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Abstract 
 
This paper explains the main features of and motivation 
for the “report once” demonstrator1 shown at the 2017 
Data For Policy conference. It shows how Ethereum2 
smart contracts, based on the semantics and algorithmic 
representations defined in ACTUS3 can implement 
“digital doppelgängers” of financial contracts.   
 
The implementation makes use of a private4 Ethereum 
blockchain, with smart contracts written in Solidity.5 
The limitations of using ACTUS in a semi real-time 
scenario are explored, as well as how to overcome these 
limitations.  
 
The major innovation, visualized by the demonstrator, is 
that compliance reports can be generated in semi real-
time, using the information present in the “digital 
doppelgängers”, residing in the blockchain.  
 
The demonstrator supports various use cases, illustrated 
through the narration of stories. In these stories, Alice, 
Bob and Eve are contracting parties, Romeo acts as 
regulator, and the narrator tells the stories.  The stories 
cover trading a Bond, trading an Interest Rate Swap 
(IRS), the defaulting of a party (i.e. a payment stop), and 
various types of regulatory reports.  
 

 Keywords:  report once; smart contracts; blockchain; 

Ethereum; financial contracts; algorithmic standards; 

RegTech; digital doppelgänger; supervisory reporting 

 

1 Introduction   
In this paper we discuss our implementation, in blockchain 

smart contracts, of the digital equivalent of a set of 

financial documents that represent a financial instrument.  

                                                 
1 A first version of this demonstrator was built by PwC Enterprise 
Advisory and Claryon for the European Commission, DG FISMA  
(contract ABCIII-000428 under framework contract DI/07171) in the 
context of a multi-annual ISA2 action on modern Financial Data Standards 
to enhance interoperability between public authorities as well as between 
private firms and public authorities that exchange data for the supervision 
of financial risk; details of this project can be found here: 
https://ec.europa.eu/isa2/home_en  
2 Ethereum is the pioneering blockchain focused on smart contracts, 
agreements that are guaranteed to execute and are expressed in computer 
code. 

This representation is called a “digital doppelgänger”. 

While it does not have legal value and cannot be used for 

the transfer of (monetary) value, its objective is to capture 

and represent financial contract states at any given time 

and thereby allow for highly granular and semi-real time 

modelling of a financial contract's life-cycle, mirroring 

specific, real contracts.  

 

Our approach builds on Kavassalis et al. (2016) who 

outline a vision of autonomous logical containers that 

capture real world financial contracts (e.g., loans, bonds, 

derivatives) [1]. We focus on efficiency gains of exploiting 

the inherent logic of financial instruments [2] which in 

combination with external events (hard-coded in this 

version of the demonstrator) allow for a comprehensive 

digital representation of the contract state [3] that can be 

reported at virtually zero marginal cost. Using this 

approach simplifies the compliance landscape that 

financial institutions are subjected to. Specifically, 

expressing the behaviour of real world contracts through 

algorithms obsoletes a class of complex challenges related 

to structuring reporting data that at this point deny high 

fidelity reporting aggregates for the regulator. It also opens 

new paths to performing more relevant stress tests on 

financial institutions. 
 

2 Objective  
The objective of the demonstrator is to reflect the state of 

traded “real world” financial contracts over their life cycle 

and to allow semi real-time reporting by implementing 

“digital doppelgängers” that reflect the status of such 

instruments at any point during this cycle. In the search for 

a RegTech solution where a high degree of data security is 

3 “The ACTUS Algorithmic Standard unambiguously defines the logic 
embedded in legal financial agreements according to which contract terms 
are mapped to a stream of cash flows, or business events, respectively.” – 
http://actusfrf.org/index.php/algorithmic-standard/ 
4 A private blockchain is technically a clone of the public mainnet of a 
blockchain that holds the cryptocurrency, in Ethereum’s case, Ether. While 
the mainnet is always-on and supported by thousands of nodes, a private 
network can consist of few or only one node, can be started and stopped at 
any time and usually does not carry an accepted cryptocurrency. 
5 Solidity is the most popular high-level language that can be compiled to 
the bytecode that express smart contracts on an Ethereum blockchain. 
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achieved [4] at low set-up and operating costs, the 

demonstrator thus serves as a tool to better understand how 

to meet the regulatory reporting requirements6 in an 

effective and efficient way. In the context of the project for 

the European Commission, it allowed us to better 

understand and communicate the limitations of the current 

blockchain technology.  It also helps to explore the 

guaranteed execution of a “digital doppelgänger,” and the 

strong integrity guarantees offered by a blockchain 

solution. 
 

