
688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 1 of 96
 © Copyright 2017, the Members of the symbIoTe

D5.2 Symbiosis of smart objects across
IoT environments

688156 - symbIoTe - H2020-ICT-2015

Report on System Integration and
Application Implementation

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2017, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 2 of 96
 © Copyright 2017, the Members of the symbIoTe

Document Control

Number: D5.2

Title: Report on System Integration and Application Implementation

Type: Public

Editor(s): Gerhard Dünnebeil, Refiz Duro, AIT
E-mail: gerhard.duennebeil@ait.ac.at, refiz.duro@ait.ac.at

Author(s): Mario Drobics, Karl Kreiner, Ivan Gojmerac, AIT; Joao Garcia, UW, Raquel
Ventura Miravet, S&C; Matteo Pardi, NXW; Reinhard Herzog, IOSB; Vasilis
Glykantzis, ICOM; Juan Belmonte Rodriguez, Antonio Paradell Bondia, WLI;
Luca De Santis, NAVIGO; Szymon Mueller, PSNC. Aleksandar Antonić,
UNIZG-FER.

Doc ID: D5.2-v20

Amendment History

Version Date Author Description/Comments

V0.1 March 23rd , 2017 R. Duro Initial ToC

V0.2 May 2nd, 2017 G.Dünnebeil Structure for the use case descriptions

V0.3 June 7th, 2017 Matteo Pardi, Raquel Ventura Miravet,
Reinhard Herzog, G. Dünnebeil

Merged first round of contributions

V0.4 June 7th, 2017 Reinhard Herzog Fixed the mess left over from merging chaos

V0.5 June 13th, 2017 Refiz Duro Updates to Chapter 2 (Introduction), addressed formatting issues

V0.6 June 20th, 2017 Vasilis Glykantzis, Juan Belmonte,
Antonio Paradell Bondia, Refiz Duro

Integration of symbIoTe core descriptions (Chapter 3), and Smart
Stadium application descriptions

V0.7 June 20th, 2017 Refiz Duro Edits, structural updates

V0.8 June 22nd, 2017 Matteo Pardi Input from NXW integrated – Chapter 4 (Applications: Smart Area
Control and Home Comfort)

V0.9 June 29th, 2017 Karl Kreiner, Vasilis Glykantzis,
Reinhard Herzog, Luca De Santis

Added input from AIT on Smart Home Health use case (only added
structure)

Updated description of development process

Description of EduCampus

Description of Use Case Smart Yachting

V0.10 July, 11th, 2017 Gerhard Dünnebeil, Juan Belmonte
Rodriguez, Szymon Mueller

Editorial work, fixed the sequence diagrams for Smart Stadium UC,

Added the chapter about stress testing

V0.10 July, 13th, 2017 Joao Garcia Description of SMEUR use case

V0.10 July, 14th, 2017 Aleksandar Antonic Code examples for cloud services

V0.11 July, 18th, 2017 Luca De Santis, Refiz Duro Update to Use Case Scenario “Smart Yachting” (Section 7.5). Edits
before the internal interview (including moving text to Appendix,
writing Executive Summary, Conclusion).

V0.12 July 24th-July 27th,
2017

Corinna Schmitt, Refiz Duro Internal Review by Corinna, edits by Refiz

V0.13 July 29th - August
03, 2017

Marcin Plociennik, Zvonimir Zelenika,
Refiz Duro, Mario Drobics

Internal review by Marcin, Zvonimir. Followed by significant edits by
Refiz, Mario (doc harmonization, restructuring, text updates,
references, new figures, etc.)

V0.14 July 09th, 2017 Joao Garcia, Raquel Ventura Miravet,
Matteo Pardi, Luca de Santis, Reinhard

Review-based input on Smart Mobility, Smart Home, Smart Yachting
and EduCampus integrated.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 3 of 96
 © Copyright 2017, the Members of the symbIoTe

Herzog, Karl Kreiner

V0.15 July 11th, 2017 Refiz Duro Edits to Chapter 5, tables, harmonization of document, and
identification of the still-missing pieces. Update of Executive
Summary.

V0.16 July14th, 2017 Reinhard Herzog, Luca de Santis,
Matteo Pardi, Gerhard Dünnebeil,
Marcin Pliciennik, Raquel Ventura
Miravet

Integration of input due to missing parts.

V0.17 Aug.22nd Tilemachos Pechlivanoglou, Karl
Kreiner, Joao Garcia

Last minute integration of inputs, preparing second internal review

V0.18 Aug 24th Luca De Santis, Alexandar Antonić,
Juan Belmonte

More last minute input. Brushed up to be the final version for the
second internal review

V0.19 Aug. 28th Gerhard Dünnebeil Latest change request from the second review.

V0.20 Aug. 31st Sergios Soursos Editorial changes, submission-ready version

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 4 of 96
 © Copyright 2017, the Members of the symbIoTe

(This page is left blank intentionally.)

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 5 of 96
 © Copyright 2017, the Members of the symbIoTe

Table of Contents

1 Executive Summary 7

2 Introduction 9

2.1 symbIoTe 9

2.2 Purpose of the Document and Scope 10

2.3 Task T5.1 Objectives 10

2.4 Task T5.2 Objectives 10

2.5 Document Structure 11

3 System integration 12

3.1 symbIoTe architecture 12

3.2 Project Build & Deployment 14

3.3 Common integration information across components 15

3.3.1 Programming Language 15

3.3.2 Generic Source Tree Information 15

3.3.3 Building tool 16

3.3.4 Common Java Dependencies across components 16

3.3.5 External Tools 17

3.3.6 Continuous Integration 17

3.4 Software Releases 17

3.5 Component-specific integration information 18

3.5.1 Component: Administration 18

3.5.2 Component: Authentication and Authorization Manager 18

3.5.3 Component: Cloud-Core Interface 19

3.5.4 Component: Core Interface 19

3.5.5 Component: Core Resource Access Monitor 20

3.5.6 Component: Core Resource Monitoring 20

3.5.7 Component: Monitoring 21

3.5.8 Component: Registration Handler 21

3.5.9 Component: Registry 22

3.5.10 Component: Resource Access Proxy 22

3.5.11 Component: Search 23

3.5.12 Component: Semantic Manager 23

3.5.13 Library: Security Handler 24

4 Stress testing of symbIoTe components 25

4.1 Testing scenario 25

4.2 Achieved Results 26

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 6 of 96
 © Copyright 2017, the Members of the symbIoTe

4.2.1 Local Testing 26

4.2.2 Remote Testing 27

4.3 Findings 29

5 symbIoTe Use Case Related Application Implementation 31

5.1 Use Case Scenario “Smart Residence” 33

5.1.1 Application: Smart Healthy Indoor Air 33

5.1.2 Application: Smart Area Controller 38

5.1.3 Application: Home Comfort 41

5.1.4 Application: Smart Health Mirror 42

5.2 Use Case Scenario “Smart Mobility and Ecological Routing” 44

5.2.1 Application: Smart Mobility and Ecological Routing Mobile Application 45

5.2.2 Application: Smart Mobility and Ecological Routing Web Application 48

5.3 Use Case Scenario “EduCampus” 50

5.3.1 Application: Searching for a Room 51

5.4 Use Case Scenario “Smart Stadium” 55

5.4.1 Application: Visitor application 56

5.4.2 Application: Retailer Application 62

5.4.3 Application: Promowall 66

5.5 Use Case Scenario “Smart Yachting” 71

5.5.1 Application: Smart Mooring 71

5.5.2 Application: Automated Supply Chain 79

5.6 Platforms and their Integration Status 83

6 Conclusions 85

7 References 87

8 Acronyms 88

9 Appendix 90

9.1 Platform Integration Scenarios 90

9.1.1 “Internal Integration”: Integration of OpenIoT 90

9.1.2 “External integration”: Integration of openUwedat 93

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 7 of 96
 © Copyright 2017, the Members of the symbIoTe

1 Executive Summary

With the purpose of fostering the development of an open IoT ecosystem and market, the
H2020 project symbIoTe will provide an abstraction layer for various existing IoT platforms
as its primary objective towards IoT platform interoperability. Furthermore, symbIoTe will
also pursue the challenging tasks of implementing IoT platform federation, enabling the
platforms to interoperate, collaborate, share resources for the mutual benefit, and to
support the migration of smart objects between various IoT domains and platforms.

Among the main activities in Work Package 5 (WP5), entitled “Use-case based Trials and
Deployments”, are the activities directly related to design and implementation of
applications based on the selected symbIoTe use cases that utilize the domain-specific
symbIoTe APIs specified in Work Package 1. In this deliverable, D5.2, the focus is in
particular set on the system integration (symbIoTe ecosystem), as well as on the involved
applications aimed at the end users that need to be integrated in the symbIoTe ecosystem.

Since providing IoT services is an extremely distributed and performance oriented
procedure, we design a system matching these needs. We decided to follow the
microservices architecture, which aims to provide better scalability, performance and code
maintenance. Information regarding the system integration, such as the project structure,
the description of the source tree, dependencies, code coverage, as well as feature
planning information is provided. The design is flexible enough to allow for language
independency when, e.g., developing or using platform-specific plugins for an IoT platform
integration.

Further, a list of performance requirements for the symbIoTe system was defined in
Deliverable D1.2. To ensure that provided services/applications fulfill those requirements,
a stress testing testbed together with the test scenarios is designed and created. Testing
including varied number of users and concurrent requests to the system showed that
symbIoTe release R2 is relatively stable and can handle pretty large amount of request for
medium sized datasets. Testing also showed that we require introducing specific
approaches to handle larger datasets and more concurrent users using the system.

The second part considers applications to run on top of the symbIoTe prototype. The main
purpose of such applications is to simplify and optimize end users’ daily activities in
various situations and environments. Five use cases of symbIoTe cover different domains,
and make use of different applications:

1. Smart Residence: Smart Healthy Indoor Air, Smart Area Controller, Home Comfort
and Smart Health Mirror applications.

2. Smart Mobility and Ecological Routing: Mobile and Web applications offering
optimized routing alternatives and point of interest search.

3. Edu Campus: Searching for a Room application.

4. Smart Stadium: Visitor, Retailer and Promowall applications.

5. Smart Yachting. Portnet and Centrale Acquisti applications.

The listed applications allow for optimal collaboration and cooperation on top of the
available resources, e.g., sensors, actuators, mobile devices, processing resources, etc.
Development of the non-existing, or adjustment of already existing applications in the

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 8 of 96
 © Copyright 2017, the Members of the symbIoTe

given list to provide services through the symbIoTe ecosystem serve as excellent
examples and/or tests of the working interoperable framework across existing platforms.

In order to make this possible, applications as well as the IoT platforms, need to be
compliant. In particular, symbIoTe has four different interoperability modes, which are
referred to as “Compliance Levels” (L1 to L4) that aim to enable an incremental
deployment of functionalities across the architectural domains: 1) Application Domain, 2)
Cloud Domain, 3) Smart Space Domain, and 4) Device Domain. This allows for flexibility in
choosing the collaboration level with other platforms within the symbIoTe-enabled
ecosystem. Different components are accordingly required for different domains and
desirable compliance level(s).

