
Overview 
The power of morphological data for evolutionary science is fundamentally rooted in its 
connection to what we know about morphology itself. Morphological data is not distinct in this 
regard—as is well known, molecular data, for example, yield the strongest signals when 
analysed using evolutionary models most consistent with what we know about DNA. However, 
in contrast to molecular data, the infrastructure of tools available for managing and analyzing 
morphological data does so without reference to the large amount of available domain 
knowledge. For these tools, the length of a femur is as unrelated to the size of a humerus as to 
the shape of the maxilla, even though our domain knowledge tells us that humerus and femur 
are serially homologous structures that are parts of the appendages in vertebrates. It also tells 
us that in contrast the maxilla and femur are parts of very different regions of the skeleton.  
These and a host of other facts we know about morphological phenotypes have been codified in 
ontologies [1–4], formal knowledge representation systems that enable machines to understand 
the meaning (semantics) of concepts in a knowledge domain. Computers can use these to 
determine how similar in semantics morphological structures and types of phenotypic changes 
are [5, 6]. Morphological data can also be linked to the myriad of gene phenotypes recorded in 
various model organism databases [7, 8], to determine, for example, to what extent semantically 
very similar changes of two closely related structures are more likely to be controlled by the 
same genes or developmental pathways, compared to unrelated types of changes of unrelated 
structures. This approach can be just as powerful for studying the morphologies of extinct 
organisms known only from the fossil record as for those of the model organisms reared in the 
laboratory.  

At present, computing with formal knowledge representation and discovery technologies is quite 
challenging. It requires considerable investment in computational infrastructure, software 
development, and a workforce with specialized skills [9, 10]. As a result, the gap between the 
state of the art in computational knowledge engineering and what comparative phylogenetics 
tools for morphological data are equipped to tap into continues to widen. We are dedicated to 
work toward closing this gap. Our approach takes inspiration from the engineering principles 
through which similarly challenging machine learning and artificial intelligence-based 
capabilities, such as voice control, image classification, and natural language processing, have 
found their way into everyday homes and small mobile devices. Specifically, we will create 
centralized services that do all the computational heavy-lifting, enabling client tools to act on 
machine-interpretable semantics of morphological data through lightweight application 
programming interfaces (APIs) and widely supported protocols.  
To have a well-defined scope for developing the computable semantics backend and API 
services, we will focus on addressing the following three long-standing challenges, all of which 
are attributable to the lack of machine access to morphological domain knowledge. First, 
reusing, synthesizing, and objectively assessing data matrices at scale through computation, 
which is routine for molecular data, is very difficult for morphological data, and thus depends 
entirely on domain experts. Second, the evolutionary models in use for morphological data treat 
characters and character states as independent and distinct, respectively. Although a 
researcher can use their domain expertise to assign character-specific weights and state 
transition probabilities, tools to do so reproducibly through computable domain knowledge are 
lacking. Third, comparative phylogenetic analyses of discrete characters are limited in 
interpretation by the patterns that can be recognized by researchers and the domain expertise 
they bring to bear. By employing explicit semantics, it would be possible to make novel 
statements about morphological evolution on trees, such as quantifying the support for general 
classes of morphological changes being enriched or depauperate in particular clades. 
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Building such an infrastructure may seem too daunting a task. However, most of the 
foundational technologies, and many of the needed computational pieces, have come into place 
in recent years. These include formal ontologies that allow rich inferences about anatomical 
domain knowledge across species [3, 11, 12]; fast and scalable machine reasoners [13, 14]; 
ontological models for linking natural language text descriptions of phenotype observations to 
nodes in a fully computable knowledge graph [15, 16]; and using these linkages to calculate 
quantitative metrics for the semantic similarity between phenotype descriptions [5, 8]. 
Spearheaded by the Phenoscape project [17], these technologies have since been adapted for 
and applied to evolutionary phenotypes published as phylogenetic character state matrices [17–
19]. With this approach, Phenoscape has demonstrated the feasibility of linking evolutionary 
character transitions to model organism genes by the similarity of their phenotypes [8], and it 
has shown how to use ontologies and machine inference to automatically synthesize a 
morphological matrix for presence/absence characters across studies while minimizing missing 
data [20]. At the infrastructure level, we will adapt this large body of technology development 
work and engineering know-how to transform the capabilities available to comparative 
phylogenetics tools. 
Major objectives and deliverables 
Our development plan is designed to demonstrate, for each of our three chosen focus 
challenges, how the gap between the existing ecosystem of tools and machine-accessible 
domain knowledge can be closed to solve long standing needs and to enable new analytic 
capabilities. Specifically, our work will result in the following deliverables, grouped by the major 
objectives they are designed to accomplish. 
1. Enable computational cross-study synthesis and calibration of character matrices. 

We will develop an objective function that quantitatively assesses a character matrix on the 
basis of its semantic information properties. Using this function, we will develop algorithms 
to synthesize and consolidate characters and character states across studies from those 
originally published, calibrated to the semantic information properties chosen by the user. 

2. Enable incorporation of domain knowledge into models of trait evolution. We will 
develop methods that allow tools for comparative analysis of discrete phenotypic traits to 
score evidence of the non-independence of traits, as derived from ontology-enabled links to 
computable domain knowledge and to model organism genetics. We will incorporate such 
evidence in Bayesian models of trait evolution by informing the prior probabilities for trait 
associations, which we will then apply to a study system with substantial homoplasy. 

3. Enable semantically-aware phylogenetic comparative analyses of morphology. We 
will develop methods for performing ancestral state reconstruction using semantic 
phenotypes and methods for identifying enriched or depauperate classes of morphological 
concepts on a phylogenetic tree.  