3 Role of ACTUS 
 

3.1 ACTUS objectives and contract types 
By creating an algorithmic representation of financial 

contracts, ACTUS enables the dynamic computation (and 

simulation) of contract properties [2]. It is in essence a set 

of modelling tools augmented with a data taxonomy; this 

taxonomy allows for semantic interoperability between the 

different modelled contracts.   

 

ACTUS defines a set of “Contract types” (CT) that can be 

used to express around 30 different types of financial 

instruments. ACTUS allows to model the financial state 

and to describe the cash-flows of these instruments ex-

ante. For all contract types, a corresponding set of 

“contract attributes” and “contract state variables” are 

defined. When a specific contract type is instantiated, these 

attributes and variables need to be initialized.  

 

Contract attributes represent legal contractual terms; these 

are fixed labels within the model, expressing terms that 

have a legal interpretation, for example, the “Initial 

Exchange Date (IED)” or “Maturity Date (MD).” 

 

Contract state variables, as their name implies, are used to 

capture contract state. Example state variables are:  

Nominal value of the contract (Nvl), and Nominal rate of 

the contract (Nrt). The contract state variables are 

modified by “state transition functions,” these are logical 

rules that are executed when a certain “contract event” is 

applied.  Contract events can be seen as logical conditions: 

when the contract state reflects a certain condition to be 

true, an event is generated, the contract’s logical rules will 

be executed and the next state of the contract will be 

reached. 

 

3.2 Limitations of ACTUS 
 

3.2.1 ACTUS is focussed on modelling and simulation 

                                                 
6 Our use case encompasses both supervisory and financial reporting.  
7 In a blockchain, oracles are defined as sources of information from the 
world outside the blockchain, as seen from the blockchain, e.g. a smart 
contract, 

The current ACTUS model and its implementation are 

focussed on providing a modelling and simulation tool that 

only takes inputs during the initial model calibration.  It is 

not intended to model real world trading and reporting, 

tracking real data and events. Contract instances cannot be 

changed in ACTUS once they have been initialized. For 

example, when party A and party B conclude a basic loan 

contract – defined in ACTUS as a Principle at Maturity 

(PAM) – ACTUS defines a set of state variables that 

express start and end date of the contract. But ACTUS 

does not have the concept of an interface to signal during 

the life time of the contract that a payment between party 

A and party B has happened. In a simulation, ACTUS is 

driven by a timing oracle7 that simulates inputs over time: 

when a new time event is received ACTUS logical rules 

determine if a payment event needs to happen.  If so, it 

generates an event and modifies the state. This event is 

defined in the model, but the payment function is not.    

The orientation towards simulation is also illustrated by the 

input state variable Probability of Default (Pod).  This is a 

variable that has no counterpart in a real world contract, it 

is a variable used during risk analysis. Furthermore 

ACTUS is probabilities-based. The above limitations were 

overcome by creating our own implementation of the 

“digital doppelgängers” in Solidity8 using ACTUS 

semantics.  

 

3.4 Our use of smart contracts and of ACTUS 
 

3.4.1 Smart Contracts 

In our implementation, smart contracts are used in an 

unusual way. They are not employed to bind parties to an 

agreement, or to automate payment in crypto currency. 

Instead we are using them as trustable, committed bits of 

calculation, to arrive at results that are signed off and 

vouched for by the parties who originally staged the 

information and formulas they rest upon. We are not 

depending on the guaranteed execution that smart contracts 

offer. 

 3.4.2 “HAS” versus “SHOULD” interpretation 

During our analysis it became apparent that there were two 

possible ways of interpreting ACTUS semantics in a smart 

contract setting.  This is referred to as the “HAS” 

interpretation and the “SHOULD” interpretation. A smart 

contract could use ACTUS events to signal to the outside 

world that a certain financial action should be taken by the 

counterparties (this based on the smart contract’s current 

state and a time oracle), this is referred to as the 

“SHOULD” interpretation. Alternatively a smart contract 

could use ACTUS semantics to capture the fact that a 

financial transaction has happened, by having an off chain 

8 The programming language of Ethereum. 



source triggering a state change.  This is referred to as the 

“HAS” interpretation.  For the demonstrator we chose to 

implement the “HAS” interpretation, 

 

3.4.3 Use of data oracles in the demonstrator 

In order to calculate the correct payment variables, various 

types of information are required. ACTUS is oriented 

towards the calculation of expected cash-flows based on 

market data. In the context of a simulation this data can be 

provided by e.g. Bloomberg or Thomson-Reuters. Such 

sources could act as data oracles. They exist but we are 

demonstrating a fictional case. Therefore, in the 

demonstrator such market data was ‘hardcoded’.  