Most of the symbIoTe use cases target L1 and L2 compliance levels, with extensions to L3
and L4 in Smart Residence and Smart Yachting. Hence, the IoT platforms need to
integrate the required symbIoTe components according to these compliance levels, while
the aforementioned applications must be designed (or adjusted/extended) and developed
accordingly. We provide an overview of the current status of the platform integration, their
levels of compliance, as well as on the development and integration status of the end user
applications.

This document primarily reports on the work done in Task T5.1 and on the work done and
planned in Task 5.2 which will end in Month 26. The work on the integration of the
symbIoTe prototype and the developed and implemented applications running on top of it
will continue until month 30 in Task T5.4, with the final results presented in Deliverable
D5.4.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 9 of 96
 © Copyright 2017, the Members of the symbIoTe

2 Introduction

This section includes a brief introduction to symbIoTe, identifies the purpose of the
document, and maps the included results to the objectives mentioned in the description of
work (DoW). Finally, the document structure is explained.

2.1 symbIoTe

In a world of smart networked devices and wearables as well as sensors and actuators,
which blend with the surrounding environment to provide daily life services, transparent
and secure access to and usage of the available resources across various IoT domains is
crucial to satisfy the needs of an increasingly connected society. Users are in demand of
novel applications that simplify their daily activities in various situations and environments.
Some examples of such situations and environments occur at home or at the office, when
commuting, or at airports/train stations, and during leisure activities such as visiting
stadiums or shopping malls. Following such demands, new requirements have emerged
due to the growing number of IoT users worldwide, lower entry barriers for non-technical
users to become content and service providers, and the available IoT platforms and
services on the market.

The current situation, however, is that of fragmented IoT ecosystems. This is best depicted
by a series of vertical solutions, which on the one hand integrate connected objects within
local environments (e.g., home, office, etc.) that we call smart spaces, and on the other
hand connect smart spaces with back-end cloud hosting software components, which are
often proprietary. The vertical solution implies restrictions to the ecosystem that is
developed around a single platform, thereby limiting access to all other IoT ecosystems.
Interoperability and IoT federations are thus needed to achieve collaboration and access
to services and resources provided by the different IoT platforms.

Figure 1 shows an example of IoT ecosystems powered by three different platforms:
Platform 1 focuses on integrating Smart Home environments; Platform 2 is tailored to the
needs of office and Smart Campus environments, while Platform 3 focuses on providing
solutions for public spaces. There are numerous commercial offerings in the form of
services and applications in these domains on the market. Infrastructure providers are at
the beginning of the value chain by setting up devices and gateways in smart spaces, IoT
platform developers maintain and sell the platforms, cloud and IoT service providers host
the platforms, while application developers/providers build innovative web and mobile
applications on top the platforms and infrastructure. End users interact either directly with
infrastructure providers and use the provided applications for their infrastructure, or with
IoT service providers who offer bundled service. Telecom operators are in the pole
position to expand their service portfolio with IoT services and to act as infrastructure
providers by expanding their existing infrastructure with IoT resources. It is clear that
application developers and providers are locked in with a platform and need to adjust their
solutions for each new platform and underlying infrastructure, while infrastructure providers
cannot offer their resources to multiple IoT service providers.

symbIoTe comes to remedy this fragmented environment by providing an abstraction layer
for a “unified view” on various platforms and their resources in a way that platform
resources are transparent to application designers and developers. In addition, symbIoTe
also implements IoT platform federations so that they can securely interoperate,

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 10 of 96
 © Copyright 2017, the Members of the symbIoTe

collaborate and share resources for the mutual benefit, and what is more, support the
migration of smart objects between various IoT domains and platforms (Figure 1).

Figure 1: symbIoTe integrates different IoT platforms and ecosystems

2.2 Purpose of the Document and Scope

The purpose of the Deliverable D5.2 entitled “Report on System Integration and
Application” is two-fold. On the one hand, it reports on the work done in Task T5.1. On the
other hand, it provides detailed planning and a status update of the user application
development (Task 5.2) upon the existing core functionality.

This document presents a snapshot of the work done and planned. It reflects the state of
the work as it is mid of August 2017.

2.3 Task T5.1 Objectives

Task T5.1 is concerned with the definition of an implementation framework for the
symbIoTe architecture. This activity serves as guide for all the implementation tasks in the
technical WPs (T2.2, T2.3, T3.3, T4.1, T4.2 and T4.3 respectively), to set common
methodologies, tools and workflows for the development of the symbIoTe components. A
second set of activities concerns prototype integration of software components developed
in previous WPs.

2.4 Task T5.2 Objectives

Task T5.2 implements the symbIoTe use case-related applications, including tools and
application workflows, followed by initial functional test that will validate their features. The
use cases involved are designed and defined in Tasks T1.1 and T1.3 (and in their
respective deliverable documents[1], [2]). In addition to the implementation of the use case
scenarios, T5.2 also interacts with the efforts of symbIoTe Open Call partners (WP6), who

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 11 of 96
 © Copyright 2017, the Members of the symbIoTe

base their application on the defined domain-specific symbIoTe APIs. Finally, Task T5.2
provides an empirical set of guidelines for the implementation of symbIoTe applications.
As a part of WP 5, Task 5.2 ends in month 26.

2.5 Document Structure

The rest of the Deliverable D5.2 is structured as follows. Chapter 3 gives an overview on
existing components that belong to the core software. This chapter also describes the
installation process of a cloud instance. An overview of the API’s used by the core as well
by some user code are documented. Further individual components and details about their
integration process are presented. This is followed in Chapter 4 by stress tests on
performance requirements that were defined in previous deliverable D1.3 [3].
Chapter 5 provides an overview on the design of the user applications which have been
briefly introduced in Deliverable D1.3 [2], as well as their development and integration
status, followed by a brief platform integration status. Chapter 6 concludes this Deliverable
D5.2. Chapter 9 includes the Appendix with information on how to build and install the
symbIoTe Core and Cloud.

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

3 System integration

This chapter provides information regarding the system integration, such as
structure, the description of the source tree, dependencies, code coverage, as well as
feature planning information. Moreover, a brief look at the architecture is also given.

3.1 symbIoTe architecture

As it was already stated in detail in the symb
architecture and requirements
approach comprises four layered domains, as depicted in

1) Application domain (APP)
environments for supporting cross

2) Cloud domain (CLD) hosts the cloud
3) Smart Space domain (SSP)

computing and storage resources
configuration in smart spaces available within

4) Device domain (SD) spans over hete
dynamically blend with the surrounding environment and are discovered by the
symbIoTe middleware which performs the initial “introduction” of
space.

Figure 2

symbIoTe has also introduced four different interoperability modes, which are referred to
as Compliance Levels (Figure
functionalities across the architectural domains (APP, CLD, SSP
owners are free to choose the compliance level they desire and consequently, the level of
the collaboration with other platforms within the symbIoTe

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

System integration

information regarding the system integration, such as
description of the source tree, dependencies, code coverage, as well as

Moreover, a brief look at the architecture is also given.

symbIoTe architecture

As it was already stated in detail in the symbIoTe’s report on “Initial and final system
architecture and requirements” (see D1.2 [24] and D1.4 [3] respectively), the symbIoTe
approach comprises four layered domains, as depicted in Figure 2:

Application domain (APP) offers a high-level API for managing symbIoTe’s
environments for supporting cross-platform discovery and management of resources.

hosts the cloud-adjusted building blocks of specific platfo
Smart Space domain (SSP) comprises smart objects, IoT gateways as well as local
computing and storage resources, enabling dynamic sensor discovery and
configuration in smart spaces available within home environment.

spans over heterogeneous devices which are capable to
dynamically blend with the surrounding environment and are discovered by the
symbIoTe middleware which performs the initial “introduction” of devices within a smart

2: The symbIoTe high-level architecture

has also introduced four different interoperability modes, which are referred to
Figure 3), and that aim to enable an incremental deployment of

ities across the architectural domains (APP, CLD, SSP,
owners are free to choose the compliance level they desire and consequently, the level of
the collaboration with other platforms within the symbIoTe-enabled ecosystem. Naturally,

Report on System Integration and
Application Implementation

Page 12 of 96

information regarding the system integration, such as the project
description of the source tree, dependencies, code coverage, as well as

Moreover, a brief look at the architecture is also given.

nitial and final system
respectively), the symbIoTe

symbIoTe’s virtual IoT
platform discovery and management of resources.

adjusted building blocks of specific platforms.
comprises smart objects, IoT gateways as well as local

, enabling dynamic sensor discovery and

ogeneous devices which are capable to
dynamically blend with the surrounding environment and are discovered by the

devices within a smart

has also introduced four different interoperability modes, which are referred to
aim to enable an incremental deployment of

 and SD). Platform
owners are free to choose the compliance level they desire and consequently, the level of

enabled ecosystem. Naturally,

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 13 of 96
 © Copyright 2017, the Members of the symbIoTe

different components are required to be installed in different domains according to the
desirable compliance level.

Figure 3: symbIoTe Compliance Levels

The current release implementation, R2, aims to provide components that support Level 1
(L1) compliance modes. This will allow for a unified view on various platforms and their
resources. The release currently under development, R3, will provide functionality for a
platform federation, where accessing each platform’s services (and resources) from within
another platform is made possible. Both compliance levels require components placed in
two domains - APP and CLD. IoT platforms, which want to become part of the symbIoTe
ecosystem, need to integrate the required symbIoTe components in the CLD according to
the compliance level they choose. This will enable semantic interoperability and open
access to IoT services that a platform chooses to register and make discoverable via the
symbIoTe Core Services or inside a federation. Furthermore, symbIoTe supports
authenticated and authorized access to IoT services, which will allow the platform to retain
access control on their devices.

The symbIoTe components are available in GitHub1. The components are bundled in
several super-repositories, which make use of the git submodules, according to the
domain, which need to be instantiated. These are the symbIoTe Core2 and Cloud3
repositories. symbIoTe Core Contains all the components instantiated in the core, while
symbIoTe Cloud contains all the components that should be instantiated in the respective
platform side.

Providing IoT services is an extremely distributed and performance oriented procedure.
Therefore, we designed a system that matches these needs. Consequently, we decided to
follow the microservices architecture, which aims to provide better scalability, performance
and code maintenance. We adopted this approach both for the symbIoTe core and cloud
as well as for the enablers. Thus, the functionalities of the symbIoTe Core and the

1
 https://github.com/symbiote-h2020

2
 https://github.com/symbiote-h2020/SymbioteCore

3
 https://github.com/symbiote-h2020/SymbioteCloud

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 14 of 96
 © Copyright 2017, the Members of the symbIoTe

symbIoTe Cloud are composed by using several components that are glued together
forming a “microservice architecture”. The repositories refer to all microservice
components that are relevant for the respective functionality. All the code developed under
symbIoTe is available in the symbIoTe page4.