Each capability to be delivered as part of this work will be available in the form of online API 
endpoints adhering to the de-facto and thus widely supported standards for such APIs (HTTP/
REST-style design, JSON or XML response formats). To drive usability and performance 
evaluation of the APIs, as well as to demonstrate their use, we will also develop reference 
applications which use the APIs in the statistical programming environment R, which features a 
particularly rich ecosystem of tools for comparative phylogenetics [21]. 
Biological Applications 
The research and development for each deliverable will be validated and driven by two 
biological research applications. One is a recently published morphological supermatrix study 
[22] that will be used to validate and benchmark methods we develop. The second, trait 

!2



correlation in the repeated evolution of miniaturization in ostariophysan fishes, will allow us to 
apply, and thereby refine, the developed methods to an open research question.   
Dillman et al. supermatrix. Supermatrices consolidate original character data from disparate 
studies into a larger matrix, in order to allow inference of more comprehensive phylogenies or to 
understand patterns of morphological diversification on a broader scale. Dillman et al. [22] 
recently evaluated the utility of the supermatrix approach for morphological data in a 
phylogenetic analysis of the Anostomoidea, a morphologically and ecologically diverse lineage 
of characiform fishes [23]. The supermatrix consists of 463 primarily skeletal characters 
synthesized from 14 studies and 6 species descriptions, pertaining to a total of 176 species in 
four families. Despite a large proportion (>60%) of missing data in the supermatrix, the resulting 
phylogenetic analysis showed strong support for relationships congruent with previous studies. 
It also revealed differences in the distribution of character state changes across regions of the 
anatomy, suggesting which regions diversified earlier or later in the evolution of the group. Thus, 
the study both corroborated previously obtained results, and allowed for new insight. This, and 
the fact that it was created in painstakingly manual work by some of the renowned experts for 
the group of interest, make it an excellent benchmark for comparison with the results of 
computational supermatrix synthesis methods. About one third of the characters in the 14 
source studies are already annotated with ontology terms in the Phenoscape KB, requiring only 
modest effort to annotate those remaining. 
Miniaturization in Ostariophysi. Miniaturization refers to the evolution of extremely small body 
size, which for fishes is somewhat arbitrarily defined as species with standard length <26 mm 
[24]. Across the 26,000+ species of fishes, miniaturization has occurred at least 40 times [24–
27]. Although instances of loss or reduction of anatomical structures, such as reduced 
development of the lateral line canals of the head and body, reduced number of fin rays and 
scales, and absence of many cartilages and bones, have been documented for some 
miniatures, it is not known whether such changes characterize miniaturization more generally 
[28]. For example, in a comparison of the presence, absence, and number of 20 bones in 18 
miniature species of cypriniforms, some features were found absent in all but one species, 
whereas others are lost in only a few [29]. In contrast, some miniatures are “proportioned 
dwarfs” with few reductive features [29]. Reconstructing a comprehensive phylogeny from 
morphological data covering some groups of miniaturized fishes is challenging due to the 
abundance of homoplastic phenotype changes [30]. Comparative analysis of the phenotypes of 
miniatures and their non-miniaturized relatives requires aggregating and consolidating 
characters from many disparate studies, a difficult task to conduct manually. The comparative 
analysis of miniaturization traits in fishes thus offers an excellent study system for applying the 
computable semantics-based capabilities developed in this project to an open research 
problem, which will be important for ongoing validation of the practical utility of these 
capabilities. We will computationally generate a synthetic supermatrix of morphological 
characters for miniatures and their non-miniature relatives; test the hypothesis that miniaturized 
taxa are generally characterized by loss or reduction of features in comparison to non-
miniaturized relatives; and if so, identify which evolutionary losses or reductions are specifically 
correlated with decreasing body size. By focusing our study system on ostariophysan fishes 
(characins, minnows, catfishes, knifefishes), which include the majority of known instances of 
miniaturization (at least 25) and of known miniature fish species (over 60% of 273 species) [25, 
29, 31], we take advantage of the ontology-annotated characters of their non-miniature relatives 
that are already in the Phenoscape KB, leaving only the studies for the miniature groups to be 
annotated. This will also provide a more generalizable comparison of workflow and required 
effort between hand-crafting a supermatrix for a research objective, and generating a 
computable semantics-driven synthetic supermatrix. 
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Significance 
Everyone who uses a smart mobile device benefits firsthand from the transformative effect of 
putting powerful yet very demanding technologies in easy reach of vibrant developer 
communities. For example, performing a sentiment analysis on a piece of text, a task that once 
required deploying, mastering, and training sophisticated machine learning algorithms, today 
takes no more than a call to an online API offered by a variety of providers. The ground is well 
prepared for a similar transformation in studies of the Tree of Life. The body of morphological 
data accumulated in the literature over more than 300 years is vast, and it continues to grow. 
The importance of combining morphological with molecular data in evolutionary analyses has 
been powerfully demonstrated [32–34], and for the many extinct organismal lineages in Earth’s 
history morphological data is all we can ever hope to collect. A rich landscape of tools, and a 
thriving community of scientists developing them, support a myriad of ways to assemble, 
manage, and analyze comparative trait data sets. Calls for the wider adoption of computable 
semantics have appeared repeatedly in the systematics and morphology literature [4, 35–37], 
but have remained largely aspirational. Yet, the components needed to go from aspiration to 
practical applications have matured tremendously in recent years, thanks to technological 
breakthroughs such as fast reasoners and highly scalable query engines for knowledge graphs, 
and to the painstaking work invested into building community ontologies representing relevant 
domain knowledge [1, 38, 39] and in annotating published data with these ontologies [18, 40–
42]. Enabling new research applications for these technologies facilitates a virtuous cycle in 
which broader scientific use of computable semantics motivates wider contribution of semantic 
annotations by the scientific community. 
Computable semantics enables not only new analytic capabilities for data recorded as free text. 
It also has the potential to make traditionally manual elements of data assembly and analysis 
protocols computationally reproducible, repeatable, and reusable. Although we focus here on 
morphological trait data, there are many other scientific fields, for example biomedicine, 
environmental science, or geology, in which observations are recorded in natural language text 
descriptions rather than quantitatively. The engineering approaches we will develop in this 
project for removing barriers to computing with domain knowledge should prove valuable in 
informing similarly-minded initiatives in other fields as well. 

