

How smart contracts can implement “report once”

Marc Sel, Henning Diedrich, Sander Demeester, Harald Stieber

marc@marcsel.eu(*), h@claryon.com, sander.demeester@pwc.com, hstieber@wcfia.harvard.edu

(*) corresponding author

Abstract

This paper explains the main features of and motivation
for the “report once” demonstrator1 shown at the 2017
Data For Policy conference. It shows how Ethereum2
smart contracts, based on the semantics and algorithmic
representations defined in ACTUS3 can implement
“digital doppelgängers” of financial contracts.

The implementation makes use of a private4 Ethereum
blockchain, with smart contracts written in Solidity.5
The limitations of using ACTUS in a semi real-time
scenario are explored, as well as how to overcome these
limitations.

The major innovation, visualized by the demonstrator, is
that compliance reports can be generated in semi real-
time, using the information present in the “digital
doppelgängers”, residing in the blockchain.

The demonstrator supports various use cases, illustrated
through the narration of stories. In these stories, Alice,
Bob and Eve are contracting parties, Romeo acts as
regulator, and the narrator tells the stories. The stories
cover trading a Bond, trading an Interest Rate Swap
(IRS), the defaulting of a party (i.e. a payment stop), and
various types of regulatory reports.

 Keywords: report once; smart contracts; blockchain;

Ethereum; financial contracts; algorithmic standards;

RegTech; digital doppelgänger; supervisory reporting

1 Introduction
In this paper we discuss our implementation, in blockchain

smart contracts, of the digital equivalent of a set of

financial documents that represent a financial instrument.

1 A first version of this demonstrator was built by PwC Enterprise
Advisory and Claryon for the European Commission, DG FISMA
(contract ABCIII-000428 under framework contract DI/07171) in the
context of a multi-annual ISA2 action on modern Financial Data Standards
to enhance interoperability between public authorities as well as between
private firms and public authorities that exchange data for the supervision
of financial risk; details of this project can be found here:
https://ec.europa.eu/isa2/home_en
2 Ethereum is the pioneering blockchain focused on smart contracts,
agreements that are guaranteed to execute and are expressed in computer
code.

This representation is called a “digital doppelgänger”.

While it does not have legal value and cannot be used for

the transfer of (monetary) value, its objective is to capture

and represent financial contract states at any given time

and thereby allow for highly granular and semi-real time

modelling of a financial contract's life-cycle, mirroring

specific, real contracts.

Our approach builds on Kavassalis et al. (2016) who

outline a vision of autonomous logical containers that

capture real world financial contracts (e.g., loans, bonds,

derivatives) [1]. We focus on efficiency gains of exploiting

the inherent logic of financial instruments [2] which in

combination with external events (hard-coded in this

version of the demonstrator) allow for a comprehensive

digital representation of the contract state [3] that can be

reported at virtually zero marginal cost. Using this

approach simplifies the compliance landscape that

financial institutions are subjected to. Specifically,

expressing the behaviour of real world contracts through

algorithms obsoletes a class of complex challenges related

to structuring reporting data that at this point deny high

fidelity reporting aggregates for the regulator. It also opens

new paths to performing more relevant stress tests on

financial institutions.

2 Objective
The objective of the demonstrator is to reflect the state of

traded “real world” financial contracts over their life cycle

and to allow semi real-time reporting by implementing

“digital doppelgängers” that reflect the status of such

instruments at any point during this cycle. In the search for

a RegTech solution where a high degree of data security is

3 “The ACTUS Algorithmic Standard unambiguously defines the logic
embedded in legal financial agreements according to which contract terms
are mapped to a stream of cash flows, or business events, respectively.” –
http://actusfrf.org/index.php/algorithmic-standard/
4 A private blockchain is technically a clone of the public mainnet of a
blockchain that holds the cryptocurrency, in Ethereum’s case, Ether. While
the mainnet is always-on and supported by thousands of nodes, a private
network can consist of few or only one node, can be started and stopped at
any time and usually does not carry an accepted cryptocurrency.
5 Solidity is the most popular high-level language that can be compiled to
the bytecode that express smart contracts on an Ethereum blockchain.