Figure 4 shows the relevant microservices and their relation. The term "relevant” in this
context means, that there are more services that support the shown services by providing
infrastructure like logging, configuration, persistent storage and inter-component
communication. These auxiliary services do not add to the logical functionality and are
thus omitted here.

Figure 4: Existing microservices

3.2 Project Build & Deployment

All source codes are available in github.

A good starting point is

• https://github.com/symbiote-h2020/SymbioteCore for the core components and

4
 https://github.com/symbiote-h2020

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 15 of 96
 © Copyright 2017, the Members of the symbIoTe

• https://github.com/symbiote-h2020/SymbioteCloud for the platform-side
components.

Both repositories contain instructions of how to install and build all components.

From time to time comments are resolved and changes settled. The resulting version is
then published under the name “README” as part of the software and is as such available
under the above mentioned locations.

3.3 Common integration information across components

This section presents integration information common for all symbIoTe core and cloud
components.

3.3.1 Programming Language

For developing the symbIoTe framework, we chose the Java programming language,
since it is a very popular language, easy to write, compile and debug, and offers numerous
frameworks (e.g., Spring5 framework), which make it extremely easy to develop simple,
portable, fast and flexible Java virtual machine (JVM)-based systems and applications.
Furthermore, the choice of java is highly compatible with the microservices approach,
since there are many java frameworks facilitating the development of microservices (e.g.,
Spring Boot6, Spring Cloud7).

Even though symbIoTe is entirely developed in Java, we provide standard communication
mechanisms to all the symbIoTe components (e.g., message queues). Therefore, the
platform-specific plugins that are required to enable the integration of an IoT platform to
the symbIoTe framework are language independent and must not necessarily be
developed in Java.

3.3.2 Generic Source Tree Information

In symbIoTe, we follow the Standard Directory Layout for java. Meaning all the symbIoTe
components include the following subfolders:

• src/main/java/eu/h2020/symbiote: Application/Library sources
• src/main/resources: Application/Library resources (e.g., bootstrap.properties

configuration file of Spring Boot)
• src/test/java/eu/h2020/symbiote: Test sources

• src/main/resources: Test resources

5
 https://spring.io/

6
 https://projects.spring.io/spring-boot/

7
 http://projects.spring.io/spring-cloud/

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 16 of 96
 © Copyright 2017, the Members of the symbIoTe

3.3.3 Building tool

Gradle8 was our final choice for a building tool, due to its simplicity of creating and
maintaining building scripts, its excellent documentation and performance. In order to
facilitate the simplicity and quality of the development procedure, we used the following
Gradle plugins listed in Table 1.

Plugin Version Description

java default Plugin necessary for java

org.springframework.boot 1.5.4.RELEASE Plugin necessary for Spring Boot

io.spring.dependency-management 1.0.0.RELEASE
A Gradle plugin that provides Maven-like
dependency management functionality

jacoco default
Gradle plugin that generates Jacoco reports
from a Gradle Project.

org.owasp.dependencycheck 1.4.5.1
A software composition analysis plugin that
identifies known vulnerable dependencies
used by the project.

eclipse default Plugin for Eclipse

idea default Plugin for Intellij IDEA

com.cinnober.gradle.semver-git 2.2.1
Gradle plugin that combines git tags and
semantic versioning, and sets the gradle
version property accordingly.

Table 1: Gradle Plugins

3.3.4 Common Java Dependencies across components

Towards simplifying and accelerating the implementation procedure, we also made use of
Spring framework and specifically of the Spring Boot project (1.5.3.RELEASE) and Spring
Cloud project (Dalston.RELEASE). In Table 2 all the common Java dependencies across
projects are listed.

Table 2: Java Dependencies

Group Id Artifact Id Version Type

org.springframework.cloud spring-cloud-starter-config Dalston.RELEASE compile

org.springframework.cloud spring-cloud-starter-eureka Dalston.RELEASE compile

org.springframework.cloud spring-cloud-starter-zipkin Dalston.RELEASE compile

org.springframework.boot spring-boot-starter-amqp 1.5.4.RELEASE compile

com.github.symbiote-h2020 SymbIoTeLibraries 0.2.0 compile

junit junit 4.+ testcompile

8
 https://gradle.org/

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 17 of 96
 © Copyright 2017, the Members of the symbIoTe

org.springframework.boot spring-boot-starter-test 1.5.4.RELEASE testcompile

All spring libraries are published under an Apache 2.0 license. Junit is only used during the
build process but comes with an Eclipse Public License - v 1.0. Both allow to run symbiote
applications without the need to publish source code (like in the GPL).

3.3.5 External Tools

symbIoTe has further dependencies on external tools, so that certain aspect of the
projects can be easily realized:

• RabbitMQ9 (version 3.6.9+): message queue server for internal messaging between
same domain components. RabbitMQ’s use is granted under a “Mozilla Public
License”

• MongoDB10 (version 3.2.13+): database used by symbIoTe components. The
related license is the “GNU AFFERO GENERAL PUBLIC LICENSE”.

• Icinga 211: for monitoring registered resources. Icinga is licensed under the terms of
the GNU General Public License Version 2.

• Nginx12 (version 1.12.0): for enabling access of platform components with the
external world (i.e., applications, enablers, symbIoTe core). Nginx is released
under the terms of a BSD-like license.

3.3.6 Continuous Integration

During implementation, we used the branching model as described in deliverable D5.1 [4]
along with the continuous integration server Travis13. The test reports are also
automatically pushed to codecov14. Specific testing information per component is provided
in the following Section 3.4.

3.4 Software Releases

The project has already performed two major releases of the symbIote software, while a
third one is under preparation. The following table summarizes the symbIoTe software
releases, providing also the respective GitHub links.

Release Date GitHub Link

0.1.0 (R1) 21/02/2017 Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/0.1.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/0.1.0

0.2.0 (R2) 22/05/2017 Cloud: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/0.2.0

9
 https://www.rabbitmq.com/

10
 https://www.mongodb.com/

11
 https://www.icinga.com/products/icinga-2/

12
 https://nginx.org/en/

13
 https://travis-ci.org/

14
 https://codecov.io/github/symbiote-h2020

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 18 of 96
 © Copyright 2017, the Members of the symbIoTe

Core: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/0.2.0

0.2.1 20/07/2017 Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/0.2.1

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/0.2.1

0.3.0 (R3) expected To be provided.

3.5 Component-specific integration information

This section provides specific integration information per component. Although not
finalized and released at the cut-off date for this deliverable, the implementation of R3 is
work in progress and has advanced a lot. Thus the following chapters also refer to the
current status of R3. Features mentioned as “implemented” there are certain to be
incorporated in that release.

3.5.1 Component: Administration

3.5.1.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Administration

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Administration

Code Coverage Snapshot 71%

3.5.1.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0

• Interface definition
• User registration
• Platform registration, modification,

removal

0.2.0

• Interface definition (enhancements)
• Visual improvements
• App registration
• Security credential passing to users

• Admin access to logs
(pushed to 0.3.0)

0.3.0

• Interface definition (enhancements)
• List registered resources
• Admin access to logs
• Admin user actions

3.5.2 Component: Authentication and Authorization Manager

3.5.2.1 Generic Information

URL of git repository
https://github.com/symbiote-

h2020/AuthenticationAuthorizationManager

URL of code coverage reports
https://codecov.io/github/symbiote-
h2020/AuthenticationAuthorizationManager

Code Coverage Snapshot 80%

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 19 of 96
 © Copyright 2017, the Members of the symbIoTe

3.5.2.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0

0.2.0 • Interface definition
• App registration
• Platform registration
• Authentication
• Core tokens issuing
• AAMs repository

• Token validation (done partially,
pushed to 0.3.0)

0.3.0 • Interface definition (enhancements)
• Revoking tokens
• Home to Core tokens translation
• Illegal access detection
• Password change / reset

3.5.3 Component: Cloud-Core Interface

3.5.3.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CloudCoreInterface

URL of code coverage reports https://codecov.io/github/symbiote-h2020/CloudCoreInterface

Code Coverage Snapshot 52%

3.5.3.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0 • Endpoint for Registration Handler
requests

• Async. core communication
(RabbitMQ)

0.2.0 • Endpoint for Registration Handler
requests (enhancements)

• RDF endpoint for Registration
Handler requests

0.3.0 No new features planned

3.5.4 Component: Core Interface

3.5.4.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CoreInterface

URL of code coverage reports https://codecov.io/github/symbiote-h2020/CoreInterface

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 20 of 96
 © Copyright 2017, the Members of the symbIoTe

Code Coverage Snapshot 30%

3.5.4.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0 • Endpoint for searching
• Parameterized query translation
• Endpoint for access to resources
• Async. core communication

(RabbitMQ)

0.2.0 • Endpoint for searching
(enhancements)

• Parameterized query translation
(enhancements)

• Endpoint for access to resources
(enhancements)

0.3.0 • Endpoint for updating resources'
status

3.5.5 Component: Core Resource Access Monitor

3.5.5.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CoreResourceAccessMonitor

URL of code coverage reports https://codecov.io/gh/symbiote-h2020/CoreResourceAccessMonitor

Code Coverage Snapshot 67%

3.5.5.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0
• Interface Definition
• Redirection to actual resources

0.2.0

• Interface Definition (Enhancements)
• Redirection to actual resources

(Enhancements)
• Integration of the Security Handler

• Resource Popularity Tracking
(Pushed to 0.3.0)

0.3.0

• Collect access information from RAP
• Resource Popularity Tracking
• Integration of the Security Handler

newest version

3.5.6 Component: Core Resource Monitoring

3.5.6.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CoreResourceMonitor

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 21 of 96
 © Copyright 2017, the Members of the symbIoTe

URL of code coverage reports https://codecov.io/github/symbiote-h2020/CoreResourceMonitor

Code Coverage Snapshot 30%

3.5.6.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0 • Interface definition

0.2.0 • Status check polling
• Status notification support

0.3.0 • Extended monitoring

3.5.7 Component: Monitoring

3.5.7.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Monitoring

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Monitoring

Code Coverage Snapshot 5%

3.5.7.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0 • Interface definition

0.2.0 • Monitor information
• Handling of devices

• Resource status pull
(pushed to 0.3.0)

0.3.0 • Handling of devices (enhancements)
• Resource status pull

3.5.8 Component: Registration Handler

3.5.8.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/RegistrationHandler

URL of code coverage reports https://codecov.io/github/symbiote-h2020/RegistrationHandler

Code Coverage Snapshot 60%

3.5.8.2 Feature History

Release Planned Features Done Planned Feature Not Done

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 22 of 96
 © Copyright 2017, the Members of the symbIoTe

0.1.0 • Interface definition
• Integration with external components

0.2.0 • Information model
• Integration with external components

(enhancements)
• Integration with security

0.3.0 None, all planned features
implemented in R0.2.0

3.5.9 Component: Registry

3.5.9.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Registry

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Registry

Code Coverage Snapshot 46%

3.5.9.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0

• Interface definition
• IoT Services (resources) registration
• Platforms registration
• Resource metadata storage
• Updates of resources
• Payload for interfaces