Results From Prior NSF Support 
DBI-1062542, $1,851,057, 7/01/11-6/30/16 (no-cost extension granted through 6/30/17). “Collaborative 
Research: ABI Development: Ontology-enabled reasoning across phenotypes from evolution and model 
organisms”. PIs W.M. Dahdul, T.J. Vision; subawards to H. Lapp, M. Westerfield, J. Blake, A. Zorn, D. 
Blackburn, P. Sereno, H. Cui and C. Mungall. We have developed a system, “Phenoscape”, that facilitates 
synthesis across evolutionary phenotypic data and genetic data; developed umbrella anatomy and 
taxonomy ontologies, and software for data annotation. We expanded the taxonomic scope from fishes to 
vertebrates, tying ontologies and software tools together with phenotypes extracted from the vertebrate 
systematic literature into a knowledgebase that is integrated with genetic and phenotype data from three 
vertebrate model organisms: zebrafish (Danio rerio), frog (Xenopus laevis), mouse, and human. 
Intellectual Merit: To reduce time and cost of manual phenotype annotation, we have developed and 
worked with machine learning and improved annotation software to allow for on-demand augmentation of 
community ontologies. We have developed a semantic similarity engine to search the KB for taxa bearing 
a profile of phenotypes that are similar to a query profile from a gene. As a capstone in our final year of 
funding, we are assessing its performance in retrieving candidate genes for the well-studied vertebrate 
fin–limb transition. Broader Impacts: We have hosted a workshop facilitated by KnowInnovation at 
California Academy of Sciences, trained undergraduates, graduate students, and postdoctoral 
researchers, and involved over 70 scientists in workshops in previous funding, many of whom have 
continued to contribute to ontologies and data annotation. Publications and Other Products: 25 papers 
[1, 3, 7, 8, 10, 17–20, 38–53] citing support from this grant have been published to date, and 5 others are 

!4



in preparation. All software products are available from the Phenoscape GitHub repository [54], including 
the Phenoscape KB data integration and reasoning system, web service API, and web user interface; the 
Phenex annotation tool; and additional domain-independent semantic software tools. 

Development Plan 
The computable semantics methods to be delivered as part of this work will be available 
primarily in the form of server-side HTTP/REST-style API endpoints that return their results 
whenever possible in JSON or other data exchange standards (in particular NeXML [55] for 
synthetic and other data matrices). Both the style of API endpoints and the response format 
have become de-facto standards for online APIs, and are therefore very well supported in most 
programming languages, including those (R, Python, Java, C, C++) in which many comparative 
phylogenetics tools are written. For methods expected to be also used interactively, such as 
matrix synthesis and term enrichment analysis, we will also implement online user-interfaces 
that allow downloading the results for further use. 
The API services, their 
backing algorithms, 
and the online user-
interfaces will be built 
into the informatics 
infrastructure for 
computable semantics 
already developed by 
the Phenoscape 
project. This 
infrastructure currently 
consists of the 
following components, 
shown also in Fig. 1 
alongside the flow of 
information from data 
ingest to client tools. 
(A) a Knowledgebase 
(KB), implemented as an RDF triplestore run by Blazegraph, for querying a knowledge graph of 
more than 300 million semantic connections between terms from 11 ontologies, tens of 
thousands of evolutionary characters and character states from more than 160 published 
studies, and thousands of model organism genes and their phenotypes [9, 17]; (B) a KB build 
pipeline which ingests requisite OWL ontologies, ontology-annotated (using Phenex [40, 41]) 
character matrix files, and gene phenotype annotations from model organism databases into a 
unified data model expressed in OWL (Web Ontology Language [56]), and then runs a series of 
automated pre-reasoning steps using industry standard machine reasoners (in particular ELK 
[14]); (C) an online query engine, named OntoTrace, for inferring presence/absence of 
anatomical structures from disparate fine-grained evolutionary character descriptions [19, 20]; 
(D) a semantic similarity engine that allows finding taxa that vary in suites of phenotypes similar 
to those associated with disruption of a particular query gene [8, 10]; and (E) a public web 
service API, and an online user-interface powered by it, that enables reasoner-driven queries of 
the KB by ontology term, taxon, gene, and phenotype, as well for performing OntoTrace and 
semantic similarity-based queries. 
Our development plan is organized along the stages that a comparative trait analysis research 
study will typically go through, from data matrix construction (Aim I), to phylogenetic 
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reconstruction and/or analyzing trait evolution (Aim II), to generating and corroborating 
hypotheses about tempo and mode of trait evolution (Aim III). Details on each aim follow. 
I. Enable computational cross-study synthesis and calibration of character matrices 
As described above in Biological Applications, constructing supermatrices from smaller, often 
narrower-scoped and disparate studies can enable insight into broader evolutionary patterns, 
including phylogenetic relationships and patterns of convergent trait evolution. In contrast to 
molecular data, for which supermatrix assembly can be fully automated, their use for 
morphological phylogenetics remains rare, even though the studies that have been published 
underscore their value [22]. Assembling a morphological supermatrix is an entirely manual and 
labor-intensive process that requires domain experts, and even for experts it is often challenging 
to consolidate characters from different studies, in large part because doing so requires 
reconciling the homology and anatomical concepts implicitly used, but often not expressly 
recorded, by different authors working in different communities of practice [57]. Even where 
such reconciliation has been successful and its resulting characters published, it will typically 
have to be carried out again when creating a different supermatrix. 
A number of us have recently published a method, named OntoTrace [20], that demonstrates 
how linking published morphological characters and states to computable domain knowledge in 
the form of ontologies enables the fully automatic and computational construction of synthetic 
supermatrices for presence/absence traits. The generated supermatrices consist of characters 
synthesized from the original character data and their ontology annotations by means of 
machine reasoning. The method differs from the traditional hand-crafting of supermatrices in 
several important ways: (1) Although domain experts still play crucial roles, such as in ontology 
development and data annotation, the results of their work, ontology-annotated characters, can 
be computationally reused. (2) Machine reasoning can infer a substantial amount of missing 
data from what, based on domain knowledge, is implied by but not expressly asserted in the 
original data. For example, in a synthetic supermatrix of 1051 sarcopterygian taxa and 639 
characters [20], inferred data account for 93.2% of the populated cells, reducing the overall 
proportion of missing data from 98.5% to 78%. (3) The supermatrix synthesis is repeatable and 
fully reproducible, given the same ontologies, original data, and annotations. The chain of 
reasoning through which the synthetic character and its states were inferred can be fully traced 
back through entailments of the ontology to the original data annotation(s). As a corollary, 
matrices can immediately benefit when ontologies or data annotations are updated or corrected. 
Ia. Generalizing OntoTrace. OntoTrace is already available as part of the Phenoscape KB 
infrastructure, both as an API service and through a web-based user-interface. However, the 
method can currently only synthesize presence/absence characters, in essence because this 
predefines the possible state values for every inferred synthetic character. Lifting this limitation 
is non-trivial but necessary for the method to become broadly useful for matrix synthesis. Initial 
experiments using a naïve, purely inference-based implementation yielded synthetic characters 
with tens or even hundreds of states. Furthermore, without the restriction the number of 
inferrable characters quickly becomes intractably large due to the rich reasoning supported by 
the requisite ontologies, especially when many studies with diverse types of characters are 
synthesized. Also, clusters of perfectly correlated (yet variable) characters [20] as a result of 
logical inference chains would be exacerbated for inferring characters for any phenotypic 
quality. 
We will therefore research and develop methods for consolidating synthetic character states, 
and characters, according to the properties of individual characters, the collection of characters 
comprising a matrix, and the collection of states comprising a character, that would optimize the 
suitability of a synthetic supermatrix for research applications. Some properties will reflect 
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expectations of common downstream phylogenetic analysis tools, for example constraining the 
number of states per character. However, most criteria will take the role of bringing 
morphological domain knowledge to bear. Specifically, we will develop an objective function for 
scoring characters and character matrices, based on quantitatively assessing the semantic 
information content and similarity of the character states comprising a character, and the 
characters comprising a matrix, respectively. A host of algorithms exists already for determining 
semantic information content and similarity between nodes in a knowledge graph of domain 
ontologies and data annotated with them [58], and several of them have been successfully 
applied to and evaluated for evolutionary phenotypes by members of our team [8, 10, 50].  
Ib. Objective function design. The function will be designed to score synthetic (inferred) 
characters, individually and as a collection forming a matrix, for a variety of possible objectives. 
We expect these objectives to include at least the following: 
1. High and non-redundant semantic information content of a matrix. A matrix of characters 

