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A common approach in model reduction is balanced truncation, which is based on Gramian matrices classifying certain attributes
of states or parameters of a given dynamic system. Initially restricted to linear systems, the empirical Gramians not only extended
this concept to nonlinear systems but also provided a uniform computational method. This work introduces a unified software
framework supplying routines for six types of empirical Gramians. The Gramian types will be discussed and applied in a model
reduction framework for multiple-input multiple-output systems.

1. Introduction

In a control system setting, balanced truncation is a well-
known technique for model reduction. Introduced by [1],
Gramian matrices were employed to determine controllabil-
ity and observability of linear systems. From these Gramians,
a balancing transformation can be computed, enabling the
truncation, for example, of states that are neither controllable
nor observable.

With [2], empirical (controllability and observability)
Gramians were introduced, which correspond to the analyti-
cal Gramians for linear systems, while extending the concept
of systemGramians to nonlinear systems which are generally
given by

�̇� (𝑡) = 𝑓 (𝑥, 𝑢, 𝑝) ,

𝑦 (𝑡) = 𝑔 (𝑥, 𝑢, 𝑝) ,

(1)

with the system function 𝑓 and output function 𝑔 of states
𝑥, input 𝑢, and parameters 𝑝; in the special case of an
unparameterized linear system 𝑓 = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) and 𝑔 =

𝐶𝑥(𝑡). These empirical Gramians are computed by averaging
simulations or experimental datawith perturbations in inputs
and initial states.

The emgr framework presented here encompasses six
empiricalGramians, namely, the controllability, observability,
cross, sensitivity, identifiability, and joint Gramians. To adapt

the computation of empirical Gramians to the operating set-
ting of the system, the initial state and the input are the main
variables which are perturbed by rotations and scaling. The
sets of rotations provided are {1} (unit matrix) and {−1, 1}

(negative unit matrix and unit matrix).Though these are very
basic sets and thus might not reflect all dynamics, especially
with interrelated states and parameters, they allow a very
efficient Gramian assembly. Scales may be freely chosen.
The subdivision of the scales may be linear, logarithmic, or
geometric. Finally, there are several options to average against
the arithmetic average [2], the median, a steady state [3], and
additionally, the principal components of the simulations or
data via a proper orthogonal decomposition (POD).

2. Empirical Gramians

Concerned with the reduction of states, the controllability,
observability, and cross Gramians are presented next, fol-
lowed by the sensitivity, identifiability, and joint Gramians,
which are used for parameter and combined reduction. For
the purpose of defining the Gramians, a linear time-invariant
control system is assumed:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(2)
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with the states 𝑥 ∈ R𝑛, control or input 𝑢 ∈ R𝑚, output 𝑦 ∈

R𝑜, system matrix 𝐴 ∈ R𝑛×𝑛, input matrix 𝐵 ∈ R𝑛×𝑚, and
output matrix 𝐶 ∈ R𝑜×𝑛.

The necessary perturbations are given by six sets, of
which {𝐸

𝑢
, 𝑅

𝑢
, 𝑄

𝑢
} define the input perturbations, while sets

{𝐸

𝑥
, 𝑅

𝑥
, 𝑄

𝑥
} define the initial state perturbations:

𝐸

𝑢
= {𝑒

𝑖
∈ R
𝑗

;

󵄩

󵄩

󵄩

󵄩

𝑒

𝑖

󵄩

󵄩

󵄩

󵄩

= 1; 𝑒

𝑖
𝑒

𝑗 ̸= 𝑖
= 0; 𝑖 = 1, . . . , 𝑚} ,

𝐸

𝑥
= {𝑓

𝑖
∈ R
𝑛

;

󵄩

󵄩

󵄩

󵄩

𝑓

𝑖

󵄩

󵄩

󵄩

󵄩

= 1; 𝑓

𝑖
𝑓

𝑗 ̸= 𝑖
= 0; 𝑖 = 1, . . . , 𝑛} ,

𝑅

𝑢
= {𝑆

𝑖
∈ R
𝑗×𝑗

; 𝑆

∗

𝑖
𝑆

𝑖
= 1; 𝑖 = 1, . . . , 𝑠} ,

𝑅

𝑥
= {𝑇

𝑖
∈ R
𝑛×𝑛

; 𝑇

∗

𝑖
𝑇

𝑖
= 1; 𝑖 = 1, . . . , 𝑡} ,

𝑄

𝑢
= {𝑐

𝑖
∈ R; 𝑐

𝑖
> 0; 𝑖 = 1, . . . , 𝑞} ,

𝑄

𝑥
= {𝑑

𝑖
∈ R; 𝑑

𝑖
> 0; 𝑖 = 1, . . . , 𝑟} .