0.2.0
• Registration validation
• Updates of resources
• (enhancements)

0.3.0

• Registration validation
(enhancements)

• Resource metadata storage
(enhancements)

3.5.10 Component: Resource Access Proxy

3.5.10.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/ResourceAccessProxy

URL of code coverage reports https://codecov.io/github/symbiote-h2020/ResourceAccessProxy

Code Coverage Snapshot 10%

3.5.10.2 Feature History

Release Planned Features Done Planned Feature Not Done

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 23 of 96
 © Copyright 2017, the Members of the symbIoTe

0.1.0
• Interface definition
• Northbound API interface

•

0.2.0

• Interface definition (enhancements)
• Northbound API interface

(enhancements)
• Subscription support
• Plugin interface

•

0.3.0 • OData support •

3.5.11 Component: Search

3.5.11.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Search

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Search

Code Coverage Snapshot 51%

3.5.11.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0
• Interface definition
• Endpoint for handling search requests
• Searching resources

•

0.2.0

• Endpoint for handling search requests
(enhancements)

• Searching resources
• (enhancements)

•

0.3.0
• Ranking
• Filtering

•

3.5.12 Component: Semantic Manager

3.5.12.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SemanticManager

URL of code coverage reports https://codecov.io/github/symbiote-h2020/SemanticManager

Code Coverage Snapshot 47%

3.5.12.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 24 of 96
 © Copyright 2017, the Members of the symbIoTe

0.2.0

• Storage of models
• Storage of instance of data
• Translate JSON -> RDF
• Translate RDF -> JSON
• Construct SPARQL from JSON
• SPARQL endpoint for query

• Validate instance of data (done
partially, pushed to 0.3.0)

0.3.0
• Storage of models (enhancements)
• Validate PIM

3.5.13 Library: Security Handler

3.5.13.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SymbIoTeSecurity

URL of code coverage reports https://codecov.io/github/symbiote-h2020/SymbIoTeSecurity

Code Coverage Snapshot 29%

3.5.13.2 Feature History

Release Planned Features Done Planned Feature Not Done

0.1.0

0.2.0

• Request core token
• Request foreign token
• Certificate validation
• Token validation

• Challenge-response procedure
(pushed to 0.3.0)

• Revocation procedure (pushed to
0.3.0)

0.3.0

• Challenge-response procedure
• Revocation procedure
• Request foreign token

(enhancements)
• Access policy validation

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 25 of 96
 © Copyright 2017, the Members of the symbIoTe

4 Stress testing of symbIoTe components

Deliverable D1.2 [24] contains a list of requirements of the symbIoTe system. Among them
there were SHOULD requirements concerning response times (requirement #25 and #26),
latency (#27) and expected volume of the load on the search service side (#31). To ensure
that provided services fulfil those performance requirements we decided to create a stress
testing testbed and testing scenarios and perform a set of tests on varied number of users
and concurrent requests to the system based on R2 release of the symbIoTe. This chapter
contains description of the tools used, scenarios as well as results and conclusions based
on them.

4.1 Testing scenario

For the testing purpose we used Gatling15 framework. It is an open source load and
performance testing tool for web applications written in Scala16. It allows defining:

• Request types

• Frequency of requests

• Users

• Test scenarios

Moreover, because symbIoTe components are using Gradle for building, it is important
that Gatling is able to integrate with it by using a plugin17.

Tests were performed on two setups:

1. local - Laptop, i5-3360M CPU @ 2.80 GHz, 2 cores (HT), 16 GB RAM, Windows
10. Components running on machine: Search, CoreInterface, CoreConfigService.

2. remote – symbIoTe development server running on OpenStack: Intel(R) Core(TM)
i7-4910MQ CPU @ 2.90GHz, 4 cores (HT), 16GB RAM
Running whole Core stack: CloudCoreInterface, CoreInterface, CoreConfigService,
Administration, Registry, Core Resource Access Monitor, SemanticManager,
Search

In order to simulate real usage of symbIoTe components a testbed generator has been
created, which allows generating X number of platforms with Y number of resources each
(X and Y can be any positive integer). Generator creates Mobile and Stationary Sensors,
which observe random number of properties from a set of predefined properties and are
located in a random location from a set of predefined locations. This allowed us to create
three different datasets for Search component:

1. small – represents actual symbIoTe resources registered at the time of tests. It
consisted of roughly 5 platforms with 10 sensors each.

15

 http://gatling.io/
16

 https://www.scala-lang.org/
17

 https://github.com/lkishalmi/gradle-gatling-plugin

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 26 of 96
 © Copyright 2017, the Members of the symbIoTe

2. large – generated for 30 platforms with 50 resources each (1500 total resources)
3. huge – generated for 100 platforms with 100 resources each (10.000 total

resources)

Gatling tool allows simulating real usage of web application by specifying amount of
concurrent users accessing the service over some period of time. This technique was used
to define a scenario we used for testing. Each users performs two actions:

1. searchAll – execution of parameterised search query without specifying any filter
options, which returns all resources stored in the Core

2. searchProperties – execution of parameterised search query with specified
observed property: temperature which returns all resources that are sensing
temperature

Tests, for which results are presented in next chapters, were run by ramping 10, 20, 30,
40, and 50 users over period of 10 seconds. For each user between execution of searchAll
and searchProperties queries there was a 3 seconds pause, simulating real clients
interacting with the platform.

4.2 Achieved Results

Parameters that were the most important for us during the tests were following:

• success rate – how many requests finished successfully, how many failed

• average response time

• percentiles: 75th, 95th and 99th

Because of the microservice architecture and collaboration of multiple services in providing
different functionalities chances of high percentiles occurring at least once are pretty high.

4.2.1 Local Testing

Local testing setup handled small dataset without any failed requests for any number of
users in the test scenario. The results are presented in Table 3.

Table 3 Local setup, small dataset, and example executions

 10 users 20 users 30 users 40 users 50 users

Mean time 185 ms 199 ms 244 ms 209 ms 241 ms

75th 198 ms 216 ms 269 ms 232 ms 289 ms

95th 329 ms 343 ms 447 ms 369 ms 438 ms

99th 417 ms 397 ms 537 ms 431 ms 525 ms

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Example execution for 50 users and response time percentiles are shown

For a large dataset, system handled 10 concurre
users we started to notice increasing number of failed response rates, going as high as 70
80% failure rate. Detailed data

Table 4: Local setup, large dataset,

 10 users

Fail rate
(KO)

-

Mean time ~6.0 s

75th ~8.5 s

95th ~9.0 s

99th ~9.5 s

Due to already high failure rate of
local setup.

4.2.2 Remote Testing

Similar to local setup small dataset has been handled without any
time scores – even with 50 users (shown

Figure 5: Local setup, small dataset, 50 users

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Example execution for 50 users and response time percentiles are shown

system handled 10 concurrent users without any fail rate. For more
users we started to notice increasing number of failed response rates, going as high as 70
80% failure rate. Detailed data is shown in Table 4.

Local setup, large dataset, and average results over multiple tests.

20 users 30 users 40 users

~20% ~50% ~70%

~13.0 s ~15.5 s ~17.5 s

~19.0 s ~20.0 s ~20.0 s

~20.0 s ~20.0 s ~20.0 s

~20.0 s ~20.0 s ~20.0 s

Due to already high failure rate of large dataset, huge dataset has not been tested on a

dataset has been handled without any problems, with better
even with 50 users (shown in Figure 6) 99th percentile was around 250 ms.

Local setup, small dataset, 50 users’ percentiles graph

Report on System Integration and
Application Implementation

Page 27 of 96

Example execution for 50 users and response time percentiles are shown in Figure 5.

nt users without any fail rate. For more
users we started to notice increasing number of failed response rates, going as high as 70-

results over multiple tests.

50 users

~75%

~17.5 s

~20.0 s

~20.0 s

~20.0 s

dataset has not been tested on a

problems, with better
percentile was around 250 ms.

percentiles graph

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure 6: Remote setup, small dataset, 50 users,

For large dataset we noticed increased response times, but behaviour was better than with
local configuration: failed requests started with 40 concurrent users and occurred 30% of
time. Table 5 shows average times by performing repeated tests.

Table 5: Remote setup, large dataset, average results over multiple tests.

 10 users

Fail rate
(KO)

-

Mean time ~1.8 s

75th ~2.3 s

95th ~2.6 s

99th ~3.0 s

Example executions for 30 users and 50 users are presented

Figure 7 Remote setup,

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Remote setup, small dataset, 50 users, and percentiles

oticed increased response times, but behaviour was better than with
configuration: failed requests started with 40 concurrent users and occurred 30% of

shows average times by performing repeated tests.

: Remote setup, large dataset, average results over multiple tests.

20 users 30 users 40 users

- - ~30%

~5.0 s ~9.2 s ~13.0 s

~7.5 s ~14.0 s ~20.0 s

~9.0 s ~15.2 s ~20.1 s

~9.5 s ~16.3 s ~20.2 s

for 30 users and 50 users are presented in Figure

Remote setup, large dataset, 30 users, and percentiles

Report on System Integration and
Application Implementation

Page 28 of 96

and percentiles graph

oticed increased response times, but behaviour was better than with
configuration: failed requests started with 40 concurrent users and occurred 30% of

: Remote setup, large dataset, average results over multiple tests.

50 users

~50%

~15.0 s

~20.0 s

~20.1 s

~20.2 s

Figure 7 and Figure 8.

and percentiles graph

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure 8 Remote setup,

For the Remote setup we also performed tests on
resources (Figure 9). These tests
(KO) rate of around 15% with similar times as with
performed tests for 10 users which reached a KO ra

Figure 9 Remote setup, huge dataset, 5 users,

The amount of data that was generated and transferred for
Query for all resources (searchAll)
observing temperature (searchProperties)
lines of codes. Executing even single request (using POSTMAN or similar tool for
executing HTTP POST requests) requires around 6 seconds to load.

4.3 Findings

Tests have shown that symbIoTe
large amount of requests for medium sized datasets. It also shows that we require
introducing specific approaches to handle larger datasets and more concurrent use
using the system. This is especially needed because
more communication between the components, which will increase the complexity of
provided functionalities.

One of the solutions that will improve the stability of
breaker. Circuit breaker in microservice
requests to specific services in case of heavy load and increas
requests. This allows for better and fast

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Remote setup, large dataset, 50 users, and percentiles

setup we also performed tests on huge dataset, consisting of 10.000
These tests already with five concurrent users achieved a

rate of around 15% with similar times as with large dataset for 40
performed tests for 10 users which reached a KO rate of 60%.