 

3.4.4 Management of time 

Our smart contracts are driven by external time events that 

move the contract forward in time. We used a strong 

simplification, where every time event represents a single 

quarter of a year. The smart contract will execute the 

logical rules as many times as the cycle of interest payment 

(IPCL) dictates. For example, if the IPCL is initialized to 

“M” (month) then the corresponding logical rules will be 

executed three times.  

 

 

4 Demonstrator 
 

4.1 Overview  
The demonstrator shows how digital representations of 

financial instruments can be implemented as smart 

contracts on an Ethereum private blockchain and illustrates 

a core benefit of the blockchain, i.e. consensus across 

potentially thousands of nodes. On this private chain, 

transactions and compliance reporting are implemented.  

Users transact through the various graphical user interfaces 

(GUI).  Their actions are reflected immediately in the state 

of the individual contracts across all nodes, through the 

underlying distribution mechanisms of the blockchain. 

This allows reporting on any contract or set of contracts 

immediately, at any point in time. And while the contracts’ 

states are changed through the transactions, their storage 

on a blockchain also guarantees the proper ordering of 

transactions, and the integrity of results. Furthermore, by 

sequentially reading all transactions as reflected on the 

blockchain, the full transaction history is documented.   

Data governance is implemented by allocating different 

roles to different participants. 

 

ACTUS seems to be a natural fit with the Ethereum smart 

contracts, since a smart contract consists of execution state 

(contract state) and a set of instructions (logical rules), 

similar to an ACTUS contract that consists of logical rules 

                                                 
9 Derivatives (EMIR) - Regulation (EU) No 648/2012. 

(“transition functions”) and contract data (“contract state 

variables”, “contract attributes”). 

 

Two ACTUS contract types are used. The Principle At 

Maturity (PAM) can represent contracts where payment is 

due at the end of the contract (‘at maturity’), e.g. bonds. 

The PlainVanillaSwap (PVSWAP) can represent most 

swaps: agreements between two parties to exchange cash 

flows in the future, at specific dates, calculated in a pre-

specified way, and over a specific period.  We use it to 

represent Interest Rate Swaps (IRS).   

 

Regarding the produced reports, we used representative but 

simplified versions of each report type mentioned.  

 

4.2 Stories 
The first demonstration story addresses bond (PAM) 

trading where Alice lends money to Bob and later merges 

with Eve to form the new party AliceEve. The individual 

steps are the following. Alice creates a new bond contract 

with Bob.  For illustration purposes, the consensus is 

shown (i.e. the contract is now on the blockchain in every 

node). Bob inspects the contract details on-chain. The 

Narrator moves the time to the next quarter.  Romeo 

generates a Common Reporting (COREP) report, as 

mandated by the European Banking Authority (EBA) for 

Capital Requirements Directive (CRD) reporting.  Such a 

report covers credit risk, market risk, operational risk, own 

funds and capital adequacy ratio.  The parties Alice and 

Eve merge (the contract owner is updated). Romeo 

inspects the contract list and notices the update.  

 

The second story addresses IRS trading, where Bob creates 

a contract towards AliceEve.  The individual steps are the 

following. Bob creates a new PVSWAP contract with 

AliceEve.  Consensus is achieved between all nodes with 

regards to the new contract, and is visualised for 

illustration purposes. The Narrator moves the time to the 

next quarter.  AliceEve looks at the contract details, 

including calculated fields. Romeo generates an EMIR9 

report on bilateral trades involving derivatives.  

 

The third story covers IRS defaulting, where AliceEve 

does no longer meet her requirements towards Bob and 

stops her payments to him. The individual steps are the 

following. The Narrator generates a default (i.e. indicates a 

payment stop) on the PVSWAP contract. The Narrator 

then moves the time to the next quarter, and subsequently 

inspects the updated state.  Finally, Romeo generates a 

MiFIR10 report.  

