

Rare Earth Doped Nanostructures: Quantum Leaps for Optical Technologies

Philippe Goldner

Institut de Recherche de Chimie Paris Chimie ParisTech, CNRS, Paris, France

Computing

The Sunway TaihuLight

10 million CPU - 10¹⁷ operations/s

A digital quantum computer

Google

49 quantum registers by 2017

Applications

Quantum computing

Molecule, drugs, material design Machine learning

Quantum sensing Magnetic and electric fields Forces, gravity

Quantum communication Quantum internet Quantum cryptography

Quantum Technologies

Quantum technology companies

CP

High-tech companies

No Small Effort

The Economist, 2017

Large scale research programs

China : five-year national plan (2016 - 2020)

UK Quantum Tech. Programme (2015-2019, 300 M€)

EU Quantum Flagship (2018-2028, 1 B€)

A new platform

Quantum States

Lifetime

classical:

energy exchange population lifetime, T₁

quantum: α/β perturbation coherence lifetime, T₂

 $T_2 < T_1$

Rare Earth Ions: Qubits

Optical transitions in the visible and infrared range

Screening of 4f electrons: long optical T₂ (at LHe temp)

Electron and/or nuclear spins

IR

P. Goldner, A. Ferrier, and O. Guillot-Noël, in Handbook on the Physics and Chemistry of Rare Earths, vol. 46, 2015

RE: Interfaces and Memories

With light

Quantum memories for optical photons

W. Tittel et al., Nature Photon. 2009.

Some Results in Bulk Materials

Material properties

Optical coherence lifetimes

 Er^{3+} : Y₂SiO₅: up to 4 ms T. Böttger et al., Phys. Rev. B 2009. State transfer Optical to spin Pr³⁺:La₂(WO₄)₃: spin control M. Lovric, ..., PG, Phys. Rev. Lett. 2013.

Spin coherence lifetimes Eu³⁺:Y₂SiO₅: up to 6 hours M. Zhong et al., Nature 2015.

Electron to nuclear spin

Nd³⁺:Y₂SiO₅: high fidelity G. Wolfowicz, ..., PG, Phys. Rev. Lett. 2015.

Quantum information

Optical memories

Nd³⁺:Y₂SiO₅: teleportation F. Bussières, ..., PG et al., Nat. Photonics 2015.

Er³⁺ glass fiber: 1.5 µm storage E. Saglamyurek et al., Nat. Photonics 2015.

Microwave memories

Er³⁺:Y₂SiO₅: strong coupling S. Probst et al., Phys. Rev. Lett. 2013.

IR СР

At the nanoscale

New opportunities

Enhanced light-matter interactions micro/nano optical cavities

Single center detection and control small detection volume

Hybrid quantum systems interactions at short distances

Hybrid systems: G. Kurizki et al., PNAS 2015.

An example

Optical nano-resonator

A Versatile Approach

Bottom-up synthesis

Nanoparticles

Thin films

Quantum memories Single photon sources

IR

CP

EU project NanOQTech: <u>www.nanoqtech.eu</u> RE-graphene: K. J. Tielrooij, ..., PG et al., Nat. Phys. 2015.

High-Q micro-cavity

Hybrid systems Force sensors

Hybrid RE/nano-resonator system using strain

Quantum optoelectronics w/ graphene

Nanoparticles

0.5% Eu³⁺:Y₂O₃

Homogeneous precipitation Monodispersed, spherical

High temperature annealing Cubic phase Defects reduced at 1200 °C

Long T₂ in bulk crystal and transparent ceramics

Particles: K. de Oliveira Lima, ..., PG, J. Lumin. 2015.

Particle size: 400 nm Crystallite size: 130 nm

Ceramics: A. Ferrier, ..., PG, Phys Rev B 2013 - N. Kunkel, ..., PG, APL Mat. 2015, J. Phys. Chem. C 2016, PRB 2017.

The Photon Echo

Echo: only ions with unperturbed quantum states

Coherence lifetime: $I_{echo} = exp(-4t_d/T_2)$

Homogeneous linewith: $\Gamma_h = (\pi T_2)^{-1}$

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 1966.

Measuring Coherence Times

Setup for photon echo experiments

Samples: transparent materials or... powders?

Photon Echo in Powders

Light scattered by the powder

A. Perrot, PG, et al. Phys. Rev. Lett. 2013. F. Beaudoux, ..., PG, Opt. Express 2011.

Interferometric detection

Optical T₂ in nanocrystals

Echo Decay in Nanocrystals

J. G. Bartholomew, K. de Oliveira Lima, A. Ferrier, and PG, Nano. Lett. 2017.

IR CP

Eu:Y₂O₃ Homogeneous Linewidths

R. S. Meltzer et al., Phys. Rev. B 2000, 2001. A. Perrot, PG, et al. Phys. Rev. Lett. 2013. J. G. Bartholomew, ..., PG, Nano. Lett. 2017.

Size Limited Linewidth?

IR

J. G. Bartholomew, K. de Oliveira Lima, A. Ferrier, and PG, Nano. Lett. 2017.

Phonon in nanoparticles: R. S. Meltzer et al., Phys. Rev. B 2000, 2001.

Magnetic Centers

no contribution from magnetic impurities or defects

surface electric charges?

Q. dots: N. Ha, et al., Phys. Rev. B, 92, 075306, (2015). NV: M. Kim, at al., Phys. Rev. Lett., 115, 087602,(2015).

IR J. G. Bartholomew, K. de Oliveira Lima, A. Ferrier, and PG, Nano. Lett. 2017.

Spin T₂ in ceramics

Spin Quantum States

J. Karlsson, N. Kunkel, A. Ikesue, A. Ferrier, and PG, J. Phys.: Condens. Matter 2017.

$^{151}Eu^{3+}$: nuclear spin I = 5/2

Spin Coherence Lifetimes

IR

CP

J. Karlsson, N. Kunkel, A. Ikesue, A. Ferrier, and PG, J. Phys.: Condens. Matter 2017.

Magnetic vs. Electric Perturbations

R. M. Macfarlane, ..., PG, Phys. Rev. Lett. 2014

What is next?

Outlook: Micro-cavities

D. Hunger

Smaller particles (< 100 nm)

Longer optical coherence lifetime

Spin properties

Single particle spectroscopy

Summary

- Rare earth doped nanostructures for optical quantum technologies
 - unique capability of interfacing light, atoms and spins
 - long optical coherence lifetimes for applications in: quantum memories, single photon sources, hybrid systems
 - outside quantum technologies:
 - probing materials with high resolution spectroscopy: defects, disorder, impurities, surface

Acknowledgment

Paris team:

- Lima, John Bartholomew, Jenny Karlsson
- N. Oliverio, Keysight Inc., USA

Funding:

A. Ferrier, D. Serrano, A. Tallaire, M. Mortier, Shuping Liu, Zhonghan Zhang, Sacha Welinski, Alexandre Fossati, Marion Scarafagio. Former members: Marko Lovrić, Karmel de Oliveira

Collaborators: R. Gonçalves, USP, Brazil - D. Hunger, KIT, Germany - S. Kröll, Lund University, Sweden Y. Le Coq, SYRTE, France - S. Seidelin, Grenoble University, France - H. de Riedmatten, ICFO, Spain - F. Koppens, ICFO, Spain - K. Mølmer, Aarhus University, Denmark

JanOQTech

Nanoscale Systems for Optical Quantum Technologies http://www.nanogtech.eu

European Union's Horizon 2020 programme