Remote setup, huge dataset, 5 users, and statistics

The amount of data that was generated and transferred for huge dataset is really big.
searchAll) returns a 6 MB JSON with 230.000 l
searchProperties) response is smaller, with 2.7 MB with 88.000

lines of codes. Executing even single request (using POSTMAN or similar tool for
executing HTTP POST requests) requires around 6 seconds to load.

symbIoTe release 0.2.0 is relatively stable and can handle pretty
large amount of requests for medium sized datasets. It also shows that we require

specific approaches to handle larger datasets and more concurrent use
using the system. This is especially needed because the next release of L1 will introduce
more communication between the components, which will increase the complexity of

One of the solutions that will improve the stability of the system is introduction of
microservice architecture is responsible for cutting off further

requests to specific services in case of heavy load and increased
requests. This allows for better and faster feedback to the client that

Report on System Integration and
Application Implementation

Page 29 of 96

and percentiles graph

dataset, consisting of 10.000
concurrent users achieved a knock-out

dataset for 40-50 users. We also

and statistics

dataset is really big.
returns a 6 MB JSON with 230.000 lines, and resources

response is smaller, with 2.7 MB with 88.000
lines of codes. Executing even single request (using POSTMAN or similar tool for

release 0.2.0 is relatively stable and can handle pretty
large amount of requests for medium sized datasets. It also shows that we require

specific approaches to handle larger datasets and more concurrent users
next release of L1 will introduce

more communication between the components, which will increase the complexity of

the system is introduction of circuit
architecture is responsible for cutting off further

ed amount of failed
er feedback to the client that the system is under

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 30 of 96
 © Copyright 2017, the Members of the symbIoTe

stress and to try allocating and sending requests at later time. This can be handled by
providing, e.g., HTTP 429 response “Too many requests” instead of standard HTTP 500
response if we did not use circuit breaker approach.

Another solution is to provide load balancing of the requests between replicated services.
For future testing of the system we will perform similar tests for a number of Search
instances running in parallel and handling incoming requests in round-robin (or other
suitable strategy). This will improve both response times and stability of the system, when
expensive operations like SPARQL18 queries and generating objects for large datasets can
be handled individually by replicated services.

Other approaches and improvements are also expected in the REST19 endpoints and in
the internal communication between the components, like for example pagination of the
large responses.

18

 https://www.w3.org/TR/rdf-sparql-query/
19

 https://en.wikipedia.org/wiki/Representational_state_transfer

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 31 of 96
 © Copyright 2017, the Members of the symbIoTe

5 symbIoTe Use Case Related Application
Implementation

There are currently 12 applications planned for symbIoTe, which are in a state of
development or in a state of being implemented within the symbIoTe environment. Details
on each of them are provided in this chapter. The final report on the implementation will be
provided in a subsequent deliverable (D5.4, title “Integrated Prototype and Developed
Applications”). As always, the information is considered in the light of the use cases Smart
Residence, Smart Mobility and Ecological Routing, EduCampus, Smart Stadium and
Smart Yachting. Table 6 provides a concise overview of applications, platforms and their
status.

Table 6: Application details and status

Application
name

Related IoT
platforms

Level Of
Compliance

Application
development status

Integration status

Smart Residence

Smart
Healthy
Indoor Air

openUwedat

nAssist

L3 In development symbIoTe compliance under
development20

Smart Area
Controller

Symphony

NN platform

L2 In development Symphony is L1 compliant

Home
Comfort

Symphony

NN platform

L3 In development Symphony is L1 compliant

Smart Health
Mirror SMILA

KIOLA L1 In development symbIoTe compliance under
development

Smart Mobility and Ecological Routing

Mobile App OpenIoT

openUwedat

MoBaaS

L1 / L2 In development OpenIoT and openUwedat are
fully integrated at compliance
Level 1 (for Core Release 2)

MoBaaS compliance is under
development

Web App OpenIoT

openUwedat

L1 / L2 Web App and routing
engine do exist.
Extending this
application to use air
quality as an
additional metric is in

OpenIoT and openUwedat are
fully integrated at compliance
Level 1 (for Core Release 2)

20

 See Section 5.1.1.5

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 32 of 96
 © Copyright 2017, the Members of the symbIoTe

development

Edu Campus

Room
Searching
App

Building
Managemen
t System

KIT Smart
Campus

L2 In development In development

Smart Stadium

NN Visitor
Application

User
Platform

Beacon
Platform

Promotion
and
Information
Platform

Remote
Ordering
Platform

L1 In development,
GUIs already
available

L1 under development over R2

NN Retailer
Application

Remote
Ordering
Platform

User
Platform

Beacon
Platform

Promotion
and
Information
Platform

L1 In development,
GUIs already
available

L1 under development over R2

Promowall
(Mobile app,
touch screen
Smart TVs)

Promotion
and
Information
Platform

L1 Fully developed,
symbIoTe integration
under development.

L1 under development over R2

Smart Yachting

Portnet Navigo
Digitale

Symphony

L1 / L3 / L4 Enabler under
development.

Yacht app (integrated
in Symphony) under
development.

symbIoTe compliance under
development for Navigo
Digitale.

Symphony is already L1
compliant

Centrale
Acquisti

Navigo
Digitale

Symphony

L1 Enabler under
development.

Yacht app (integrated

symbIoTe compliance under
development for Navigo
Digitale.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 33 of 96
 © Copyright 2017, the Members of the symbIoTe

in Symphony) under
development.

Symphony is already L1
compliant.

5.1 Use Case Scenario “Smart Residence”

The Smart Residence use case will implement four different applications that will offer
comfort, automation, security, energy efficiency and healthcare services. All of them will
use advanced and ubiquitous technologies including sensors and other devices that are
integrated in the residential infrastructure. The applications are:

• Smart Healthy Indoor Air: This application is based on the indoor/outdoor air quality

monitoring and pursues to improve indoor air quality by giving recommendations

and alerts.

• Smart Area Controller: this application is related to the Dynamic Interface

Adaptation scenario, where the user’s control interface automatically reconfigures

itself, according to the controllable CPS in range.

• Home Comfort: this application demonstrates the Energy Saving scenario, which

shows how to automatically control home devices, in order to keep environmental

parameters (e.g. light, temperature, humidity, etc.) to some predefined comfort

values.

• Smart Health Mirror: It is an Ambient Assisted Living (AAL) application to help

people, in particular elderly people, to live independently for longer.

5.1.1 Application: Smart Healthy Indoor Air

This application is based on the indoor/outdoor air quality monitoring and pursues to
improve indoor air quality. Indoor air quality (IAQ) refers to the quality of the air inside
buildings as represented by concentrations of pollutants and thermal (temperature and
relative humidity) conditions that affect the health, comfort and performance of occupants.
It is important to ensure that the air inside of the building we inhabit on a daily basis is of a
good quality. Outdoor generated air pollution is relevant for indoor air quality and health.
Exposure to indoor air pollution has been linked to the development of everything from
infections to asthma or to poor sleep. It can also cause less serious side effects such as
headaches, dry eyes and nasal congestion.

Sensing and Control Systems SL partner’s (S&C) roadmap aims to create a smart
home/office connected with the city. The current S&C’s platform, nAssist21, monitors and
controls a number of direct parameters related to indoor air quality, such as CO2 levels,
humidity and temperature. In addition, this platform monitors and controls other factors that
are important for indoor environmental quality considerations such as light and noise since
they also affect occupants.

21

 http://www.sensingcontrol.com/solutions/customizable-iot-platform.html

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 34 of 96
 © Copyright 2017, the Members of the symbIoTe

The idea is to increase this framework to understand how indoor and outdoor sources of
pollution, heat and humidity, together with the ventilation and air conditioning systems,
affect the indoor air quality in buildings. It also begins to address methods of controlling
those factors in order to improve quality of the indoor air for occupants’ health, comfort and
performance. To achieve this goal, the smart home will communicate with outdoor air
quality data received from other federated platforms. Such data can include air and noise
pollution levels. The smart home will react to changes in temperature, humidity, CO2 levels
and noise and maintaining a healthy and safe indoor environment by recommending
actions to the user such as using air purifiers, ventilation systems and opening/closing the
windows to eliminate unpleasant impacts. S&C aims to provide more robust solutions with
focus on clean environment and optimised energy use.

In particular, we will implement a smartphone app capable of monitoring real-time indoor
and outdoor air quality information. Without this information, usually we ventilate late and
too long. This application (Smart Healthy Indoor Air) will indicate when, how and how long
a room should be ventilated taking into consideration that windows are the easiest
ventilation option but not the healthiest one depending on the outdoor air quality. There are
other ways to provide healthy flow of air throughout the room, such as turning on the air
conditioner, or individual air purifiers. The automatic control of some devices, as are air
purifiers, ventilation and air conditioning systems are out of the scope of this application.

A more robust application could fit within Smart Energy City concepts by taking into
consideration energy efficiency to adjust levels of air purifiers, ventilation and air
conditioning systems. This will be pursued when suitable partners apply and join
symbIoTe. A goal of S&C is to engage and attract such actors.

5.1.1.1 Design

Outdoor air quality data can be provided by other federated platforms dedicated to offering
Smart Cities’ services. Also, given the limited number of monitoring stations available and
placed at representative spots to record the outdoor air quality, an accurate assessment of
spatial variation is highly required. Spatial interpolation techniques applied to the available
monitoring data to provide air quality information closest to the location of the smart home
will be used. This functionality will be provided by the component named as Interpolator,
which is also used in the smart mobility use-case. This showcases how symbIoTe enables
the realization of high level services, involving different IoT platforms, and offering their
results to different (end-user) applications. Our application will send the GPS location of
the smart home and will get the estimated value about the air quality for this specific
location from symbIoTe. This is the main benefit of using symbIoTe for our application. We
can offer a more robust and precise application without developing new functionalities
(Figure 10).

On the other hand, the S&C’s platform, nAssist, will make available to symbIoTe data
related to the indoor air quality at home: temperature, humidity, CO levels, noise and
luminosity. As already explained, exposure to indoor air pollution has been linked to the
development of everything from infections to asthma to poor sleep. It can also cause less
serious side effects such as headaches, dry eyes and nasal congestion. This information
can be helpful for remote healthcare applications.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 35 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 10: High-level architecture showing the involved platforms, applications and
involved symbIoTe components (e.g., enabler) for Smart Healthy Indoor Air application

5.1.1.2 Compliance Level

The S&C’s platform nAssist (symbIoTe L2-compliant) will acquire, store and process all
data that measure the indoor air quality. Temperature, humidity, CO, and luminosity levels
data will be published within symbIoTe.

5.1.1.3 Platform

nAssist is a software platform which has been designed to be easily adapted to different
areas of application that require data collection and data processing from logical and
physical devices (sensors and actuators). It is composed of:

• Drivers
• Embedded systems
• SDK
• Databases (NoSQL, MS Sql, cloud storage)
• Web applications
• Mobile applications
• Other SW components (scheduler, complex event processing unit and event manager)

nAssist has been constructed in a modular fashion that facilitates a rapid expansion of the
system and features addition as well as for installation of different modules across different
servers. All the components of the architecture are developed on top of two technologies:
Microsoft .NET Framework 4.5 & Microsoft C# and Microsoft SQL Server Azure / SQL
Server 2012. nAssist uses Azure for cloud deployments.

