

Rare Earth Doped Nanostructures: Quantum Leaps for Optical Technologies

Institut de Recherche de Chimie Paris Chimie ParisTech, CNRS, Paris, France

Philippe Goldner

Computing

The Sunway TaihuLight

10 million CPU - 10¹⁷ operations/s

A digital quantum computer

Google

49 quantum registers by 2017

Quantum Technologies

Quantum technology companies

High-tech companies

Applications

Quantum computing

Quantum communication Quantum internet Quantum cryptography

Molecule, drugs, material design Machine learning

Quantum sensing Magnetic and electric fields Forces, gravity

No Small Effort

Large scale research programs

China : five-year national plan (2016-2020)

UK Quantum Tech. Programme (2015-2019, 300 M€)

EU Quantum Flagship (2018-2028, 1 B€)

The Economist, 2017

A new platform

Quantum States

classical:

energy exchange population lifetime, T1

quantum: α/β **perturbation coherence lifetime, T2**

 $T_2 < T_1$

Rare Earth Ions: Qubits

Screening of 4f electrons: long optical T₂ (at LHe temp)

Optical transitions in the visible and infrared range

Electron and/or nuclear spins

P. Goldner, A. Ferrier, and O. Guillot-Noël, in Handbook on the Physics and Chemistry of Rare Earths, vol. 46, 2015

RE: Interfaces and Memories

Quantum memories for optical photons / I l I **Quantu** TODICAL ONOIO Control field Experimental signal Theoretical signal

Pr3+:Y2SiO5 but has signifcantly increased homogeneous decay47.

We now review a few experiments in which quantum states of the state

V. Littel et al. Nature Photon conditions when the control field is switched on \mathcal{L}_{max} *W. Tittel et al., Nature Photon. 2009.*

light have been stored and retrieved, with the retrieved pulses retain-

With light **With Articles In the UP ARTICLES ISSUES**

Some Results in Bulk Materials

Optical coherence lifetimes

 $Er³⁺:Y₂SiO₅: up to 4 ms$ *T. Böttger et al., Phys. Rev. B 2009.*

$Eu³⁺:Y₂SiO₅: up to 6 hours$ Spin coherence lifetimes *M. Zhong et al., Nature 2015.*

Nd³⁺:Y₂SiO₅: high fidelity *G. Wolfowicz, …, PG, Phys. Rev. Lett. 2015.*

 $Er³⁺ glass fiber: 1.5 µm storage$ *E. Saglamyurek et al., Nat. Photonics 2015.*

Er³⁺:Y₂SiO₅: strong coupling *S. Probst et al., Phys. Rev. Lett. 2013.*

Material properties State transfer Cuantum information State transfer Pr³⁺:La₂(WO₄)₃: spin control *M. Lovric, …, PG, Phys. Rev. Lett. 2013.* Optical to spin

Optical memories

Nd3+:Y2SiO5: teleportation *F. Bussières, …, PG et al., Nat. Photonics 2015.*

Microwave memories

Electron to nuclear spin

At the nanoscale

New opportunities An example lew d Ω ζ

Enhanced light-matter interactions micro/nano optical cavities hanc –1/2 .
C
a a[.]

Single center detection and control small detection volume $\mathcal{A}_\mathbf{p}$ – $\mathcal{A}_\mathbf{p}$ – $\mathcal{A}_\mathbf{p}$ – $\mathcal{A}_\mathbf{p}$ – $\mathcal{A}_\mathbf{p}$ **c** TM |*E*^z ~ 50

Hybrid quantum systems interactions at short distances

Optical nano-resonator \overline{B} \overline{B}

A Versatile Approach

Bottom-up synthesis High-Q micro-cavity Hybrid systems

Nanoparticles

Thin films

Force sensors

Single photon sources

Quantum memories excitation and entanglement between different systems will be proposed, as well as methods to mitigate coherence

losses. Another central aspect will be the description of ion and cavity dynamics by Bayesian parameter estimation *EU project NanOQTech: www.nanoqtech.eu* $\| \cdot \| R \|$ RE-graphene: K. J. Tielrooij, …, PG et al., Nat. Phys. 2015.