mailto:marc@marcsel.eu(*)
mailto:sander.demeester@pwc.com
https://ec.europa.eu/isa2/home_en

achieved [4] at low set-up and operating costs, the

demonstrator thus serves as a tool to better understand how

to meet the regulatory reporting requirements6 in an

effective and efficient way. In the context of the project for

the European Commission, it allowed us to better

understand and communicate the limitations of the current

blockchain technology. It also helps to explore the

guaranteed execution of a “digital doppelgänger,” and the

strong integrity guarantees offered by a blockchain

solution.

3 Role of ACTUS

3.1 ACTUS objectives and contract types
By creating an algorithmic representation of financial

contracts, ACTUS enables the dynamic computation (and

simulation) of contract properties [2]. It is in essence a set

of modelling tools augmented with a data taxonomy; this

taxonomy allows for semantic interoperability between the

different modelled contracts.

ACTUS defines a set of “Contract types” (CT) that can be

used to express around 30 different types of financial

instruments. ACTUS allows to model the financial state

and to describe the cash-flows of these instruments ex-

ante. For all contract types, a corresponding set of

“contract attributes” and “contract state variables” are

defined. When a specific contract type is instantiated, these

attributes and variables need to be initialized.

Contract attributes represent legal contractual terms; these

are fixed labels within the model, expressing terms that

have a legal interpretation, for example, the “Initial

Exchange Date (IED)” or “Maturity Date (MD).”

Contract state variables, as their name implies, are used to

capture contract state. Example state variables are:

Nominal value of the contract (Nvl), and Nominal rate of

the contract (Nrt). The contract state variables are

modified by “state transition functions,” these are logical

rules that are executed when a certain “contract event” is

applied. Contract events can be seen as logical conditions:

when the contract state reflects a certain condition to be

true, an event is generated, the contract’s logical rules will

be executed and the next state of the contract will be

reached.

3.2 Limitations of ACTUS

3.2.1 ACTUS is focussed on modelling and simulation

6 Our use case encompasses both supervisory and financial reporting.
7 In a blockchain, oracles are defined as sources of information from the
world outside the blockchain, as seen from the blockchain, e.g. a smart
contract,

The current ACTUS model and its implementation are

focussed on providing a modelling and simulation tool that

only takes inputs during the initial model calibration. It is

not intended to model real world trading and reporting,

tracking real data and events. Contract instances cannot be

changed in ACTUS once they have been initialized. For

example, when party A and party B conclude a basic loan

contract – defined in ACTUS as a Principle at Maturity

(PAM) – ACTUS defines a set of state variables that

express start and end date of the contract. But ACTUS

does not have the concept of an interface to signal during

the life time of the contract that a payment between party

A and party B has happened. In a simulation, ACTUS is

driven by a timing oracle7 that simulates inputs over time:

when a new time event is received ACTUS logical rules

determine if a payment event needs to happen. If so, it

generates an event and modifies the state. This event is

defined in the model, but the payment function is not.

The orientation towards simulation is also illustrated by the

input state variable Probability of Default (Pod). This is a

variable that has no counterpart in a real world contract, it

is a variable used during risk analysis. Furthermore

ACTUS is probabilities-based. The above limitations were

overcome by creating our own implementation of the

“digital doppelgängers” in Solidity8 using ACTUS

semantics.

3.4 Our use of smart contracts and of ACTUS

3.4.1 Smart Contracts

In our implementation, smart contracts are used in an

unusual way. They are not employed to bind parties to an

agreement, or to automate payment in crypto currency.

Instead we are using them as trustable, committed bits of

calculation, to arrive at results that are signed off and

vouched for by the parties who originally staged the

information and formulas they rest upon. We are not

depending on the guaranteed execution that smart contracts

offer.