The nAssist logic view is composed of four main modules:

• Hardware Interface: This module is responsible of the communication with field
devices. The communication can be bidirectional depending on the type of devices.
The information transfered between devices is parsed, cleaned, formatted and finally
sent to processing modules.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 36 of 96
 © Copyright 2017, the Members of the symbIoTe

• Processing modules: The central module handles all the processing/intelligence of
the software. It is composed of an event manager, automation routines, alarm/events,
and auto generation based on rules.

• User interfaces: This module uses standar Web clients.
• Database: It provides a data warehouse and business intelligence components to

analyse, manage data from devices.

The nAssist platform follows a Services Oriented Architecture (SOA) paradigm. The logic
architecture is based on an N-layered architecture to provide solid, flexible, scalable and
reliable back-end. The main layers are:

• Presentation layer: It is responsible of the interaction between the user and the
application.

• Distributed services layer (web services): It was built using standard protocols
inluding SOAP and WSDL.

• Application layer: it contains the tasks of the application and coordinates domain and
infrastructure objects.

• Domain layer: It represents business/domain concepts, information on the status of
business process and implementation of domain rules.

• Data persistence infrastructure layer: It captures data from the own system or data
from external sources.Cross-cutting infrastructure layer: It is responsible of aspects related to the

techology/infrastructure, such as data persistence (repositories), security, logging, operations, etc.

5.1.1.4 User Interaction

The GUI design for the app will be based on the current S&C’s product, enControl22. The
product has GUI based on web and smartphone iOS and Android (Figure 11 - Figure 14).

Figure 11: Main screen for all functionalities provided by enControl: comfort, security,
energy consumption and automatic control of devices

22

 http://www.encontrol.io/

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 37 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 12: Main screen for comfort

Figure 13: Indoor Air Quality

Figure 14: Examples of GUI for iPhone

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 38 of 96
 © Copyright 2017, the Members of the symbIoTe

5.1.1.5 Implementation

The initial implementation of the application will be done in JAVA. Once this
implementation is tested, we plan to create C# implementation. Unit testing (register,
access data, and notifications) and integration testing are expecting to be done by third
party platforms using our data. A "stable/online" development environment of symbIoTe for
testing will be required.

Currently, a number of tasks have been implemented in order to adapt the nAssist platform
to the current symbIoTe release:

• Adaptation of the platform to host the process in charge of communicating with
symbIoTe.

• Adaptation of current user/role access to the new structure.

• Implementation of the register sensor data process.

• Conversion of java libraries to c# to be deployed into our backend system.

• Creation of a dev environment with one installation and sensors related to the use
case (smart healthy indoor air).

• Creation of virtual sensors to test interaction with the symbIoTe platform.

Current implementation is at the alpha stage (platform and sensors data registration).

5.1.1.6 Initial Functional Tests

The initial functional tests will be done with current home installations located in Barcelona.
It is expected to get outdoor air quality data recorded by the Atmospheric Pollution
Vigilance and Forecast Network23 (the XVPCA) from the Ministry for Territory and
Sustainability at the Generalitat of Catalonia. The outdoor air quality can be acquired
through other federated platforms more dedicated to offer Smart City services, while the
location-specific estimation will be provided by symbIoTe thought out the Enabler.

5.1.2 Application: Smart Area Controller

The mobile app will be capable of controlling cyber-physical devices located in a room,
selected by the user, according to his/her needs. The main interface will allow the choice
of an area for selecting the devices to control (registered by the platforms that reside in
that space). For example, the user will be able to change the temperature in the room, or
to move the curtains and change the luminance level.

The application will leverage on a specific enabler, which gives the possibility to filter the
devices in the space, based on their position (building, floor, room, etc.). In this way, the
application has to query the symbIoTe enabler in order to retrieve the list of the CPSs in
the selected area and then to allow the user to control them.

23

 http://dtes.gencat.cat/icqa/start.do?lang=en

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 39 of 96
 © Copyright 2017, the Members of the symbIoTe

5.1.2.1 Design

Figure 15 shows a high-level diagram of the application communicating with the symbIoTe
enabler and the symbIoTe compliant platforms involved in the use case.

The platforms register their devices, specifying information with respect to their indoor
locations; the Administration console, accessible from the Enabler, allows the SSP
administrator to manage the hierarchy of the resources’ locations. Lastly, the mobile
application is the user entry-point to interact with platform devices. In this specific use case
scenario, no Web app is required.

The main benefit using symbIoTe is the possibility to use a single application for dynamic
controlling the different devices and platforms present in the house.

Figure 15: High-level architecture showing the involved platforms, applications and
involved symbIoTe components (e.g., enabler) for Smart Area Controller and Home

Comfort applications

5.1.2.2 Compliance Level

The app will be L3 compliant, according to the Smart Space definitions and features.

5.1.2.3 Platform

The application will be a mobile application, compatible with Android platform.

5.1.2.4 User Interaction

First of all, the user will select the area, in which she desires to control the devices (Figure
16 and Figure 17): it could be a room, a flat, the entire building or even a desk, according

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 40 of 96
 © Copyright 2017, the Members of the symbIoTe

to the configuration made in the service enabler. Afterwards, the interactions will be related
to the devices present, and it may vary according to the nature of the CPSs themselves.

5.1.2.5 Implementation

The language used for implementation is Java, since it is depending on the mobile
platform of the application (Android). The application will be specific for this scenario
purposes, but it can also be used for every use case, which need a direct control of local
devices. Currently, the implementation of the application has not been started, because
the Enabler has the priority. All the developments will be based on R3 symbIoTe release.

Figure 16: Example of a preliminary GUI for iPhone

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 41 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 17: Example of a preliminary GUI for iPhone

5.1.2.6 Initial Functional Tests

The initial functional tests will be done with the current installations located in Pisa.

5.1.3 Application: Home Comfort

The L1 compliant application will be used to automatically control home devices, in order
to keep comfort values for home environmental parameters like temperature, luminosity,
etc. The application is composed by both a back-end and a front-end part: the first
manages the core operations, constantly monitoring the surrounding and controlling
devices, in order to reach the desired comfort state; the second acts as a configurator of
comfort set-points.

Consequently, the backend will run on a server, having a frontend accessible via web for
configuration purposes.

5.1.3.1 Design

As described in Section 5.1.1.1, the platforms register their devices, specifying information
with respect to their indoor locations, so the SSP administrator configure the hierarchy of
the resources’ locations through the administration console. The Web Application, through
a graphical user interface, allows the resident to configure all the set-points for the home
devices (see Figure 15 for a high-level diagram of the components involved in the use
case).

The main benefit using symbIoTe is the possibility to leverage on the interoperability
between the various platforms present in the house for driving the environment towards a
comfort state.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 42 of 96
 © Copyright 2017, the Members of the symbIoTe

5.1.3.2 Compliance Level

The app will be L3 compliant, according to the Smart Space definitions and features

5.1.3.3 Platform

The backend application will be Linux based, and the frontend can be accessed through a
web page.

5.1.3.4 User Interaction

The core of the application is a service, which does not need any interaction from the user,
apart from the configuration of the comfort set-points.

5.1.3.5 Implementation

The language used for implementation of the backend is Python, for the frontend is HTML
and Javascript.

Currently, the implementation of the application has not been started, because the Enabler
has the priority. All the developments will be based on R3 symbIoTe release.

5.1.3.6 Initial Functional Tests

The initial functional tests will be done with the current installations located in Pisa.

5.1.4 Application: Smart Health Mirror

Based on the use cases described in Deliverable D1.1 (see Chapter 4.4.3), a smart health
mirror application called SMILA (Smart Mirror Intelligent Living Assistant) will be developed
for use in an elderly person’s home. The smart health mirror will be comprised of a semi-
transparent mirror with a (Samsung®) tablet hidden behind it, thus creating the illusion of
information displayed directly on the surface of the mirror.

SMILA is thought to be an intelligent health assistant recognizing users, displaying
context-related health information on screen and coordinating health measurements
(weight and blood pressure) using voice input and output. Users are recognized using
wearable Bluetooth beacons. Sensors (beacons, scales and blood pressure meters) are
registered with the AIT KIOLA telehealth platform [5].

Moreover, commercially available fitness trackers (Fitbit, Nokia health) are included in the
scenario. Instead of identifying users via Bluetooth beacons, users are identified by the
fitness trackers they are wearing. Fitness trackers are managed by KIOLA and registered
as sensors to symbIoTe core as well.

5.1.4.1 Design

As Figure 18 shows describes the interplay of all components involved in the smart
residence health use-case. KIOLA stores health and person-related data and registers
sensor information of (a) body scales and (b) BLE devices to symbIoTe. An additional
plugin serves as a wrapper for commercially available fitness trackers. Using the plugin
fitness trackers such as Fitbit or Nokia Health can also be registered with the symbIoTe
core. The smart mirror android app SMILA scans for BLE-enabled devices (e.g. a BLE-
enabled wristband or a Fitbitness wristband) and uses symbIoTe to resolve IDs to identify
users. Analogously, data can be written back locally retrieved from a body scale.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 43 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 18: High-Level architecture of all involved Platforms

The main benefit of symbIoTe can be found in a unified environment for application
developers to retrieve and store health-related information from various manufactures
eliminating the need to integrate various different APIs in the local application.

5.1.4.2 Compliance Level

The application will be L1 compliant.

5.1.4.3 Platform

The application will be a mobile application, compatible with Android (V7.0) platform.

5.1.4.4 User Interaction

A user wearing a Bluetooth beacon (alternatively a fitness tracker) enters the room where
the smart mirror is installed. The app running on the smart mirror detects the presence of
the beacon and queries the symbIoTe core for a sensor with the given ID. SymbIoTe
returns the resource access URL of the beacon in the KIOLA platform. The smart mirror
app then accesses this URL retrieving detailed information on the given user. This
information includes the first name of the user, a list of measurements the user is
supposed to perform as well as data retrieved from the fitness tracker (steps taken this
week). Moreover, a history of all past readings is included in the list. Based on this list, the
mirror asks the user if he/she would like to perform the appropriate measurement. (e.g.,
measuring weight). The user voice-confirms the question and steps on the scale. The
measurement is taken and finally – again after voice confirmation by the user – submitted
back to the KIOLA database.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 44 of 96
 © Copyright 2017, the Members of the symbIoTe

As the tablet application is stowed away behind the one-way-mirror, usual touch
interactions will not be possible. Therefore, the smart mirror will rely on voice input and
output as primary medium for communication.

Figure 19: Smart Mirror “SMILA”: prototype while measuring weight

5.1.4.5 Implementation

Implementation of SMILA will be based mainly on Google Android (V7.0) and associated
Java libraries. KIOLA is based on the open-source web framework Django. Unit testing is
used for both SMILA and KIOLA and is coordinated by Jenkins Build Server. Automated
build tests are run every night.

5.1.4.6 Initial Functional Tests

The smart mirror will be evaluated in two phases: First user testing is scheduled for
November 2017 with students of the University of Technology in Vienna. Phase II includes
testing with elderly people in March 2018 with an updated prototype based on the
experiences made in the first evaluation phase.