(3)

These sets should correspond to the ranges in inputs and
initial states the system is operating in.

2.1. Controllability Gramian. Controllability is a quantifica-
tion of how well a state can be driven by input. Analytically,
the controllability Gramian is given by the smallest semi-
positive definite solution of the Lyapunov equation: 𝐴𝑊

𝐶
+

𝑊

𝐶
𝐴

𝑇

= −𝐵𝐵

𝑇. If the underlying system is asymptotically
stable, the controllability Gramian can also be defined using
the linear input-to-state map:

𝑊

𝐶
= ∫

∞

0

𝑒

𝐴𝜏

𝐵𝐵

𝑇

𝑒

𝐴
𝑇
𝜏

𝑑𝜏. (4)

Following [3], the empirical controllability Gramian is
defined by the following.

Definition 1. For sets 𝐸

𝑢
, 𝑅
𝑢
, and 𝑄

𝑢
, and input 𝑢(𝑡), and

input during the steady state𝑥(𝑢), the empirical controllability
Gramian is given by

𝑊

𝐶
=

1
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󵄨
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󵄨
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󵄨

󵄨

󵄨
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𝑢

󵄨

󵄨
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󵄨

|𝑄𝑢|

∑

ℎ=1
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𝑖=1

𝑚
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𝑗=1

1

𝑐

2

ℎ

∫

∞

0

Ψ

ℎ𝑖𝑗

(𝑡) 𝑑𝑡,

Ψ

ℎ𝑖𝑗

(𝑡) = (𝑥

ℎ𝑖𝑗

(𝑡) − 𝑥) (𝑥

ℎ𝑖𝑗

(𝑡) − 𝑥)

∗

∈ R
𝑛×𝑛

,

(5)

with 𝑥

ℎ𝑖𝑗 being the states for the input configuration 𝑢

ℎ𝑖𝑗

(𝑡) =

𝑐

ℎ
𝑆

𝑖
𝑒

𝑗
𝑢(𝑡) + 𝑢.

Originally, in [2], 𝑢(𝑡) was restricted to 𝛿(𝑡) but extended
in [3] to arbitrary input under the name of empirical covari-
ance matrix. 𝑥 can be the arithmetic average, the median, the
steady state, or the principal components. Restricting 𝑅

𝑢
to

{−1, 1} simplifies the input perturbation to

𝑢

ℎ𝑖𝑗

(𝑡) = −1

𝑖

𝑞

ℎ
𝑒

𝑗
𝑢 (𝑡) + 𝑢. (6)

2.2. Observability Gramian. Observability quantifies how
well a change in a state is reflected by the output. The
analytical observability Gramian is given by the smallest

semipositive definite solution of the Lyapunov equation:
𝐴

𝑇

𝑊

𝑂
+ 𝑊

𝑂
𝐴 = −𝐶

𝑇

𝐶. Given an asymptotically stable
underlying system, the observability Gramian can also be
defined using the state-to-output map:

𝑊

𝑂
= ∫

∞

0

𝑒

𝐴
𝑇
𝜏

𝐶

𝑇

𝐶𝑒

𝐴𝜏

𝑑𝜏. (7)

The empirical observability Gramian is defined as described
in [2, 3].

Definition 2. For sets 𝐸
𝑥
, 𝑅
𝑥
, and𝑄

𝑥
and output 𝑦 during the

steady state 𝑥(𝑦), the empirical observability Gramian is given
by

𝑊
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𝑑

2

𝑘

𝑇

𝑙
∫

∞

0

Ψ
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(𝑡) 𝑑𝑡 𝑇

∗

𝑙
,

Ψ
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𝑎𝑏
= (𝑦

𝑘𝑙𝑎

(𝑡) − 𝑦)

∗

(𝑦

𝑘𝑙𝑏

(𝑡) − 𝑦) ∈ R,

(8)

with 𝑦

𝑘𝑙𝑎 being the systems output for the initial state conf-
iguration 𝑥

𝑘𝑙𝑎

0
= 𝑑

𝑘
𝑆

𝑙
𝑓

𝑎
+ 𝑥.