 

5 Technical implementation 
The demonstrator is based on a peer-to-peer (P2P) 

10 Markets in Financial Instruments (MiFIR) - Regulation (EU) No 
600/2014. 



network, formed by a network hub connecting Ethereum 

nodes.  There are two types of nodes.  The first and most 

basic type is based on Raspberry PIs, while the second type 

is based on Linux laptops. All nodes participate in the P2P 

network and run an Ethereum Virtual Machine(EVM), in 

our case a geth client. This geth client manages the local 

copy of the blockchain on each node, where the “digital 

doppelgängers” are created as smart contracts.  The geth 

client also includes a purpose-made consensus-

visualization function.   

 

The Raspberry PI nodes do not mine11 (due to a software 

limitation in the mining algorithm), while the laptops do 

mine.  The laptops are also equipped with Meteor, a JS 

application platform that serves the User Interfaces  

AliceUI, BobUI, RegulatorUI and NarratorUI.  The laptops 

also pull and display the consensus visualization user 

interface. 

 

6 Limitations of the technology 

 

6.1 Real-world interaction limitations 

Current blockchain platforms generally don’t allow to 

interact easily with external systems and the current 

Ethereum implementation cannot directly fetch data from 

an external source. This makes it difficult for the “digital 

doppelgängers” to interact with the real world. Either the 

simulated world needs to include all required elements 

(which would make it very complex), or it needs to have a 

close relationship with the real world, through so-called 

oracles. Two options exist, the first is to pull information 

from the smart contract by indirectly triggering an exposed 

function, the second is to have each smart contract monitor 

all incoming events and act only on the events that are 

relevant to it. 

 

The Solidity programming language in which we 

implemented the “doppelgängers” also posed an 

unexpected issue. At the time of writing it was not possible 

to declare single or double point floating values (IEEE-

756) in the language, and it does not support floating point 

calculations. This makes it difficult to performing floating 

point computations (evaluate simple fractions). 

 

We solved this problem by expressing all numerical values 

as a tuple where the first element is the numerator and the 

second element is the denominator. For specific 

calculations we used a scalar value before performing a 

divide operation. 

                                                 
11 With blockchains, mining is the essential activity that advances the 
common state across all nodes. It derives its name from the fact that it 
consists of work to find a proof and is rewarded by the mining fee. But its 
essential function is to help determining which node will be the leader to 
propose the next group of ordered transactions, i.e. the next block in the 
chain. 

 

6.2 Performance and scaling limitations  
Classic blockchains such as Bitcoin or Ethereum have 

strong scalability and performance limits. Smart contracts 

are around ten orders of magnitudes slower than logic 

implemented on a Java platform, writing to a blockchain 

takes three to five orders of magnitudes longer than writing 

to a database and the throughput is about 5 orders of 

magnitudes lower. In numbers, Ethereum performs about 

25 transactions per second, with each needing about 2 

minutes for confirmation. The net data stored in all of the 

Ethereum mainnet is in the Gigabyte range. Alternative 

approaches that offer better performance usually forgo the 

capability to have thousands of nodes, or to support smart 

contracts. A detailed technical research into twenty 

different blockchain projects [5] did not yield a fit for the 

requirements of an implementation of the “digital 

doppelgängers.” The demonstrator visualizes the inner 

workings that make the technology hard to scale. 

 

One approach to overcome the limitations of current 

blockchains that can work for the specific supervisory 

reporting tasks as discussed, is proposed in the paper 

"Supervisory Reporting Blockchain Architecture" [6] that 

was prepared in the context of the same study as this 

demonstrator. However, these proposals are not explored 

in the demonstrator, to the contrary, in the interest of time 

we are using a sped up version of Ethereum that would not 

work for large scale networks.  

 

7 Consensus and synchronization 
 

7.1 Introduction 

The demonstrator allows to visually observe consensus 

building between the individual nodes in the network in 

real time. The specific way that the state of thousands of 

nodes can be synchronized in public blockchains is the 

major invention of Bitcoin. We are using the proof-of-work 

algorithm that is also employed in Ethereum. Consensus is 

built between nodes on the basis of the root hash of the 

Merkle tree12 of the entire state, current and past, of the 

blockchain. In this way, finding agreement about only 32 

bytes can facilitate perfect consensus about gigabytes of 

data. This process has several steps: collecting 

transactions, mining, distributing the block and verifying 

received block proposals. All of these can be witnessed. It 

revolves around finding a random number, called nonce, 

that gives the right to propose a new block to the network 

12 A Merkle tree is an efficient way to hash large datasets. Hashes work like 
checksums that make it easy to detect if a large dataset was changed or not. 
They are functions that are easy to calculate in one direction – from the data 
to the hash – but hard to reverse.  



and earn the mining reward. Mining is the search for the 

nonce, which requires a lot of calculations. 