5.2 Use Case Scenario “Smart Mobility and Ecological Routing”

The Smart Mobility and Ecological Routing Use Case addresses the problems regarding
environment pollution and air quality in the major European cities. It does so by collecting
air quality data from multiple IoT platforms in different countries and uses such
measurements for runners, joggers and cyclists to plan the best routes to their destination.

Through symbIoTe, air quality measurement will be obtained from different platforms. Due
to the nature of routing algorithms, these data go through substantial pre-processing with
the purpose of associating air measurements to the map’s street segments.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 45 of 96
 © Copyright 2017, the Members of the symbIoTe

With the streets correctly classified by their air quality, routing engines can take that
information into account when computing the most ecological routes to the application’s
users. These paths can also benefit from other factors such as traffic and available
parking, in case the platforms have access to these kinds of sensors.

Finally, users should be able to search for Points of Interest (POIs) following certain
criteria, including data from sensors such as available parking or noise levels. Routes for
the selected POI can be computed using the previously mentioned service.

All in all, this use case will showcase platform interoperability within the application and
cloud domain, where more details can be found in section 6.4 of Deliverable D1.3.

There are three platforms providing services and data to the use case:

• OpenIoT from UNIZG-FER provides air quality data from users’ wearables,

• openUWEDAT from AIT, provides air quality data from stationary sensors, and a
routing service for the city of Vienna,

• MoBaaS (Mobility Backend as a Service, see [3]) from Ubiwhere provides their
routing service.

Additionally, the OpenStreetMap24 service will be used to obtain cities’ Points of Interest.
Due to the different features of both routing engines, it was decided to develop two
different applications in order to fully show all the features of each service, without the
need to reach a compromise between them to be usable in a single application. Through
this situation, it is also possible to test the adaptability of the use case by developing a web
and a mobile application.

In the next section, we provide details on the two applications: a mobile and a web based
application for smart mobility and ecological routing.

5.2.1 Application: Smart Mobility and Ecological Routing Mobile Application

The mobile application aims at delivering users efficient routes to their destinations. These
routes will, when available, direct the user to a parking spot near the destination and then
provide a route, on foot, that avoids highly polluted areas. Additionally, the application also
provides the user with the ability to search for POIs and, subsequently, obtain a route to
the select POI.

As such, there are two main functionalities that the application should provide to the user:

• Computation of ecological routes

• POI search

The application will access these services through the Smart Mobility and Ecological
Routing enabler, which handles the exchange of data and services between the platforms
involved in the use case. As such, the application will communicate with the enabler to
show the data and provide the services for the user.

24

 https://www.openstreetmap.org/

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 46 of 96
 © Copyright 2017, the Members of the symbIoTe

Users of the app will be presented with a map after logging in. This map will show the
current air quality ratings of their city. Users then may choose an origin and destination
points for their desired route and a preferred means of transportation and will be presented
with the computed best ecological route. They will also be presented with the amount of
pollution they are exposed to and how it can impact their lives. This way, the benefit of
taking a more ecological route will become more visible and enhance the quality of life of
the users.

Users can also request points of interest, selecting their preferences from a range of
possible criteria, such as the type of POI, distance to a certain location, pollution of the
area, parking availability of the area, etc. POIs close to the users’ criteria will be presented.
Users can then choose on and be presented with an ecological routing from the service
previously described.

5.2.1.1 Design

Figure 20: High-level architecture showing the involved platforms, applications and
involved symbIoTe components (e.g., enabler) for Smart Mobility and Ecological Routing

applications

As can be seen in Figure 20, the Green Route Enabler will orchestrate the activity in the
use case. It will obtain air quality data from the platforms and interpolate it with the street
segments of the map being used in order to obtain the air quality of a given street. These
data will be provided to the routing services (either the ones residing within a platform or
external services), which, combining with other data, such as traffic or parking, will
compute green routes. Additionally, the data provided by the platforms can also be used to
obtain POIs of interest to the users.

It is clear from the figure how symbIoTe is relevant to this use case. It shows how
developers, using symbIoTe, can use different data from different platforms from different
domains easily. This is very advantageous in the development process, helping developer
create complex systems using various sources of data. In the context of smart cities, it will

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

also show how advantageous it is for platform owners and cities to provide their data
through the symbIoTe ecosystem, allowing developers/organi
valuable services to its citizens.

5.2.1.2 Compliance Level

The application will comply with symbIoTe’s L1, with the possibility of extending to L2 in
the future.

5.2.1.3 Platform

The application will be developed for Android

5.2.1.4 User Interaction

The user primary means of interacting with the application will be through the map, where
it will set, for example, start and end points of his destination or the area near which the
user is looking for POIs. It will also be throug
results of the requests, being the route to the destination or the POIs return from the
search. See Figure 21 for a mockup of the mobile application.

Figure

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

also show how advantageous it is for platform owners and cities to provide their data
through the symbIoTe ecosystem, allowing developers/organizations to easily create

uable services to its citizens.

The application will comply with symbIoTe’s L1, with the possibility of extending to L2 in

The application will be developed for Android mobile operating system.

means of interacting with the application will be through the map, where
it will set, for example, start and end points of his destination or the area near which the
user is looking for POIs. It will also be through this map that the user will be able to see the
results of the requests, being the route to the destination or the POIs return from the

for a mockup of the mobile application.

Figure 21: Smart Mobility Mobile App

Report on System Integration and
Application Implementation

Page 47 of 96

also show how advantageous it is for platform owners and cities to provide their data
zations to easily create

The application will comply with symbIoTe’s L1, with the possibility of extending to L2 in

.

means of interacting with the application will be through the map, where
it will set, for example, start and end points of his destination or the area near which the

h this map that the user will be able to see the
results of the requests, being the route to the destination or the POIs return from the

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 48 of 96
 © Copyright 2017, the Members of the symbIoTe

5.2.1.5 Implementation

The core of the mobile application will be based on the Ionic framework25, a free and open
source mobile SDK. Ionic is, in turn, built on top of AngularJS26 and Apache Cordova27.

There is a mock-up of this application developed, although it still does not use the
symbIoTe ecosystem and still does not incorporate air quality data. It will be possible to
integrate the application with the symbIoTe ecosystem whenever the enabler components
are completed.

5.2.1.6 Initial Functional Tests

It is expected that the use case will run trials in at least three European cities. Each trial
will have at least 20 users, for a period of 30 days with different types of end-users which
will actively use the ecological urban routing application and in parallel will contribute with
air quality and traffic data.

5.2.2 Application: Smart Mobility and Ecological Routing Web Application

The web app for the use case will allow users to interact with openUwedat’s routing
service. On the web page, users will be able to define, on a map, the start and end of their
trips. Additionally, they can define the location of their cars or bicycles. Other settings can
be defined, such as the type of route (shortest distance, shortest time, best air quality) and
the means of transportation. Users can then observe the offered route on the map, consult
navigation instructions and check details of the presented route such as distance and
duration.

5.2.2.1 Design

The design of the solution can also be observed in Section 5.2.1.1, where either the
mobile or the web application use the same back-end system to obtain the information
they need. It is possible to observe the versatility of the enabler, i.e., the benefit of
symbIoTe, being able to offer cross-domain service to different types of applications.

5.2.2.2 Compliance Level

The application will comply with symbIoTe’s L1, with the possibility of extending to L2 in
the future.

5.2.2.3 Platform

The application will be a web application, usable through a web browser (see Figure 22).

25

 https://ionicframework.com
26

 https://angularjs.org
27

 https://cordova.apache.org

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure

5.2.2.4 User Interaction

Similar to the mobile application in
where he can define the preferences and visualize the results (
Additionally, there is a side-menu where there are other settings which can be defined and
additional information regarding the route that

5.2.2.5 Implementation

This use case will gather data from several sources. One of these sources are fixed
stations. The data from these stations will be gathered and provided by openUwedat. The
other source of data will be mobile sensors which pr
implementation status of integration of the underlying IoT platforms that provide raw data
(openUwedat and OpenIoT) with the symbIoTe ecosystem is finished and it complies with
the R2 version of the core services. Sin
(and planned) to support the use case we expect only minor additional work to align
platform symbIoTe plugins with further releases (R3 and others). Additionally, the use case
relies on a specialized enabler that collects data from various sources, processes them
and calculates interpolated pollutant values for geographical areas with insufficient
physical measurements. The enabler and its sub
development and will be kept in s

The web application is currently developed. Initial design of the application is already
shown in Figure 22.

5.2.2.6 Initial Functional Tests

A small test application exists that exercises
integration level.

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Figure 22: Routing Service - Web App

Similar to the mobile application in Section 5.2.1, the user will interact mostly w
where he can define the preferences and visualize the results (

menu where there are other settings which can be defined and
additional information regarding the route that can be consulted.

This use case will gather data from several sources. One of these sources are fixed
stations. The data from these stations will be gathered and provided by openUwedat. The
other source of data will be mobile sensors which provide their input through openIoT. The
implementation status of integration of the underlying IoT platforms that provide raw data
(openUwedat and OpenIoT) with the symbIoTe ecosystem is finished and it complies with
the R2 version of the core services. Since no additional functionality beyond R2 is needed
(and planned) to support the use case we expect only minor additional work to align
platform symbIoTe plugins with further releases (R3 and others). Additionally, the use case

er that collects data from various sources, processes them
and calculates interpolated pollutant values for geographical areas with insufficient
physical measurements. The enabler and its sub-components are currently under
development and will be kept in sync with further releases of symbIoTe software.

The web application is currently developed. Initial design of the application is already

Initial Functional Tests

A small test application exists that exercises the functionality of the openUwedat plugin at

Report on System Integration and
Application Implementation

Page 49 of 96

, the user will interact mostly with a map,
where he can define the preferences and visualize the results (see Figure 22).

menu where there are other settings which can be defined and

This use case will gather data from several sources. One of these sources are fixed
stations. The data from these stations will be gathered and provided by openUwedat. The

ovide their input through openIoT. The
implementation status of integration of the underlying IoT platforms that provide raw data
(openUwedat and OpenIoT) with the symbIoTe ecosystem is finished and it complies with

ce no additional functionality beyond R2 is needed
(and planned) to support the use case we expect only minor additional work to align
platform symbIoTe plugins with further releases (R3 and others). Additionally, the use case

er that collects data from various sources, processes them
and calculates interpolated pollutant values for geographical areas with insufficient

components are currently under
ync with further releases of symbIoTe software.

The web application is currently developed. Initial design of the application is already

the functionality of the openUwedat plugin at

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 50 of 96
 © Copyright 2017, the Members of the symbIoTe

Isolated functional tests will be done at unit test level for parts of the interpolator logic.
Further test scenarios that include the complete enabler logic are yet to be defined (as part
of task 2.3)

The web application is an existing application that currently only works with metrics like
distance and travel time. This means that most relevant parts of the application have
already been sufficiently tested.

Final integration testing of the web application are during the trial in Vienna where users
will collect air quality measurements and try out suggested routings through the city.

