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Introduction

The 15-th Smarandache’s problem from [1] is the following: “Smarandache’s simple

numbers:
2.3.4,5,6.7.8,9,10, 11,13, L+, 15,17, 19, 21, 22, 23, 25, 26, 27, 29. 31, 33, ...

A number n is called “Smarandache’s simple number” if the product of its proper divisors
is less than or equal to n. Generally sl)eakillg. n has the form n = p, or n = p?, or n = p?,
or n = pq, where p and q are distinct primes”. ‘

Let us denote: by § - the sequence of all Smarandache’s simple numbers and by s, -
the n-th term of S; by P - the sequence of all primes and by p, - the n-th term of 7; by
P? - the sequence {p2}32,: by P? - the sequence {p}}3L,; by P& - the sequence {p-q}paer,
where p < q.

For an abitrary increasing sequence of natural numbers C = {ca}3%, we denote by
7c(n) the number of terms of C, which are not greater that n. When n < ¢; we must put
~we(n) =0.

[n the present paper we find m5(n) in an explicit form and using this, we find the n-th

term of .S in explicit form, too.
1. ms(n)-representation

First. we must note that instead of mp(n) we shall use the well known denotation x(n).
Hence
mpa(n) = m(y/n)., mpa(n) = a(In).
Thus, using the definition of §, we get
rs(n) = x(n) + 7(Vn) + 7(Vn) + 7pe(n). (1)

Our first aim is to express 7s(n) in an explicit form. For 7(n) some explicit formulae
are proposed in [2]. Other explicit [ormulae for m(n) are coutained in [3]. One of them is
known as Minaé¢'s formula. It is given below
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where [.] denotes the function integer part. Therefore, the question about explicit formulae
for functions m(n). 7(/n), () is solved successfully. It remains only to express mpo(n)
in an explicit form. »

Let k € {1,2,‘...,7r(\/;7)} he fixed. We consider all numbers of the kind py.q, where
q € P,q > pr for which py.q¢ < n. The number of these numbers is N(fk-) — m(px), or which

is the same
r(L) — k. (3)
Pk
When k = 1,2, ..., m(y/n), numbers pr.q, that were defined above, describe all numbers
of the kind p.q, where p,q € P,p < ¢,p.q < n. But the number of the last numbers is equeﬂ

to mpo(n). Hence

wmo
rpo(n) = Y _ (m(—) —k), (1)
k=1 P
because of (3). The equality (4), after a simple computation yields the formula
nm A
rpo(n) = Z K(l)————-————‘”(ﬁ)'(’ﬁﬁ)_’.l). (5)
k=1 Pk -
In [4] the identity
W Mo
m(—) =m(7).r{h) + m( ) (6)
Z; Pr b ; Pr )4k

is proved, under the condition b > 2 (b is a real number). When m(5) = (). the right

hand-side of (6) reduces to n(%).rr(b). In the case b = \/n and n > 1 equality (6) yields

Mmoo T )-mv/n) n
3= =)+ Y w(——). (7
i =t Pr(/m)+k

If we compare (3) with (7) we obtain for n > 1

m(3)-m(V/n)

nm(n)=_____—-—”(‘/’_')'(”_£‘/’7)_”+ S w(———). (8)
- k=1 Pa(/n)+k

Thus, we have two different explicit representations for mpg(n). These are formulae

2y aty/m)-1) "”‘;‘ 2= when

(5) and (8). We must note that the right hand-side of (8) reduces to

") = 7(Vin).
Finally, we observe that (1) gives an explicit representation for ms(n), since we may use

formula (2) for m(n) (or other explicit formulae for 7(n)) and (5), or (8) for mpo(n).
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2. Explicit formulae for s,

The {ollowing assettion decides the question abont explicit representalion of s,.

Theorem: The n-th term s, of S admits the following three different explicit representa-

tions: ot |
Sp = [—-———] (9)
= ms(k)
sw= =2 (=2, (10)
k=0
a(n)
1
Sp= ) ————— (11)
k=0 F [”b(L)])
where 5
B(n) = [ii-—ﬂi], n=1,2... (12)

¢ is Riemaun's function zeta and ' is Eulet’s function gamma.

Remark. We must note that in (9)-(11) ms(k) is given by (1), #(k) is given by (2) (or by
others formulae like (2)) and wpo(n) is given by (5), or by (8). Therefore, formulae (9)-(11)
are explicit.

Proof of the Theorem. Iu [2] the following three universal formulae are proposed, using
7e(k) (k= 0,1....), which one could apply to represent c,. They are the [ollowing

(13)

LZ l+[TC(,‘)]
o= -2%«—2["—‘}—’1): (14)
- 1 ,

5)

=y . (1

= (1 - (2eikdyy

[n [5] is shown that the inequality

P SOM), n=1.2,.... (16)
holds. Heuce
sp=Hfn)on =12 .., (17)
since we have obviously
S Spnon= 12,00 (18)
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Then to prove the Theorem it remains ouly to apply (13)-(15) in the case C' = S, ie., for

Cn = s,. putting there 7s(k) instead of m¢-(k) and 0(n) instead of o.
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