𝑦 can be the arithmetic average, the median, the steady-
state output, or the principal components. Restricting 𝑅

𝑥
to

{−1, 1} simplifies (8) to

𝑊

𝑂
=

1
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1

𝑑

2

𝑘

∫

∞

0
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(𝑡) 𝑑𝑡,
(9)

and simplifies the initial state perturbation to

𝑥

𝑘𝑙𝑎

0
= −1

𝑙

𝑑

𝑘
𝑓

𝑎
+ 𝑥.

(10)

2.3. Cross Gramian. The cross Gramian [4] makes a com-
bined statement about the controllability and observability,
given that the system has the same number of inputs and
outputs. If the system is also symmetric, meaning that the
system transfer function is symmetric, then the absolute value
of these Gramians’ eigenvalues equals the Hankel singular
values. It is originally computed as the smallest solution of the
Sylvester equation: 𝐴𝑊

𝑋
+𝑊

𝑋
𝐴 = −𝐵𝐶. The cross Gramian

can also be defined using the input-to-state and state-to-
output maps, if the underlying system is asymptotically
stable:

𝑊

𝑋
= ∫

∞

0

𝑒

𝐴𝜏

𝐵𝐶𝑒

𝐴𝜏

𝑑𝜏. (11)

The empirical cross Gramian has been introduced in [5] for
SISO systems and was extended to MIMO systems in [6].
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Definition 3. For sets 𝐸
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𝑢
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𝑥
, 𝑄
𝑢
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𝑢 during steady state 𝑥 with output 𝑦, the empirical cross
Gramian is given by
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∗
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(12)

with 𝑥

ℎ𝑖𝑗 and 𝑦

𝑘𝑙𝑎 being the states and output for the input
𝑢

ℎ𝑖𝑗

(𝑡) = 𝑐

ℎ
𝑆

𝑖
𝑒

𝑗
𝑢(𝑡) + 𝑢 and initial state 𝑥𝑘𝑙𝑎

0
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𝑘
𝑇

𝑙
𝑓

𝑎
+ 𝑥,

respectively.

𝑥 and 𝑦 can be the arithmetic average, the median, the
steady state, or the principal components of the output.
Again, restricting 𝑅

𝑢
and 𝑅

𝑥
to {−1, 1} simplifies (12) to

Ψ
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𝑓
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∗
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as well as simplifying input and initial state perturbation to

𝑢
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𝑖

𝑐

ℎ
𝑒

𝑗
𝑢 (𝑡) + 𝑢,

𝑥

𝑘𝑙𝑎

0
= −1

𝑙

𝑑
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𝑓

𝑎
+ 𝑥.
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2.4. Sensitivity Gramian. The sensitivity Gramian allows
controllability-based parameter reduction and identification.
It is based on [7] and aimed formodels that can be partitioned
as follows:

�̇� = 𝑓 (𝑥, 𝑢, 𝑝) = 𝑓 (𝑥, 𝑢) +

𝑃

∑

𝑘=1

𝑓 (𝑥, 𝑝

𝑘
) . (15)

The parameters 𝑝 ∈ R𝑃 are handled here as additional
inputs. All summands of the partitioned system are treated as
independent subsystems, and thus a controllability Gramian
for each subsystem can be computed. Each parameter con-
trollability is encoded in the sum of singular values of the
associated subcontrollability Gramian 𝑊

𝐶,𝑘
. The sensitivity

Gramian is now given by the diagonal matrix, with each
diagonal element being the trace of a subcontrollability
Gramian:

𝑊

𝑆
=

𝑃

∑

𝑘=1

tr (𝑊
𝐶,𝑘

) (𝛿

𝑖𝑗
)

𝑖=𝑗=𝑘

. (16)

The controllability and thus identifiability of each parameter
are then given by the corresponding diagonal entry of the
sensitivity Gramian𝑊

𝑆
. For partitionable linear systems, the

sum of all subsystems controllability Gramians𝑊
𝐶,𝑘

and the

parameter-free subsystems Gramian 𝑊

𝐶,0
equals the usual

controllability Gramian [7]:

𝑊

𝐶
= 𝑊

𝐶,0
+

𝑃

∑

𝑘=1

𝑊

𝐶,𝑘
. (17)

The sensitivity Gramian can be applied to nonpartitionable
models with reduced accuracy.

2.5. Identifiability Gramian. The identifiability Gramian ena-
bles observability-based parameter identification and conse-
quently parameter reduction. As described in [8], the dyna-
mic system states are augmented with as many states as para-
meters that are constant over time and have the initial value
of the (prior) parameter value.

