T) — X f(w(r)) is strictly decreasing because f is strictly

-
. . 2 . . . ) 2, .
increasing, and ‘(1‘,775 (7) is small because w is of class C* and ‘(1175” (19) = 0. Thus we get the same contradiction
as before.

(iv) if 22(7) = X f(w(7)) V 7 € [0,4(0)], then @w () = 0 according to equation (6), and

dr?

w(t)=pr Y7 €[0,4(0)]
with the condition
p=Af(pr) =0 V7 €[0,4(0)]
so that
p=Af(0), and f(0)— f(Af(0)T)=0 V17 €][0,4(0)]
_ (0
f(“’) - f(()) V?l, € [07 )\f(O)]
O

Proposition 3 allows us to give a new interpretation of Theorem 1. Let us summerize our results in the

Remark 4 :
(1) Proposition 3 provides an other proof of Theorem 1 (in the radial case) :

Ul () = u(0) = w(1(0)) > y(Xp(0)) = y(AM(B(R). p)))

Moreover the inequality is strict provided that f is not constant on a neighbourhood of 0+4. In this last case,
we have

y(r) < o iI/l(f : U(z) V7 €]0,AM(Q,p)]
well, P(r)=1

and
y(AM (L, p)) < |[ullz= ()
(ii) Proposition 3 gives a necessary condition for the existence of a solution of equation (4) : with the same
conditions as in Proposition 3, if equation (4) has a solution, then
Ty(A) > M(B(R), p) (8)
where T (A) = sup,~o T¢ (A, ¢, R, p), and T¢(X, ¢, R, p) is the maximal existence time of the solution of

/

@
dr
dw
22(0) =
- (0)=q

w(0) =0

| (86700) o,
(1) = Af(w(r)) = T o)) dre )

Indeed, if equation (4) has a solution, then w is defined on [0, M (B(R), p)], and it follows that
Tt(A) > Tf(A,p, R.p) > M(B(R). p)
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It is possible to give a more precise definition of T/ (A):

Tr(N) = max T¢(Xq, R,
e qEIAF(0),Ap(f, AR, p)[ s #)

where

p(fo A R, p) =inf{qg > f(0)|T"(q, f) < AM(B(R),p)}

and T*(q, f) is the maximal existence time of the solution of

%(f) = max(f('y(t))» f])

y(0)=0

Indeed, let us consider a solution w of equation (6) satisfying condition (7). According to Proposition 3,
(i),
dw
- —(7) = Af(w(r)) V71€[0,4(0)]
and then

(a) p = F2(0) = Af(0)

(b) ‘é > 0 implies that —w is increasing, and therefore
'T dr

dw

() 50 =p V7e[0,9(0)]

Then w(7) > g(A7) V7 € [0,4(0)] and AM(B(R),p) < T*(%.f). g T*(q. f) is decreasing, which ensures
that

p(f.\ R, p) =int{qg > 0|T"(q, f) < AM(B(R),p)} = inf{q > f(0)|T"(q. f) < AM(B(R),p)}

>3

and it is not difficult to prove that

Tr(N) = sup T¢(A g, R, p)
G€INF(0) NB(£. N Rup)]

is in fact a maximum. This provides a numerically usefull scheme (a shooting method) to solve equation
(4) : for g €]Af(0), \p(f, A\, R, p)], one solves equation (9), and then one tests condition (7) using the fact
that
$(0) / , _ N-1 1
o () p(«¢ () (w(r) - (F @) dr
(0 -1
K W)™ (11’ 7)) - (F i) dr

q— A

is continuous.
(iii) Let us notice that the comparison of equation (1), when £ is a bounded domain but not necessarily a
ball, and p is not necessarily radially symmetric, with the radial case only provides the well known result :

Aer(§2,0) > Aer (27, p7)

where * is the ball having the same volume as €2, and p* is obtained through Schwarz’ symmetrisation
method (see [B1-3], [HLP] or [Mos] for example). This is of course compatible with the fact that M (Q*, p*) >
M(Q, p), but does not provide any further informations.