covering a broader semantic diversity of anatomy and phenotypic quality, with less 
semantic redundancy between characters, can be expected to yield less biased 
phylogenetic inferences. 

2. High information content of characters and character states. When unconstrained, machine 
reasoning will also infer trivial characters and character states that combine the most 
generic anatomical and phenotypic quality concepts (such as the ontologies’ root terms). 
More specific characters have higher information content, but may yield more missing data. 

3. Reduction of missing data. Machine reasoning can fill in a considerable fraction of data that 
would otherwise be missing, and reducing missing data improves power for comparative 
analyses. 

Once in hand, the objective function(s) will allow us to develop the necessary methods for 
computationally and reproducibly consolidating character states and characters such that its 
score is maximized. For this, we anticipate to develop a semantic clustering algorithm; products 
of Phenoscape include semantic similarity (and thus distance) metrics adapted for character 
states and groups (i.e., clusters). Clusters of states can be consolidated to a synthetic and more 
general state, by finding, through machine reasoning, the least common subsuming phenotype 
(Fig. 2). (Clusters of characters are in essence clusters of the characters’ states.) The objective 
function, or components of it, allows constraining the character state and character 
consolidation by maximizing the score of the resulting matrix. It can also be used to 
computationally and reproducibly filter out characters whose semantic properties make them 
outliers in a synthesized matrix, for example because their information content is too low.  
Ic. Validation and benchmarking. A key issue for the development of these algorithms will be 
how to validate and benchmark them. Also, the objective function will have local maxima, and  
to achieve computational tractability we will need to develop heuristics instead of an exhaustive 
search. I.e., a synthesized matrix may not correspond to the global maximum of the objective 
function. To continuously validate the objective function and its components, and to benchmark 
the heuristics used for matrix synthesis, we will use the Dillman et al [22] supermatrix as a gold 
standard (see Biological Applications). Specifically, the higher a function or a set of parameters 
scores the gold standard, in comparison to random aggregations of characters from the 
underlying studies, the more suitable it should be. Similarly, we can use the tree inferred from a 
synthesized matrix to compare against the published tree. 
Once validated using the Dillman et al. supermatrix, we will apply the matrix synthesis method 
to the designated open research question, the repeated evolution of miniaturization in 
ostariophysan fishes. The goal is to obtain a supermatrix of characters for miniatures and their 
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non-miniature relatives. This application provides both a more realistic scenario in terms of 
expected future uses, and a more challenging one. For example, there is no reference 
phylogeny for comparison, although we will alleviate this by using Open Tree [59] to synthesize 
a tree from recently published smaller phylogenies for ostariophysan clades that contain 
miniatures (e.g., Cyprinidae [60], which contains 33 miniatures, and Characidae, with nearly 70 
miniatures [61]). Some of the morphological knowledge about miniatures has been published in 
monographs, and the sources of natural phenotype data are thus more mixed [52].  
Id. Data annotation and ontology development. Both of the biological applications used in 
this and subsequent aims take much advantage of data already linked to (i.e., annotated with) 
ontology terms as a result of the Phenoscape project. However, both applications require 
additional data annotation, which typically will also require augmenting requisite ontologies [42]. 
Specifically, we will annotate the data from the source studies used by Dillman et al. that are not 
yet in the Phenoscape KB. These amount to about 400 characters (over two thirds of the total) 
in 13 studies (152 characters from one study [62] are already in the KB). Annotating these 
studies will use tools (Phenex) and workflows as described previously [18, 40, 41], and is 
expected to be accomplishable in 4-5 days of effort. For the miniaturization study, we will 
annotate phenotype descriptions for 174 species from approximately 30 matrix publications, 
containing ~515 characters, and 50 species descriptions or monographs with ~500 descriptions. 
In contrast to character descriptions, natural phenotypes in monographs are typically less 
structured descriptions within longer paragraphs of text. Annotating these will be aided 
significantly by a feature recently added to Phenex, which runs character and state descriptions 
through an online API providing ontology-backed named entity tagging. To further streamline the 
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annotation of monographs, we will also adapt the ways in which Phenex can load phenotype 
descriptions. Anatomical entities and terms describing phenotypic qualities that are not yet 
represented in Uberon [1] and other pertinent community ontologies will be submitted for vetting 
and addition through the ontology term request broker already built into Phenex [41]. Overall, 
we expect that the data annotation for the miniaturization study can be accomplished in about 1 
week of effort. 
Ie. Interoperability with commonly used tools. The R platform for statistical computing [63] 
has emerged as highly popular among evolutionary scientists. To ensure that the capabilities we 
create interoperate well with the existing ecosystem of R packages for comparative trait analysis 
[21], we will extend the RPhenoscape package [64], which was developed by the Phenoscape 
project as a pilot for bridging the impedance mismatch between the ontology-driven data models 
used by the Phenoscape KB and its API, and the simple tabular formats in which most of the 
pertinent R packages expect data. RPhenoscape allows R users to exercise several prominent 
capabilities of the Phenoscape API, including presence/absence trait matrix synthesis through 
the OntoTrace service, without having to be aware of ontologies. We will add to this package 
similarly interoperable access to the matrix synthesis and semantic information content-scoring 
functions developed as part of this aim.  