 3.4.2 “HAS” versus “SHOULD” interpretation

During our analysis it became apparent that there were two

possible ways of interpreting ACTUS semantics in a smart

contract setting. This is referred to as the “HAS”

interpretation and the “SHOULD” interpretation. A smart

contract could use ACTUS events to signal to the outside

world that a certain financial action should be taken by the

counterparties (this based on the smart contract’s current

state and a time oracle), this is referred to as the

“SHOULD” interpretation. Alternatively a smart contract

could use ACTUS semantics to capture the fact that a

financial transaction has happened, by having an off chain

8 The programming language of Ethereum.

source triggering a state change. This is referred to as the

“HAS” interpretation. For the demonstrator we chose to

implement the “HAS” interpretation,

3.4.3 Use of data oracles in the demonstrator

In order to calculate the correct payment variables, various

types of information are required. ACTUS is oriented

towards the calculation of expected cash-flows based on

market data. In the context of a simulation this data can be

provided by e.g. Bloomberg or Thomson-Reuters. Such

sources could act as data oracles. They exist but we are

demonstrating a fictional case. Therefore, in the

demonstrator such market data was ‘hardcoded’.

3.4.4 Management of time

Our smart contracts are driven by external time events that

move the contract forward in time. We used a strong

simplification, where every time event represents a single

quarter of a year. The smart contract will execute the

logical rules as many times as the cycle of interest payment

(IPCL) dictates. For example, if the IPCL is initialized to

“M” (month) then the corresponding logical rules will be

executed three times.

4 Demonstrator

4.1 Overview
The demonstrator shows how digital representations of

financial instruments can be implemented as smart

contracts on an Ethereum private blockchain and illustrates

a core benefit of the blockchain, i.e. consensus across

potentially thousands of nodes. On this private chain,

transactions and compliance reporting are implemented.

Users transact through the various graphical user interfaces

(GUI). Their actions are reflected immediately in the state

of the individual contracts across all nodes, through the

underlying distribution mechanisms of the blockchain.

This allows reporting on any contract or set of contracts

immediately, at any point in time. And while the contracts’

states are changed through the transactions, their storage

on a blockchain also guarantees the proper ordering of

transactions, and the integrity of results. Furthermore, by

sequentially reading all transactions as reflected on the

blockchain, the full transaction history is documented.

Data governance is implemented by allocating different

roles to different participants.

ACTUS seems to be a natural fit with the Ethereum smart

contracts, since a smart contract consists of execution state

(contract state) and a set of instructions (logical rules),

similar to an ACTUS contract that consists of logical rules

9 Derivatives (EMIR) - Regulation (EU) No 648/2012.

(“transition functions”) and contract data (“contract state

variables”, “contract attributes”).

Two ACTUS contract types are used. The Principle At

Maturity (PAM) can represent contracts where payment is

due at the end of the contract (‘at maturity’), e.g. bonds.

The PlainVanillaSwap (PVSWAP) can represent most

swaps: agreements between two parties to exchange cash

flows in the future, at specific dates, calculated in a pre-

specified way, and over a specific period. We use it to

represent Interest Rate Swaps (IRS).

Regarding the produced reports, we used representative but

simplified versions of each report type mentioned.

4.2 Stories
The first demonstration story addresses bond (PAM)

trading where Alice lends money to Bob and later merges

with Eve to form the new party AliceEve. The individual

steps are the following. Alice creates a new bond contract

with Bob. For illustration purposes, the consensus is

shown (i.e. the contract is now on the blockchain in every

node). Bob inspects the contract details on-chain. The

Narrator moves the time to the next quarter. Romeo

generates a Common Reporting (COREP) report, as

mandated by the European Banking Authority (EBA) for

Capital Requirements Directive (CRD) reporting. Such a

report covers credit risk, market risk, operational risk, own

funds and capital adequacy ratio. The parties Alice and

Eve merge (the contract owner is updated). Romeo

inspects the contract list and notices the update.