(iv) The results of this section (radial case) also apply to = IRY provided we are able to extend to RY

the symmetry results of B. Gidas, W-M. Ni and L. Nirenberg for a ball (see [GNN2], [Li], [LiN] )



4. Comparison with other usual criteria

We will compare the result of Theorem 1 with two other usual ways of estimating an upper bound for the
critical explosion parameter.

The first one is commonly used : it relies on the comparison with the solution of the principal eigenvalue
problem for the laplacian. It is more general (in the sense that if the assumptions of Theorem 1 apply, then
we can also use it; the converse assertion would be false) provided the principal eigenvalue exists. But it
does not take the nonlinearity well into account.

The second one relies on Pohozaev’s method. It takes the nonlinearity very well into account, but there
are many restrictions to the use of this method : p is assumed to be constant on €2, and there are additional
conditions on the domain . The use of Pohozaev’s method is more technical than Theorem 1, but the
estimate of A, is sometimes optimal.

4.1 A bound deduced from the comparison with a principal eigenvalue

Let us consider equation (1) with the same assumptions as in Theorem 1. Let us define

and A1 (Q) as the principal eigenvalue in H} () of the eigenvalue problem
—AG= - pla)ple) (A>0)
Here Q is not necessarily bounded, but  and p are such that

V() dr
verto) [o, p(z)|@]?(z) dz
¢#0

AL () =

= it [ 1VeP @ de] [ polefe) do=1)

wEH}

exists. We assume for example that one of the following conditions is satisfied
(i) © is bounded and p belongs to L*(Q) if N =1 or 2, and to L>N/(N+2(Q) if N > 3
or
(i) @ = RY with N > 3, p is smooth and such that there are two constants K > 0 and « > 1 such that
(see [BCF])
p(@)| < K(1+]2) Vae R

so that (for case (i) as well as for case (ii)) we know the existence of a strictly positive principal eigenvalue
for the above problem.

Proposition 5 : Let Q be a C' domain of RN (N > 1), p a strictly positive L} . function on Q such
that A\1(2) defined above exists, and assume that f, p and Q satisfy assumptions (H1) and (H2). Theun, if
I(f) = inf;s @ > 0, we have the following estimate

AL(©)

I(f)

ACT S

(For more details on that kind of results, see for example [B2,3], [JL]).

Proof of Proposition 5 : It is easy to prove that there exist ¢y in H} (), nonnegative, such that
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using a variational argument : ¢; realizes the minimum

min M =A1(Q)
eeHL(Q) jQp|(p|“ dx
¢#0

Then, multiplying this equation by the solution U of equation (1), and integrating by parts, we get
/ (VU - V) dz = M (Q) / pUdy dz
Q Q

and

/ (VU -Vi)dz =X / pf(U)dy dz > X~ I(f)/ pUdy dz
Q Q Q
according to equation (1), the definition of I, and the fact that U and ¢; are nonegative. This ensures that

M(f) < M(Q)

Remark 6 :
(1) Let us notice that if
T(f) < 400
then
t
lim Q =400
t—=+oo t

and I(f) is well defined : the assumptions of Proposition 5 can be deduced from the assumptions of Theorem
1. Theorem 1 is therefore less general than Proposition 5, provided A;(£2) exists.

(ii) Theorem 1 takes the full nonlinearity into account, which is not the case for the criterion of Proposition
5. The bound given in the theorem is therefore better in some cases. For example, let us consider f = f4

defined by

{fA(t)=1 0<t<A)
falt)=e"* (1> A)

Let us assume N =1, Q =]0,1[, p = 1. Then

T(fa) N,
m_8(A+1)<<Z> A= — VA>

4.2 A bound deduced from Pohozaev’s method

Pohozaev’s method (see [P]) is appliable to get an estimate of the critical explosion parameter when Q is a
bounded strictly star-shaped domain :

a(Q) = sup (inf{($ —zo)-n(z)|z e 8(2}) >0
(r— )50 ¥ n 00

in the special case where p is a constant function (we shall assume in the following that p(z) =1 Vz € Q).
Here, n(z) is the outward pointing unit normal vector, for all z € JQ. The main interest of this criterion
relies on the fact that it clearly takes the full nonlinearity into account, and is therefore sometimes optimal
(in dimension N = 2).