II. Enable incorporation of domain knowledge into models of trait evolution 
Phylogenetic analysis of discrete phenotypic traits for tree reconstruction or patterns of 
diversification rely on essentially the same models used for molecular sequence data [65, 66]. 
As discrete characters, both types of data face common challenges; phylogenetic information in 
the data is often limited because of a small state space and the potential for homoplasy, which 
in turn makes it difficult (in comparison to continuous traits) to attain sufficient power to 
distinguish between models and to estimate parameters. Furthermore, phenotypic traits often 
have strong correlations and violate assumptions of independence that are commonly applied to 
homologous sites in a DNA sequence. In contrast to molecular data, discrete phenotypic traits 
rarely have enough data to effectively estimate or even detect such correlations. For molecular 
data many of these challenges have been overcome by incorporating knowledge of physical 
characteristics of DNA, protein residues and processes of mutation into models of evolutionary 
change, but analogous approaches for discrete phenotypic traits have remained lacking. 
Here we aim to enable similar advances for discrete phenotypic trait data by allowing tools used 
for comparative analysis to incorporate computable morphological knowledge and genetic 
evidence from model organisms into their models. One of the most natural targets for this 
capability is to enable tools to inform prior probabilities for Bayesian models, which are used, for 
example, to assign traits to different categories which may differ in evolutionary rates. Our goal 
is to provide, through programmable APIs, quantitative metrics of relatedness between traits, 
based both on their semantic similarity as determined by proximity in a knowledge graph, and 
on the evidence for a shared genetic architecture, as determined by model organism genes with 
similar location of expression or similar phenotype when mutated. Tools can then use these 
metrics to inform a Bayesian prior probability with what in essence represents prior knowledge 
and data. 
IIa. Correlated phenotypes in multi-trait datasets. A common goal and major challenge for 
comparative analyses is estimating correlations between discrete traits (see [67] for a review). 
Furthermore, scaling to large multivariate datasets is a largely unsolved problem. For example, 
the widely-used Pagel model [68] estimates correlations by combining pairs of binary traits into 
a single character with four states (e.g. for traits A and B, AB can be 00, 01, 10, or 11). If 
transition rates for trait A depend on the state of trait B (for example), then the two traits are 
considered correlated. However, 8 transition rates must be estimated for per trait combination--
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resulting in exponentially increasing numbers of parameters with traits. Yet, discrete traits 
contain little information in phylogenetic comparative datasets for estimating covariances 
between evolutionary rates across traits, and thus often require such large numbers of species 
that assumptions of homogenous evolutionary process are likely to break down.  
To address this, we will develop a novel method that integrates computable knowledge-based 
evidence as prior information for detecting associations between discrete traits evolving on a 
phylogeny. Specifically, we will use Bayesian mixture modeling to cluster sets of discrete traits 
into bins with common evolutionary dynamics. For example, we will consider heterogenous rate 
Markov models where shifts occur on the phylogeny. These shifts can occur during epochs 
across the phylogeny [69], or in individual clades [70]. We will then apply a Dirichlet Process 
Prior on the assignment of traits into categories. This prior allows us to estimate both the 
number of groups as well as the assignment of traits into these groups. The result describes the 
posterior probability for each trait for being found in each distinct evolutionary rate class. For 
example, if a set of traits suggests a shift in transition rates in a particular clade, then these will 
be binned together into a group that has a shared parameter for the timing of the shift. Similar 
models have been implemented previously for combining phylogenies from many different 
species to estimate common timing of divergence events in phylogeographic studies (msbayes 
[71]), for assigning branches on the phylogeny into molecular rate categories [72] or for 
partitioning molecular datasets into different substitution models [73, 74].  
To demonstrate and validate how models of trait evolution can integrate computable semantics-
derived metrics and metrics derived from model organism genetics-based evidence, we will 
implement in the Bayesian phylogenetic programming language RevBayes [75] a model that 
uses these metrics as informative priors for trait associations [76]. RevBayes allows users to 
specify what parameters are shared across discrete traits (e.g. location of shifts, rate multipliers, 
rate classes, complexity of the Markov model), enabling the testing of a wide variety of 
relationships between traits. In our approach we will essentially place a prior on the network of 
associations between traits based on their semantic and potential genetic relationships, giving 
connections between traits with prior evidence of association a different distribution than those 
connecting traits expected to be unrelated. Leveraging knowledge in this way not only 
strengthens comparative methods by helping to overcome the difficulty of limited information 
inherent in discrete datasets. Traits that show co-diversification on the phylogeny despite low 
prior probability of being associated may reveal common underlying genetic or selective factors. 
In this way, by using prior knowledge comparative analyses can also discover relationships 
between traits that otherwise may lack an apparent correlation. In essence, our approach 
changes the question from whether or not traits are correlated, to whether or not traits share a 
common evolutionary tempo and/or mode. 
IIb. Methods for semantic and genetic associations of traits. To enable the computational 
semantics and model organism genetics-based capabilities for informing trait evolution models, 
we will develop the following methods as extensions of the online Phenoscape API. 
1. Semantic similarity matrix for a set of phenotypic traits. This will use the ontology term links of 