The second story addresses IRS trading, where Bob creates

a contract towards AliceEve. The individual steps are the

following. Bob creates a new PVSWAP contract with

AliceEve. Consensus is achieved between all nodes with

regards to the new contract, and is visualised for

illustration purposes. The Narrator moves the time to the

next quarter. AliceEve looks at the contract details,

including calculated fields. Romeo generates an EMIR9

report on bilateral trades involving derivatives.

The third story covers IRS defaulting, where AliceEve

does no longer meet her requirements towards Bob and

stops her payments to him. The individual steps are the

following. The Narrator generates a default (i.e. indicates a

payment stop) on the PVSWAP contract. The Narrator

then moves the time to the next quarter, and subsequently

inspects the updated state. Finally, Romeo generates a

MiFIR10 report.

5 Technical implementation
The demonstrator is based on a peer-to-peer (P2P)

10 Markets in Financial Instruments (MiFIR) - Regulation (EU) No
600/2014.

network, formed by a network hub connecting Ethereum

nodes. There are two types of nodes. The first and most

basic type is based on Raspberry PIs, while the second type

is based on Linux laptops. All nodes participate in the P2P

network and run an Ethereum Virtual Machine(EVM), in

our case a geth client. This geth client manages the local

copy of the blockchain on each node, where the “digital

doppelgängers” are created as smart contracts. The geth

client also includes a purpose-made consensus-

visualization function.

The Raspberry PI nodes do not mine11 (due to a software

limitation in the mining algorithm), while the laptops do

mine. The laptops are also equipped with Meteor, a JS

application platform that serves the User Interfaces

AliceUI, BobUI, RegulatorUI and NarratorUI. The laptops

also pull and display the consensus visualization user

interface.

6 Limitations of the technology

6.1 Real-world interaction limitations

Current blockchain platforms generally don’t allow to

interact easily with external systems and the current

Ethereum implementation cannot directly fetch data from

an external source. This makes it difficult for the “digital

doppelgängers” to interact with the real world. Either the

simulated world needs to include all required elements

(which would make it very complex), or it needs to have a

close relationship with the real world, through so-called

oracles. Two options exist, the first is to pull information

from the smart contract by indirectly triggering an exposed

function, the second is to have each smart contract monitor

all incoming events and act only on the events that are

relevant to it.

The Solidity programming language in which we

implemented the “doppelgängers” also posed an

unexpected issue. At the time of writing it was not possible

to declare single or double point floating values (IEEE-

756) in the language, and it does not support floating point

calculations. This makes it difficult to performing floating

point computations (evaluate simple fractions).

We solved this problem by expressing all numerical values

as a tuple where the first element is the numerator and the

second element is the denominator. For specific

calculations we used a scalar value before performing a

divide operation.

11 With blockchains, mining is the essential activity that advances the
common state across all nodes. It derives its name from the fact that it
consists of work to find a proof and is rewarded by the mining fee. But its
essential function is to help determining which node will be the leader to
propose the next group of ordered transactions, i.e. the next block in the
chain.

6.2 Performance and scaling limitations
Classic blockchains such as Bitcoin or Ethereum have

strong scalability and performance limits. Smart contracts

are around ten orders of magnitudes slower than logic

implemented on a Java platform, writing to a blockchain

takes three to five orders of magnitudes longer than writing

to a database and the throughput is about 5 orders of

magnitudes lower. In numbers, Ethereum performs about

25 transactions per second, with each needing about 2

minutes for confirmation. The net data stored in all of the

Ethereum mainnet is in the Gigabyte range. Alternative

approaches that offer better performance usually forgo the

capability to have thousands of nodes, or to support smart

contracts. A detailed technical research into twenty

different blockchain projects [5] did not yield a fit for the

requirements of an implementation of the “digital

doppelgängers.” The demonstrator visualizes the inner

workings that make the technology hard to scale.