One has

̇

�̆� = (

�̇�

̇
𝑝

) = (

𝑓 (𝑥, 𝑢, 𝑝)

0

) ,

𝑦 = 𝑔 (𝑥, 𝑢, 𝑝) .

(18)

The observability Gramian of this augmented system holds
the observability information of states and parameters. To
extract the parameter specific observability, the Schur com-
plement can be applied to the augmented observability Gra-
mian:

𝑊 = (

𝑊

𝑂
𝑊

𝑄

𝑊
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𝑄
𝑊

𝑃
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𝐼
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𝑃
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𝑄
𝑊
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𝑂
𝑊

𝑄
.

(19)

2.6. Joint Gramian. Based on the identifiability Gramian
procedure, the cross Gramian can be employed for a con-
current state and parameter reduction (see [6]). As for the
identifiability gramian, the system is augmented by constant
parameter states. Additionally, as many inputs and outputs as
parameters are augmented as well. The augmented inputs act
via identity on the augmented states. Likewise, the augmented
states are mapped by identity to the augmented outputs to
preserve symmetry.

̇

�̆� = (

�̇�

̇
𝑝

) = (

𝑓 (𝑥, 𝑢, 𝑝)

V
) ,

𝑦 = (

𝑔 (𝑥, 𝑢, 𝑝)

1
) ,

(20)

to preserve symmetry. The cross Gramian of this special
augmented system, similar to the identifiability Gramian,
holds the cross Gramian of the original system as well as a
cross-identifiability Gramian𝑊 ̈𝐼 which can be extracted with
a Schur complement from the joint Gramian:

𝑊

𝐽
= (

𝑊

𝑋
𝑊

𝑄

𝑊

𝑞
𝑊

𝑃

)

󳨐⇒ 𝑊 ̈𝐼
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𝑃
−𝑊

∗

𝑄
𝑊

−1

𝑋
𝑊

𝑄
.

(21)
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Table 1: Empirical gramian application matrix.

Gramian type State
reduction

Parameter
reduction

Combined
reduction

𝑊

𝐶
(✓) × ×

𝑊

𝑂
(✓) × ×

𝑊

𝐶
& 𝑊

𝑂
✓ × ×

𝑊

𝑋
✓ (✓) ×

𝑊

𝑆
(✓) ✓ ×

𝑊

𝐼
(✓) ✓ (✓)

𝑊

𝐽
(✓) ✓ ✓

3. Implementation

The emgr software framework presented here provides a
uniform interface to compute all six empirical Gramians and
is given by

W = emgr (f, g, q, t, w, p, vcfg, u, us, xs, um, xm, yd) , (22)

with f and g being handles to the system and the output
function, both requiring the signature f(x,u,p) and
g(x,u,p). q is a vector defining the systems number of
inputs, states, and outputs. t is a three-component vector
containing start time, time step, and stop time. w is a character
setting the Gramian type; for an overview on the applicability
of Gramian types, see Table 1.

The following arguments are optional. p holds any
parameters. The ten-component vector vcfg configures the
available options, including averaging types, input and state
scale subdivisions, and perturbation rotations. u provides the
input to𝑓 and𝑔, while us and xs set steady input and steady
state. um and xm define the scales of the perturbation. Las-
tly, yd allows passing experimental data to be used instead
of generated snapshots.

The parameters reducing empirical Gramians (sensitivity,
identifiability, and joint) are an encapsulation of the state
reducing empirical Gramians (controllability, observability,
and cross). Computation of the latter is extensively vector-
ized, exploiting the Gramian matrix assembly format. For
example, the empirical observability Gramian assembly from
(8) can be computationally simplified to

Ψ

𝑘𝑙

𝑎𝑏
= (𝑦

𝑘𝑙𝑎

(𝑡) − 𝑦)

∗

(𝑦

𝑘𝑙𝑏

(𝑡) − 𝑦)

󳨀→ {

𝜓

𝑘𝑙

𝑎
(𝑡) = (𝑦

𝑘𝑙𝑎

(𝑡) − 𝑦)

Ψ

𝑘𝑙

𝑎𝑏
= vec (𝜓𝑘𝑙

𝑎
)

∗

vec (𝜓𝑘𝑙
𝑏
) .