the traits and machine reasoning to quantify semantic similarity between traits. A variety of 
generic metrics exist, and are implemented in an actively developed software library. 
Phenoscape researchers are evaluating the merits of different types of metrics for natural 
phenotypic traits, and the Phenoscape KB already includes scoring the semantic similarity 
between model organism gene phenotypes (which number only in the thousands) and 
evolutionary phenotypes. For expanding this to scoring similarity between natural 
phenotypes, we will determine and implement a metric that is accurate while still sufficiently 
scalable to compute in real time. 
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2. Genetic overlap for a set of characters. Model organism databases link their expression and 
gene phenotype data to ontologies (e.g. [6, 77–79]) that are either shared or logically 
interoperable with those used by character data annotations in the Phenoscape KB. This 
enables computationally linking natural phenotypic traits to model organism genes by 
similarity of phenotype [7] or location of expression. The KB currently imports and integrates 
genes and their function, phenotypes, and location from several model organism databases 
[6, 77–79], which is maintenance-prone. We will simplify this by transitioning to services 
provided by the Monarch Initiative, a recently established biomedical knowledgebase [80] 
that pre-consolidates data across model organisms into a single model. The KB currently 
also does not use gene network data derived from known pathways and experimental 
evidence, one of the key sources for assessing potential gene associations. We will research 
and implement a mechanism for including such data, and integrating them into the evidence 
scoring. 