One approach to overcome the limitations of current

blockchains that can work for the specific supervisory

reporting tasks as discussed, is proposed in the paper

"Supervisory Reporting Blockchain Architecture" [6] that

was prepared in the context of the same study as this

demonstrator. However, these proposals are not explored

in the demonstrator, to the contrary, in the interest of time

we are using a sped up version of Ethereum that would not

work for large scale networks.

7 Consensus and synchronization

7.1 Introduction

The demonstrator allows to visually observe consensus

building between the individual nodes in the network in

real time. The specific way that the state of thousands of

nodes can be synchronized in public blockchains is the

major invention of Bitcoin. We are using the proof-of-work

algorithm that is also employed in Ethereum. Consensus is

built between nodes on the basis of the root hash of the

Merkle tree12 of the entire state, current and past, of the

blockchain. In this way, finding agreement about only 32

bytes can facilitate perfect consensus about gigabytes of

data. This process has several steps: collecting

transactions, mining, distributing the block and verifying

received block proposals. All of these can be witnessed. It

revolves around finding a random number, called nonce,

that gives the right to propose a new block to the network

12 A Merkle tree is an efficient way to hash large datasets. Hashes work like
checksums that make it easy to detect if a large dataset was changed or not.
They are functions that are easy to calculate in one direction – from the data
to the hash – but hard to reverse.

and earn the mining reward. Mining is the search for the

nonce, which requires a lot of calculations.

7.2 Visualization Device
The visualization consists of one dynamic web page per

node that shows, in real time, what the internal, partially

transient state of the blockchain client on that particular

node is. Large, coloured letters serve as symbols for the

hashes that the consensus is formed about, as well as other

relevant state in the client programs. Whenever two pages

display the same colour letter in the same box, it means

that the two clients that the pages represent are in

consensus about this data point. The most relevant

consensus is about the root hash of the blockchain itself,

which is what is generally meant when talking about

consensus in the context of blockchains. The other letters

provide insight into the individual steps of the process.

7.3 Shown Data Points
Each of the following data points are updated live in the

web pages for each individual client:

Tx Broadcast

Hash of the last transaction that this node has broadcast to

the network, i.e. to any of its peers.

Tx Received

Hash of the last transaction that this node has received

from the network, i.e. from any of its peers.

Work: Nonce Tried

Last nonce that this node has tried out to form a block.

This is a fast, continuous action when this node is mining,

and none if not. Nonces are tried by the millions per

second and the display will show some snapshots per

second.

Proof of Work: Nonce Found

Last nonce that this node found to successfully form a

block. This nonce is a valid “proof of work.” This is a slow

action that can occur around every 5 to 60 seconds when

this node is mining in a small private network, none if not.

Proof Accepted: Nonce verified

Accepted proof of work from another node: the last nonce

that this node found to match a block as expected, coming

from a peer. This nonce has been verified to be a valid

“proof of work” that a peer found and showed.

Proposed Block

Hash of the last block that this node proposed to the

network. Slow action around every 5 to 60 seconds when

this node is mining in a small private network, none if not.

13 This is a simplification that holds true for Bitcoin but works in a more
complex way in Ethereum, where ‘weight’ is defined for blocks.

Root Hash

Hash of the highest, and last block that this node accepts as

top of the blockchain. This is ‘the’ block hash that is

chained to the next block and that all participating nodes

form consensus over.

Number of Peers

Number of peers that this node has and communicates

with. The node does not communicate with all peers all of

the time.

Chain Height
Number of highest, and last, block that this node accepts as

top of the blockchain, as counted in unbroken line from the

genesis block. This is ‘the’ height13 of the chain that

(mostly) decides which version of the blockchain prevails

when block proposals compete or a partition is re-united.