Quantum optoelectronics w/ graphene **Methods:** A modelling platform for hybrid systems will be built based on novel adiabatic elimination techniques to Single photon sources electronics w/ graphene. Hybrid RE/nano-resonator system using strain *coupling.*

Nanoparticles

0.5% Eu³⁺: Y_2O_3

Particle size: 400 nm **Crystallite size:** 130 nm

Particles: K. de Oliveira Lima, …, PG, J. Lumin. 2015. Ceramics: A. Ferrier, …, PG, Phys Rev B 2013 - N. Kunkel, …, PG, APL Mat. 2015, J. Phys. Chem. C 2016, PRB 2017.

Long T_2 in bulk crystal and transparent ceramics

Homogeneous precipitation Monodispersed, spherical

High temperature annealing Cubic phase Defects reduced at 1200 ºC

The Photon Echo

Echo: only ions with unperturbed quantum states

Coherence lifetime: I_{echo} = exp(-4t_d/T₂)

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 1966.

-
-
-

Homogeneous linewith: Γh = (πT2) -1

Measuring Coherence Times

Setup for photon echo experiments

Samples: transparent materials or… **powders?**

Photon Echo in Powders

Light scattered by the powder

Interferometric detection

A. Perrot, PG, et al. Phys. Rev. Lett. 2013. F. Beaudoux, …, PG, Opt. Express 2011.

Optical T₂ in nanocrystals

Echo Decay in Nanocrystals

IR

J. G. Bartholomew, K. de Oliveira Lima, A. Ferrier, and PG, Nano. Lett. 2017.

Eu:Y2O3 Homogeneous Linewidths

J. G. Bartholomew, …, PG, Nano. Lett. 2017. R. S. Meltzer et al., Phys. Rev. B 2000, 2001. A. Perrot, PG, et al. Phys. Rev. Lett. 2013. C. Thiel, private communication.

Size Limited Linewidth?

IR

J. G. Bartholomew, K. de Oliveira Lima, A. Ferrier, and PG, Nano. Lett. 2017.

Phonon in nanoparticles: R. S. Meltzer et al., Phys. Rev. B 2000, 2001.

Magnetic Centers

no contribution from magnetic impurities or defects

IR. *J. G. Bartholomew, K. de Oliveira Lima, A. Ferrier, and PG, Nano. Lett. 2017.*

surface electric charges?

Q. dots: N. Ha, et al., Phys. Rev. B, 92, 075306, (2015). NV: M. Kim, at al., Phys. Rev. Lett., 115, 087602,(2015).

Spin T₂ in ceramics

Spin Quantum States

J. Karlsson, N. Kunkel, A. Ikesue, A. Ferrier, and PG, J. Phys.: Condens. Matter 2017.

151 Eu³⁺: nuclear spin I = $5/2$

Spin Coherence Lifetimes

J. Karlsson, N. Kunkel, A. Ikesue, A. Ferrier, and PG, J. Phys.: Condens. Matter 2017.

Magnetic vs. Electric Perturbations

R. M. Macfarlane, …, PG, Phys. Rev. Lett. 2014

What is next?

Outlook: Micro-cavities

Smaller particles (< 100 nm)

Longer optical coherence lifetime

Spin properties

Single particle spectroscopy

D. Hunger

Summary

- Rare earth doped nanostructures for optical quantum technologies
	- unique capability of **interfacing light, atoms and spins**
	- **long optical coherence lifetimes** for applications in: quantum memories, single photon sources, hybrid systems
		- **outside quantum technologies:**
		- probing materials with high resolution spectroscopy: defects, disorder, impurities, surface

Acknowledgment

Paris team:

A. Ferrier, D. Serrano, A. Tallaire, M. Mortier, Shuping Liu, Zhonghan Zhang, Sacha Welinski, Alexandre Fossati, Marion Scarafagio. Former members: **Marko Lovrić, Karmel de Oliveira Lima, John Bartholomew, Jenny Karlsson**

Collaborators: **R. Gonçalves, USP, Brazil** - D. Hunger, KIT, Germany - S. Kröll, Lund University, Sweden Y. Le Coq, SYRTE, France - S. Seidelin, Grenoble University, France - H. de Riedmatten, ICFO, Spain - F. Koppens, ICFO, Spain - K. Mølmer, Aarhus University, Denmark N. Oliverio, Keysight Inc., USA

> http://www.nanoqtech.eu Nanoscale Systems for Optical Quantum Technologies

European Union's Horizon 2020 programme

Funding:

TanCQTech