To make our approach as widely accessible to comparative biologists as possible, we will also 
create an API endpoint, and an online user-interface powered by it (built into the existing 
Phenoscape user-interface), that allows selecting a set of phenotypic traits from the KB and 
outputs blocks of RevBayes code implementing the model priors as described above. 
IIc. Validation and biological application. Our Bayesian approach to detecting character 
correlations will be validated by extensive simulation studies to ascertain that the method has 
appropriate statistical behavior. We will then apply our approach to the research question of 
whether there are sets of correlated phenotypes in the repeated evolution of miniaturization in 
ostariophysan fishes. Although a well-resolved phylogeny encompassing all miniaturized 
ostariophysans, which is necessary for this analysis, is not currently available, we will use high 
level phylogenies available within the group [61, 81, 82] and for smaller clades [83–85] to 
synthesize a tree for all Ostariophysi using Open Tree. To avoid any potential circularity from 
analysing trait evolution for characters also used to infer the phylogeny, we will generate two 
synthesized trees: one synthesized from both molecular (e.g., [81, 82, 86]) and morphological 
(e.g., [61, 87]) data; and the second synthesized only from molecular data. 
One of the challenges here is that each step from matrix synthesis, to scoring evidence of trait 
association, to setting priors, can use different parameters, semantic similarity metrics, and 
choices for source data. To evaluate the potential multitude of different resulting sets of trait 
associations, we will assess Bayesian model behavior and MCMC performance, such as time to 
convergence and how narrow posterior probabilities are for parameter estimates. Even if much 
of this application would necessarily be exploratory, it would allow insights into trait correlations 
linked to decreasing body size that have so far not been obtainable at this scale.  
III. Enable concept enrichment analysis for morphological data 
The use of explicit semantics for morphological characters provides opportunities for novel 
classes of comparative phylogenetic analyses. Here we focus on two such opportunities: 
semantically-aware ancestral character state reconstruction and measuring enrichment of 
concepts on a phylogenetic tree 
IIIa. Inference of ancestral traits. We frequently wish to make inferences about phenotypes in 
unobserved ancestors based on direct observations of phenotypes in extant, or fortuitously 
preserved extinct, lineages. Reconstructed ancestral phenotypes are used to test hypotheses 
about the timing and evolutionary causes of phenotypic changes, and have even been used to 
resurrect and test the biochemical properties of extinct protein sequences [88]. Here we are 
interested in questions such as: On which branches did miniaturization phenotypes arise in the 
history of the Ostariophysi? Do some miniaturization-associated phenotypes repeatedly precede 
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others? Do the suite of characters affected in miniatures covary generally throughout the 
phylogeny or only in cases of dramatic size reduction? 
The classical way to solve the Ancestral Character Reconstruction (ACR) problem is to assign 
discrete character states to the nodes of a phylogeny according to a Maximum Parsimony 
objective function [89]; unfortunately, this is not so reliable in practice [90]. Contemporary ACR 
methods employ explicit statistical models. Maximum Likelihood (ML) methods can quantify 
support for an evolutionary hypothesis while treating the set of state assignments on a given 
phylogeny as a nuisance variable that is not known with certainty [91]. With Bayesian 
approaches, one can go further by quantifying support for a hypothesis over the joint probability 
distribution of state assignments and phylogenies [92]. 
To date, the Phenoscape KB has used a simple approach to ACR based on the parsimony 
algorithm of Fitch [93]. First, the set of character states for a taxon is defined to include the 
character states annotated to all descendant taxa. Then, characters with sets of states that differ 
among the daughter lineages of a particular taxon are noted as being variable for that taxon [8]. 
While this succeeds in identifying those characters that vary in state among the immediate 
descendants of a taxon, it has some of the same disadvantages as classical ACR methods, 
such as a bias toward the recent relative to the true position of the change, a failure to account 
for uncertainty in the phylogeny, and a failure to provide an estimate of uncertainty even with a 
fixed tree. 
Here, we propose to adapt statistical approaches to the reconstruction of ancestral semantic 
phenotypes. A starting point for research will be modifying the multilayer probabilistic model 
used by Bauer et al [94], which takes as input a suite of semantically defined clinical phenotypes 
and estimates the probabilities of different possible causative diseases. In our application, one 
layer could model the probability of observing semantic phenotypes when they are present, a 
second layer could represent the comprehensive set of true phenotypes (which is only 
imperfectly observed), and a third layer would map the true phenotypes to the hierarchy of the 
ontology. Markov Chain Monte Carlo would be used to compute the marginal probabilities for 
the parameters of interest in such models. This probabilistic framework can easily handle the 
statistical consequences of phylogenetic relationships among nodes (at least for a fixed 
phylogeny), the effects of missing data, and the possibility of using phenotype annotations that 
are more or less specific in a given instance. We anticipate that development of this approach 
will be most straightforward for a fixed phylogenetic tree. 
We will evaluate the performance of our probabilistic method compared to a simple parsimony 
approach primarily using simulations of character evolution (where the true changes on the 
phylogeny are known). We will also compare results to ML and Bayesian methods with non-
semantic discrete phenotypes. Finally, we will apply these methods to address the questions 
posed above regarding suites of characters involved in miniaturization.  
IIIb. Enrichment of traits within a phylogeny. Many genomic studies in the past decade have 
employed Gene Set Enrichment Analysis (GSEA) [95], the goal of which is to determine if there 
are terms, or branches, within the Gene Ontology that are over-represented among the 
functional annotations to some set of genes. The gene set may be from an experiment that 
catalogued differential gene expression in response to some treatment, or it may be from the set 
of candidate SNPs uncovered by a genome-wide association study. 
A very similar type of question can be asked in a phylogenetic context. But here, rather than 
gene lists, we would want to ask if there are terms within an anatomy ontology (like Uberon [1]) 
that are over-represented among the evolutionary changes observed in a given region of a 
phylogeny (e.g. along a branch, or within a clade). Such phenotypic trends within clades are 
routinely identified and discussed in the evolutionary literature. A famous example is the 
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adaptive radiation in feeding ecology among cichlid fish that is thought to be due to the evolution 
of functional decoupling between the upper and the lower pharyngeal jaws [96]. But because 
there is a limited toolkit for quantifying and testing such trends, there is a risk that some patterns 
would not stand up to statistical scrutiny and, conversely, that some subtle but important 
patterns may be being missed. 
Thus, the second opportunity we wish to pursue in this aim is to adapt the ideas of GSEA to 
phylogenetic enrichment analyses. A wide variety of different GSEA methods have been 
developed; Tarca et al [97] evaluated 16 methods in a recent study. For this application, we wish 
to identify the most specific level within the ontology for which enrichment is significant. That 
implies we cannot use naïve methods that consider only some small set of mid-level ontology 
terms as independent classes in a contingency test, and must instead take ontology structure 
into account in our statistic. We are also interested in putting enrichment tests into a more 
general phylogenetic comparative framework, in order to be able to test questions such as 
whether miniaturization in the Ostariophysi repeatedly enriches for certain classes of phenotype. 
We will evaluate the accuracy of the methods to be developed using simulated character 
evolution on a tree (as above), and by comparison to published reports of phenotypic trends 
within the Ostariophysi.  
We will provide access to ancestral character reconstruction and enrichment analysis within the 
Phenoscape API as well as R reference implementations for accessing these services.  

Broader Impacts 
The capabilities for exploiting computable domain knowledge that are enabled by this project in 
the form of easy to access online APIs will transform how tools, whether large or small, can 
derive insight from morphological big data. We will undertake 3 complementary activities 
designed to promote adoption, sustainability, and workforce training. (1) Training our target 
audience. We will train our primary audience of potential tool users and developers in the 
foundational concepts and technologies we bring to bear, and in how the capabilities we provide 
can be exploited for new research methods. Specifically, we will develop the curriculum for a 
short-course on requisite knowledge representation and computational knowledge inference 
technologies, and teach the course at the Evolution Meetings from 2018 to 2020. To 
professionally assess the effectiveness of the training so it can be successively improved, we 
will contract with Data Carpentry, a non-profit organization that develops curriculum and teaches 
workshops for data literacy for researchers. Data Carpentry has recently hired an assessment 
expert to better understand and improve the effectiveness of its own workshops. (2) Engaging 
our audience hands-on in adopting and influencing our products. To promote innovative 
applications adopting the capabilities created by the project, we will engage comparative 
method developers and users through two community-oriented hackathon events, held in Years 
2 and 3. Each event will be 4 days long with 20-25 participants, and will include users whose 
research questions and/or datasets stand to particularly benefit from the computational 
semantics capabilities. Rich ontologies, and comparative data annotated with them, have 
started to emerge from the research community at large, for example for sponges, spiders, and 
for plants. To afford these groups some of the same computable semantics-based capabilities, 
one of the hackathon events will be designated as “bring your own data”, with the goal of 
enabling direct submission of an ontology-annotated character matrix to the Phenoscape KB as 
input for user-interface and API methods that compute semantic similarity and other metrics on 
the fly. (3) Engaging undergraduate students in cyberinfrastructure for treating text as 
data. Despite a high demand for a workforce trained in ontologies and associated data analytics 
algorithms, these subjects are not taught in undergraduate computer science or bioinformatics 
courses at most US universities. A programming internship program run by Phenoscape through 
PI Lapp for undergraduates at Duke University was highly successful in exposing computer 
science majors to resources and methods for computing with the semantics of natural language 
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text while solving real-world programming tasks. In this project we will continue this program, 
and expand it to RTI through PI Balhoff. Summer interns at RTI participate in a structured series 
of workshops including a Pitch Bootcamp and a final poster session, gaining exposure to 
research opportunities in a non-academic but non-profit institution. RTI’s program also has a 
track record of recruiting students from several local historically minority-serving universities. 