 

7.2 Visualization Device 
The visualization consists of one dynamic web page per 

node that shows, in real time, what the internal, partially 

transient state of the blockchain client on that particular 

node is. Large, coloured letters serve as symbols for the 

hashes that the consensus is formed about, as well as other 

relevant state in the client programs. Whenever two pages 

display the same colour letter in the same box, it means 

that the two clients that the pages represent are in 

consensus about this data point. The most relevant 

consensus is about the root hash of the blockchain itself, 

which is what is generally meant when talking about 

consensus in the context of blockchains. The other letters 

provide insight into the individual steps of the process. 

 

7.3 Shown Data Points 
Each of the following data points are updated live in the 

web pages for each individual client: 

 

Tx Broadcast 

Hash of the last transaction that this node has broadcast to 

the network, i.e. to any of its peers. 

 

Tx Received 

Hash of the last transaction that this node has received 

from the network, i.e. from any of its peers. 

 

Work: Nonce Tried 

Last nonce that this node has tried out to form a block. 

This is a fast, continuous action when this node is mining, 

and none if not. Nonces are tried by the millions per 

second and the display will show some snapshots per 

second. 

 

Proof of Work: Nonce Found 

Last nonce that this node found to successfully form a 

block. This nonce is a valid “proof of work.” This is a slow 

action that can occur around every 5 to 60 seconds when 

this node is mining in a small private network, none if not. 

 

Proof Accepted: Nonce verified 

Accepted proof of work from another node: the last nonce 

that this node found to match a block as expected, coming 

from a peer. This nonce has been verified to be a valid 

“proof of work” that a peer found and showed. 

 

Proposed Block 

Hash of the last block that this node proposed to the 

network. Slow action around every 5 to 60 seconds when 

this node is mining in a small private network, none if not. 

                                                 
13 This is a simplification that holds true for Bitcoin but works in a more 
complex way in Ethereum, where ‘weight’ is defined for blocks. 

 

Root Hash 

Hash of the highest, and last block that this node accepts as 

top of the blockchain. This is ‘the’ block hash that is 

chained to the next block and that all participating nodes 

form consensus over. 

 

Number of Peers 

Number of peers that this node has and communicates 

with. The node does not communicate with all peers all of 

the time. 

 

Chain Height 
Number of highest, and last, block that this node accepts as 

top of the blockchain, as counted in unbroken line from the 

genesis block. This is ‘the’ height13 of the chain that 

(mostly) decides which version of the blockchain prevails 

when block proposals compete or a partition is re-united. 

 

7.4 Observable Rhythm 
The rhythm that is observable is that of one client leading 

and the others following within a couple of seconds. This 

is the expected behavior, showing how one node takes the 

lead and proposes a block and how the remainder of the 

network picks the block up, validates the data in it and 

eventually implicitly agrees on. When it is internally 

accepted as part of the current state, the letter on the 

display changes to the represent the new root hash of the 

blockchain, now including the new block. After a short 

while all nodes show the same colour letter again. This 

demonstrates how nodes lose and find consensus again 

with every state transition of the network. 

 

There are also patterns of 'rogue' blocks observable, where 

for a short time some clients display a different colour 

letter, symbolizing a different block's hash, which shows 

that a short lived proposal is being accepted only to soon 

be overwritten by a proposal that receives more support 

from the rest of the network.  

 

7.5 Technical Setup 
The visualization uses a special, modified version of the 

Ethereum geth client that provides access to specific 

internal variables that the Ethereum API does not provide, 

at a controllable frequency and pushing the data out from 

the client. Each client runs a primitive web server that is 

used to create the pages with coloured letters. The dynamic 

rendering happens mostly in the browser, using Javascript. 

Data is pulled by the browser from the web server. The 

modification also speeds up block production of Ethereum 

for the sake of a more fluent demonstration. The 

modifications to geth are minimal and there are no changes 

to core blockchain functionality. 



 

7.6 Detailed information and Source Code 
More detailed information about the meaning of the 

individual data points, their expectable frequency of change 

and consensus, as well as how to set up such a demonstration 

and the source code can be found at: 

https://github.com/claryon/vizmod 
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