(23)

Computation of empirical Gramians using emgr is very
portable, since only basic vector and matrix operations are
required. Necessary integrations, meaning simulations for
given inputs or initial states, are accomplished either by the
first-order Euler’s method, second-order Adams-Bashforth
method, or second-order Leapfrog method. The empirical
Gramian framework emgr as well as the following exper-
iments is released under an open source license, is com-
patible with OCTAVE and MATLAB, and can be found
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Figure 1: Relative error in reduced system output by balanced trun-
cation using the empirical controllability Gramian and the empirical
observabilityGramian WC = emgr(f,g,[10,100,10],[0,0.01,1],
“c”,p); WO = emgr(f,g,[10,100,10],[0,0.01,1],“o”,p).

at http://gramian.de or at the Oberwolfach References on
Mathematical Software.

4. Numerical Experiments

To demonstrate the various empirical Gramians, computed
by the emgr framework, a symmetric nonlinear MIMO
system with one hundred states, ten inputs, and ten outputs
is employed. The system matrix is generated randomly with
ensured stability and symmetry; the input matrix 𝐵 is also
a random matrix, and the output matrix is given by 𝐶 =

𝐵

𝑇. Furthermore a random, but element-wise, parametrized
source term 𝐸

𝑝
of dimension 𝑛 = 100 parameters is added.

Input is applied through a delta impulse:

𝑓 (𝑥, 𝑢, 𝑝) = �̇� = 𝐴 arsinh (𝑥) + 𝐵𝑢 + 𝐸

𝑝
,

𝑔 (𝑥) = 𝑦 = 𝐶𝑥.

(24)

First, a state reduction, using the empirical controllability
Gramian and the empirical observability Gramian, through
balanced truncation is performed in Figure 1, reducing
the number of states to the number of outputs. Balanced
truncation as a classic approach inmodel order reductionwill
be used as a baseline to which the following methods will be
compared.

Next, a state reduction by direct truncation employing the
empirical cross Gramian is demonstrated in Figure 2, again
reducing the number of states to ten. The state reduction via
direct truncation of the cross Gramian has about the same
error but requires only one Gramian and no balancing.

The empirical sensitivity Gramian can be applied if the
underlying system can be partitioned such that 𝑓(𝑥, 𝑢, 𝑝) =

𝑓(𝑥, 𝑢) + 𝑓(𝑥, 𝑝). To be able to use it in this setting, the
parametrized source term is reduced to the number of
outputs in Figure 3. The sensitivity Gramian is the fastest
parameter reduction method but has a high relative error in
outputs. Since the parameters of the source term are reduced,
the cumulative effects in the original system are the origin of
the increasing error over time. Next, the parametrized source
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Figure 2: Relative error in reduced system output by truncation
using the empirical cross Gramian WX = emgr(f,g,[10,100,10],

[0,0.01,1],“x”,p).
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Figure 3: Relative error in reduced system output with reduced
source term; reduction by truncation using the empirical sensitivity
Gramian WS = emgr(f,g,[10,100,10],[0,0.01,1],“s”,p).

term is reduced by the empirical identifiability Gramian in
Figure 4.

Taking five times as long for the parameter reduction as
the sensitivity Gramian, the identifiability Gramian is about
two orders of magnitude more accurate.

Finally, in Figure 5, the same system undergoes a com-
bined state and parameter reduction using the empirical
joint Gramian. The joint Gramian is the only Gramian
allowing direct, balancing-free combined reduction of state
and parameter space with a comparable relative error and yet
takes about the same time for the reduction as the identifiabil-
ity Gramian. This combined reduction generates a reduced-
order model, of which the relative error is comparable to the
other reduced system output models.

5. Future Work

The emgr framework already allows a wide range of com-
putations of empirical Gramians for state or parameter
reduction. Apart from model order reduction, the empirical
Gramians can be employed for system identification tasks,
like parameter identification or sensitivity analysis as well
as decentralized control, nonlinearity measurement, and
uncertainty quantification.

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Time

Re
la

tiv
e e

rr
or

10 20 30 40 50 60 70 80 90 100
1
2
3
4
5
6
7
8
9

10

Figure 4: Relative error in reduced system output with reduced
source term; reduction by truncation using the empirical
identifiability Gramian WI = emgr(f,g, [10,100,10],

[0,0.01,1],“i”,p).
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Figure 5: Relative error in system output with combined
state and parameter reduction; reduction by truncation of
parameters and states using the empirical joint Gramian
WJ = emgr(f,g,[10,100,10],[0,0.01,1],“j”,p).

Further work will enhance the flexibility, while keeping
the interface as simple as possible. Following [8], allowing
factorial designs will greatly enlarge the field of application.
Finally, extending the use of the cross Gramian (and thus the
joint Gramian) to nonsymmetric systems [4] will enable a
combined state and parameter reduction for general linear
and nonlinear models without balancing.
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