7.4 Observable Rhythm
The rhythm that is observable is that of one client leading

and the others following within a couple of seconds. This

is the expected behavior, showing how one node takes the

lead and proposes a block and how the remainder of the

network picks the block up, validates the data in it and

eventually implicitly agrees on. When it is internally

accepted as part of the current state, the letter on the

display changes to the represent the new root hash of the

blockchain, now including the new block. After a short

while all nodes show the same colour letter again. This

demonstrates how nodes lose and find consensus again

with every state transition of the network.

There are also patterns of 'rogue' blocks observable, where

for a short time some clients display a different colour

letter, symbolizing a different block's hash, which shows

that a short lived proposal is being accepted only to soon

be overwritten by a proposal that receives more support

from the rest of the network.

7.5 Technical Setup
The visualization uses a special, modified version of the

Ethereum geth client that provides access to specific

internal variables that the Ethereum API does not provide,

at a controllable frequency and pushing the data out from

the client. Each client runs a primitive web server that is

used to create the pages with coloured letters. The dynamic

rendering happens mostly in the browser, using Javascript.

Data is pulled by the browser from the web server. The

modification also speeds up block production of Ethereum

for the sake of a more fluent demonstration. The

modifications to geth are minimal and there are no changes

to core blockchain functionality.

7.6 Detailed information and Source Code
More detailed information about the meaning of the

individual data points, their expectable frequency of change

and consensus, as well as how to set up such a demonstration

and the source code can be found at:

https://github.com/claryon/vizmod

Acknowledgements

We thank Wolfgang Breymann and Petros Kavassalis for

the interesting discussions and clarifications regarding

ACTUS. We thank Peter van den Hul for his guidance and

support during the project.

References

[1] Kavassalis, P., Saxton, K., Gross, F., Agarwal, P., Stieber, H.
(2016), "Financial data for the Good Society: an innovative data-
science approach for Big Data regulatory reporting", accepted
paper 61 at "Frontiers of Data Science for Government: Ideas,
Practices, and Projections", 15-16 September 2016, University of
Cambridge, Cambridge, UK.

[2] ACTUS Financial Research Foundation (2017), "ACTUS
High Level Documentation”, Version 0.2, Date of version 2017-
04-06, available at: http://actusfrf.org/index.php/algorithmic-
standard/#

[3] Flood, M., Goodenough, O. (2015), "Contract as Automaton:
The Computational Representation of Financial Agreements",
OFR Working Paper 15-04 | March 26, 2015, Revised March 27,
2017, available at https://www.financialresearch.gov/working-
papers/files/OFRwp-2015-04_Contract-as-Automaton-The-
Computational-Representation-of-Financial-Agreements.pdf

[4] Zyskind, G., Oz, N., Pentland, A. (2015) "Decentralizing
Privacy: Using Blockchain to Protect Personal Data, in
Proceedings of the Security and Privacy Workshops (SPW),
IEEE, available at http://web.media.mit.edu/~guyzys/data/
ZNP15.pdf

[5] Diedrich, H., Becze, M. (2017) “Supervisory Reporting
Blockchain Architecture”, mimeo

[6] Diedrich, H. (2017) “Blockchain Specification Matrix”, mimeo

http://actusfrf.org/index.php/algorithmic-standard/
http://actusfrf.org/index.php/algorithmic-standard/
https://www.financialresearch.gov/working-papers/files/OFRwp-2015-04_Contract-as-Automaton-The-Computational-Representation-of-Financial-Agreements.pdf
https://www.financialresearch.gov/working-papers/files/OFRwp-2015-04_Contract-as-Automaton-The-Computational-Representation-of-Financial-Agreements.pdf
https://www.financialresearch.gov/working-papers/files/OFRwp-2015-04_Contract-as-Automaton-The-Computational-Representation-of-Financial-Agreements.pdf
http://web.media.mit.edu/~guyzys/data/%20ZNP15.pdf
http://web.media.mit.edu/~guyzys/data/%20ZNP15.pdf