Proposition 7 :  Let Q be a bounded C* strictly star-shaped domain in RN (with N > 2) such that
() > 0. Let us consider equation (1) in the special case (autonomous case) of p(z) =1V z € Q

—Auy =X- f(uy)
Then for any A €]0, \;[, for any solution uy, we have

< 2N|oQ| Jo F(ux(z)) dx
- a(Q) (fg2 f(ur(z)) dz)?

-1

where F(t) = [; f(s) ds.

One can also make use of Pohozaev’s method in the case of unbouded domains, but it is a little bit more
technical because one has to be careful with the integrations by parts (for instance, see [EL1,2]).

Proof of Proposition 7 : The proof is easily obtained through Rellich’s identity (see [R], [P])

/ 1(T —z9)-n(z) |Vu,\|2 do(z)+ H/ |Vu|2 dr = )\N/ F(ux(z)) dz
o0 2 2 Q Q

To get Rellich’s identity, one has to multiply equation (1) by (z — z) - Vuy, and integrate by parts. Then
1 2
—(z —xo) - n(x) |Vux|® do(z) < AN | F(ux(z)) dx
Joq 2 Jo

because N > 2. We assume now - to simplify a little bit - that there exists an xq € Q realizing () ie.
such that
a(Q) = inf{(z — zo) - n(z) | z € 0N}
Using successively the definition of «(€2), the fact that
Vux(z) = (Vur(z) - n(z)) n(z) Ve o

because u) is constant on J€2, Holder’ s inequality, an integration by parts, and the definition of uy, we get

/ 1@ —z0) - n(x) |Vuy|? do(z) > (&) |Vuy|? do(x)
o0 2" ‘ 2 aQ ‘
Q) f
_ (@) / Vs - n(z)|? do(z)
2 Jaa ‘
a(Q) [ [ E
> nlz) - Vs do(x
> a1 ([, ) v doto)
_ () ‘ 2
= 200 (/Q —Auy, dz)
_ 9 wus () de ’
= 2|8_Q|/\ (/Qf(ux(bb)) dbb)
which proves the result. d

Remark 8 : To apply Pohozaev’s method, one has to impose stronger assumptions than in Theorem 1 (2
is a bounded strictly star-shaped domain, p = 1), but one uses the full nonlinearity, and in dimension N = 2,
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this method is sometimes optimal (which is never the case for Theorem 1). Let us consider for instance (see

[CLMP], [G], [JL], [Lio]) f(t) = e* when the domain is = {z € R? : |z|* < 1}. Then

2
Pu(r) = —21n</;—:_71 > (1> 0)

solution of equation (1) with

8
A= Ap)= ——
(1) (u+1)2
The condition deduced from Pohozaev’s method is now
<
p+1

The equality is realized if and only if A = 2 (i.e. ;& = 1) which corresponds to

A=A =2

Conclusion
As a conclusion, we will just mention some possible extensions.

(i) The method could be generalized to more general elliptic operators than the Laplacian provided that they
satisfy a Maximum Principle (see [BNV] for a general review of the different forms of generalized Maximum
Principles).

(i) The method also apply to nonhomogeneous Dirichlet conditions, i.e. to the problem

—AU =X-p(x)f(U) (z€Q)
Ujpo = @

provided ® is a L*(98) bounded function.
(iii) The inequality
y(AM (L, p)) < |[ullp ()

given in Lemma 2 is an equality if f is constant on a neighbourhood of 0+. When €2 is a ball, f is constant
on a neighbourhood of 0+ if and only if

y(AM(Q2,p)) = ||U||L”°(s’z)

for A large enough (see Remark 4 (iii)). This result has to be generalized to the case of general domains €.

(iv) In the demonstration of Theorem 1, we were using the usual Maximum Principle on a C! bounded
domain (that is why we assumed a so strong condition (H2) on the regularity of the solution ¢ of equation
(2). The recent work of H. Beresticky, L. Nirenberg and S.R.S. Varadhan (see [BNV]) on the Maximum
Principle for second order elliptic operators in general domains allows us to relax a little bit this assumption
and work with less regular solutions of equation (2).

Acknowledgements The authors thank J. Mossino for usefull comments on their work.
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