Management Plan 

A. Responsibilities and timelines 
The project team includes 5 PIs that combine a tremendous breadth of biological, 
computational, and software engineering expertise, and are enthusiastic about enabling a 
community to incorporate computing with domain knowledge into its rich arsenal of methods. 
Lead-PI Dahdul (University of South Dakota) is an ichthyologist with deep expertise in 
ostariophysan fish morphology and evolution, and a veteran of the Phenoscape project. She will 
be responsible for all data and ontology curation efforts, and will serve as the expert stakeholder 
overseeing both biological research applications. PI Lapp (Duke University) has extensive 
expertise in evolutionary bioinformatics, and in using machine reasoning and ontology-driven 
data analytics for biological applications. He is a co-developer of several interoperability-
oriented R packages (RMesquite, RNeXML, RPhenoscape), and has co-organized hackathons 
promoting interoperability in the R package ecosystem for evolutionary informatics. Lapp will 
have primary responsibility for the design, development, and testing of all APIs and R packages, 
and he will also lead the organization of the two planned hackathon events for community 
engagement and adoption (see Broader Impacts). PI Uyeda (University of Idaho) has deep 
expertise in comparative phylogenetics, population genetics, and Bayesian models for 

Responsibility and Timeline

Specific Aim Year 1 Year 2 Year 3  

Ia. Generalizing OntoTrace L, B L, B L, B L, B   

Ib. Objective function design L, B L, B L, B L, B   

Ic. Validation and benchmarking
L, B, 
D

L, B, 
D

L, B, 
D

L, B, 
D L, B

Id. Data annotation and ontology development D, B D D    

Ie. Interoperability with commonly used tools   U, L U, L U, L U, L

IIa. Correlated phenotypes in multi-trait datasets U U U U   

IIb. Methods for semantic and genetic associations 
of traits  B B, L B, L B, L  

IIc. Validation and biological application   B, D
B, D, 
U

B, D, 
U

IIIa. Inference of ancestral traits    
V, B, 
D

V, B, 
D, U  

IIIb. Enrichment of traits within a phylogeny     
V, B, 
D, U

V, B, 
D, U

Hackathons    All PIs  All PIs

Short course on knowledge representation and 
inference  All PIs  All PIs  All PIs

B=Balhoff, D=Dahdul, L=Lapp, U=Uyeda, V=Vision
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sequence and trait evolution. He is author and co-developer of R packages used frequently in 
comparative analyses, and is a collaborator with the Arbor Workflows project for comparative 
methods. Uyeda will be responsible for developing, implementing, and validating the 
computable knowledge-informed model for trait evolution in RevBayes, and for using it to 
address the biological research applications. PI Vision (University of North Carolina at Chapel 
Hill) is a computational evolutionary biologist who was one of the co-PIs of Phenoscape. He will 
be responsible for work on semantic ancestral character reconstruction and phylogenetic 
character enrichment. PI Balhoff (RTI) originally trained as an evolutionary biologist, and 
combines deep expertise in knowledge modeling and formal semantics with extensive 
experience in scientific software engineering. He will be responsible for all software 
development on the Phenoscape KB, including data ingest, build pipeline, automated reasoning 
approaches, APIs, and user-interface. 
Each of the 3 major aims involves major research efforts for algorithm and method 
development, as well as for the biological applications. These will all be carried out by 3 
graduate students, one each at Duke (Aim I), Idaho (Aim II), and UNC Chapel Hill (Aim III), with 
PIs Lapp, Uyeda, and Vision as their respective primary supervisors. In addition, the project’s 
PIs will co-mentor the graduate students as a team, giving them access to a much broader 
training and expertise than they would have in a single lab. We also plan to employ a total of 12 
undergraduate student in internship projects, 7 at Duke, 3 at UNC, and 2 at RTI, who will be 
supervised by PIs Lapp, Vision and Balhoff, respectively. The internships aim to provide training 
experiences in bioinformatics and scientific cyberinfrastructure development (see Broader 
Impacts), and to assist with designated software development tasks, in particular for R 
packages at Duke and UNC and Phenoscape KB development at RTI. 
B. Project coordination plan  
The key to effective collaboration among participants in different locations is frequent and 
regular communication. Most of the PIs in the team have productively and successfully 
collaborated remotely for over 10 years. We will continue to use the varied communication 
channels already in place among the PIs through their collaboration in Phenoscape. These 
include twice monthly conference calls, a project mailing list, real-time team messaging software 
(Slack), web-based project management tools (Trello, GitHub), and web-based file sharing. 
Members of the project team will also meet face-to-face several times each year through the 
annual all-hands project team meeting, training workshops given at the Evolution Meetings, and 
two community-involving hackathons (see Broader Impacts). 
C. Advisory board  
We will assemble an Advisory Board with diverse expertise to evaluate progress, help minimize 
risks, and to provide guidance for research as well as for outreach and promoting adoption of 
computable semantics to enable new research frontiers. The Board will meet with the project 
team face-to-face once every year. Two board members already committed include Brian 
Sidlauskas (Oregon State University), fish morphology and evolution, phylogenetic 
morphospace methods; and Scott Chamberlain (rOpenSci), interoperable API design and R 
programming best practices (see letters of commitment). We will recruit four additional members 
with complementary areas of expertise once funded. 
D. Dissemination plan 
As for the Phenoscape project, all software source code, data annotations, and ontology 
contributions developed as part of this project will be available on public version control 
repositories, in particular GitHub, from the start of development under OSI-compliant open-
source and Creative Commons Attribution (CC-BY) licenses, respectively. In addition to 
traditional peer-reviewed journal publications, project results will be disseminated early on at 
relevant scientific meetings for evolutionary biology (in particular Evolution Meetings and 
iEvoBio) and computational biology (in particular Pacific Symposium for Biocomputing).  
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