5.3 Use Case Scenario “EduCampus”

The EduCampus use case is inspired by the eduroam (EDUcation ROAMing) initiative, an
international roaming services for users in research and education28. The key idea behind
both concepts is to agree on a common framework to harmonize infrastructure services, in
order to provide researchers, teachers and students easy and secure access to campus
services when visiting campuses other than their own. While eduroam focuses on network
access, the EduCampus use case aims for IoT middleware services.

The vision behind the EduCampus is following. When looking at the rapidly growing
market for sensors included in smart devices, used in or attached to smart buildings,
establishing smart campus infrastructures, there will be rich offering of services based on
IoT middleware installations on a campus. Examples are climate control systems in
workplaces, electronic access control systems, indoor location and navigation support,
guidance systems for handicapped people, location based collaboration support, or room
information and reservations systems as discussed in the EduCampus showcase below.

Sometimes these services will be unique to certain campus, but in many cases there will
be very similar services on different campus, but realized in deployment specific ways.
This will result in services, which are functionally identical for different campus solutions,
but technical incompatible for visiting campus users. In any case there will be multi-
platform deployments, consisting of different IoT-domains and also of different IoT-
middleware products. By facilitating the symbIoTe interoperability framework for campus
deployments, EduCampus aims to be the incubator for interoperable IoT-platform
federations.

28

 https://www.eduroam.org/

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 51 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 23: Conceptual View

5.3.1 Application: Searching for a Room

The <Searching for a Room> application is for a person visiting a campus and searching
for specific room. That room might be an office of someone he wants to visit, a working
place where he can do some homework, or a meeting room to meet some colleagues.

5.3.1.1 Design

The basic assumption for the EduCampus concept is, that each campus application is
designed as in three-tier-architecture. The user will interact with a presentation tier, the
application logic will be implemented in a logic tier, and a data tier will manage the data.
The only place where interoperability extensions are allowed will be the logic tier. The
presentation layer is considered to be the connection between the user and the application
and may not be intercepted by any external components. The same is true for the
underlying data tier, which is considered to be an internal and protected tier.

When implementing any kind of interoperability between independent campus information
management systems, the only place will be the logic tier.

deployment EduCampus Vision

«executionEnvironment»

campus A symbIoTe cloud

«executionEnvironment»

EduCampus symbIoTe Core Service Deployment

EduCampus

Campus B

Campus A

«device»

:IoT Device

«device»

:IoT Device «device»

:IoT Device

«device»

:IoT Device

«device»

:IoT Device

Cloud-Core Interface

«interface»

Cloud-Core

Interface::

Search

«interface»

Cloud-Core

Interface::

Registration

«interface»

Cloud-Core

Interface::

Security

Interworking Interface

«interface»

Interworking Interface:

:Registration

«interface»

RAP

«executionEnvironment»

campus B symbIoTe cloud

Interworking Interface

«interface»

Interworking

Interface::RAP

«interface»

Interworking Interface::

Registratio

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 52 of 96
 © Copyright 2017, the Members of the symbIoTe

In the “Searching for a Room” application, a user from campus A is visiting campus B
(Figure 24). The user is optionally equipped with a location Sensor (BLE beacon). The
“Searching for a Room” application is a service within the presentation layer of his campus
A information management system. When searching for a room, the application logic from
campus A will detect that the user is not located within campus A. It will then use the
symbIoTe services to search for and room information service close to the current location
of the user.

The campus B information management system will provide access to resource if the
appropriate credential can be provided.

The details how the semantic mapping between the symbIoTe client within campus A and
the resource access proxy within campus B, is currently being developed within the
extended Task T2.1.

Figure 24: Deployment Concept

5.3.1.2 Compliance Level

The primary compliance level of symbIoTe integration will be L2.

5.3.1.3 Platform

Two IoT platforms will be included, namely Campus A and Campus B, as well as the
accompanying development platforms, having the following specifications:

deployment Deployment Model

symbIoTe Core

Room001

Room001

Campus BCampus A

UI Server

Application Application

Guest from Campus

A: Guest Campus

User

symbIoTe

client

RAP Data

:Beacon

:Beacon

Search Engine

Registration

Semantic Mapping

«use»

distance

«use»

«use»

«use»

distance

searching for a room

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 53 of 96
 © Copyright 2017, the Members of the symbIoTe

Campus A (Fraunhofer IOSB):

• Android SmartPhone with BLE technology for location sensing

• WebGenesis (Content Management System including a SensorThingsAPI
Dashboard) as Presentation layer

• Java Server application for logic layer

• Outlook and Sensor Things Server for the data layer

Campus B (Karlsruher Institut für Technologie, KIT):

• Android SmartPhone with BLE technology for location sensing

• KIT Smart Campus presentation and logic layer

• KIT MORADA room information data base

5.3.1.4 User Interaction

The initial design of the user interaction has been shown in the document D1.2. At the
current stage of the development no further details on user interactions are known. Figure
25 and Figure 26 show the current design.

Figure 25: EduCampus User Interaction

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure 26: Bluetooth Low Energy based proximity measurement

The design for the EduCampus user interface has not yet started. It will be similar to an
earlier design shown in the figure below, which is a status display for room information
(see Figure 27). A mobile application will be available for navigati
reservation. A prototype is shown in

Figure 27: Room Information Board for reservation status

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

: Bluetooth Low Energy based proximity measurement

e EduCampus user interface has not yet started. It will be similar to an
earlier design shown in the figure below, which is a status display for room information

). A mobile application will be available for navigation, room information and
reservation. A prototype is shown in Figure 28.

Room Information Board for reservation status

Report on System Integration and
Application Implementation

Page 54 of 96

: Bluetooth Low Energy based proximity measurement

e EduCampus user interface has not yet started. It will be similar to an
earlier design shown in the figure below, which is a status display for room information

on, room information and

Room Information Board for reservation status

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure

5.3.1.5 Implementation

The implementation languages

Location information will be measured by using BLE technology with Bluetooth beacons
attached to certain locations.

5.3.1.6 Initial Functional Tests

The functional test will be based on the installation within the campus of Fraunhofer IOSB
in Karlsruhe, Germany. Several rooms will be equipped with Bluetooth beacons and a
room information and reservation service will be installed. Several employees will be
equipped with mobile clients to test the services.

Parallel to the IOSB installation there will deployment within the
(KIT) with similar features. The detailed planning of initial test is expected for the end of
2017.

5.4 Use Case Scenario “

Smart Stadium enhances the user experience of visitors coming to a stadium. In the retail
context, it provides that both visitors and retailers get closer even in large distances across
the stadium.

Although being an IoT project,
which is usually the first thing that comes to one’s mind when mentioning IoT devices.
this use case, however, smartphones, tablets and smart TVs are the IoT play

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Figure 28: Building and Room Information

s for the EduCampus Use Case will be Java and JavaScript.

Location information will be measured by using BLE technology with Bluetooth beacons

Initial Functional Tests

st will be based on the installation within the campus of Fraunhofer IOSB
in Karlsruhe, Germany. Several rooms will be equipped with Bluetooth beacons and a
room information and reservation service will be installed. Several employees will be

mobile clients to test the services.

Parallel to the IOSB installation there will deployment within the University
(KIT) with similar features. The detailed planning of initial test is expected for the end of

Use Case Scenario “Smart Stadium”

Smart Stadium enhances the user experience of visitors coming to a stadium. In the retail
both visitors and retailers get closer even in large distances across

lthough being an IoT project, Smart Stadium does not involve sensors and actuators
usually the first thing that comes to one’s mind when mentioning IoT devices.

, smartphones, tablets and smart TVs are the IoT play

Report on System Integration and
Application Implementation

Page 55 of 96

ase will be Java and JavaScript.

Location information will be measured by using BLE technology with Bluetooth beacons

st will be based on the installation within the campus of Fraunhofer IOSB
in Karlsruhe, Germany. Several rooms will be equipped with Bluetooth beacons and a
room information and reservation service will be installed. Several employees will be

niversity Of Karlsruhe
(KIT) with similar features. The detailed planning of initial test is expected for the end of

Smart Stadium enhances the user experience of visitors coming to a stadium. In the retail
both visitors and retailers get closer even in large distances across

not involve sensors and actuators,
usually the first thing that comes to one’s mind when mentioning IoT devices. In

, smartphones, tablets and smart TVs are the IoT players.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 56 of 96
 © Copyright 2017, the Members of the symbIoTe

Different IoT platforms can live together in the stadium, offering access to their devices to
all other platforms and client applications through symbIoTe. Visitors are identified by their
smartphones, while retailers (both moving carts and physical shops) are identified by their
TPV and beacons. From the visitor’s point of view, Smart Stadium brings the opportunity
for detecting closest retailers, place orders independent of where they are, for receiving
products they bought directly in their seat.

On the other hand, retailers can broadcast their offers and promotions to all visitors inside
the stadium, or those that are moving near specific areas inside the stadium. Retailers can
send their promotions to large SmartTVs (Promowalls) strategically placed throughout the
stadium.

5.4.1 Application: Visitor application

The visitor application, with no commercial name yet, provides visitors in the stadium
access to all retailer information as well as an entry point of news and promotions. As soon
as the user arrives to the stadium, the app registers user’s location based on the proximity
to beacons. From now on, the user is discoverable and accessible thanks to this
application and its backend.

5.4.1.1 Design

Figure 29: Components and interactions for all smart stadium use cases

The main benefit symbIoTe provides to us is the discoverability for new incoming devices
to the stadium as well as the continuous status updates. It also standardizes the
communication process by defining all information models, and rules to add custom ones.

The application is divided into a regular client and server architecture (Figure 29), where
the server is the one that knows and interacts with symbIoTe. This way mobile app
capabilities can grow with no deep details on where those services come from (new

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

platforms, a new enabler merging data from different platforms, etc.).
not yet exist, and it will be developed in the context of this use case.
provide access to known services registered in symbIoTe. The pla
facade. All IoT devices are localized using a custom symbolic location based on proximity
to beacons spread throughout the stadium.
used to locate IoT devices inside the stadium.

For example, a mobile app running on a
detects the following known beacons:

• Beacon 1 tagged as ‘door 14’ at a distance of 1 meter (near)

• Beacon 2 tagged as ‘corridor 3’ at a distance of 15 meters (far)

• Beacon 3 tagged as ‘floor 1’, at a distance of 1 meter (near)

The device is then located at the symbolic location “near door 14, near floor 1, far corridor
3”. Physical shops can be easily located by using a specific beacon at the entrance door.

The following diagram (Figure
and retailer applications as well as all components involved in the Smart Stadium use
case.

5.4.1.2 Compliance Level

The primary compliance level of

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

platforms, a new enabler merging data from different platforms, etc.).
it will be developed in the context of this use case.

provide access to known services registered in symbIoTe. The pla
All IoT devices are localized using a custom symbolic location based on proximity

to beacons spread throughout the stadium. All beacons emit unique identifiers that can be
to locate IoT devices inside the stadium.

mobile app running on a Bluetooth low energy (BLE
detects the following known beacons:

Beacon 1 tagged as ‘door 14’ at a distance of 1 meter (near)

Beacon 2 tagged as ‘corridor 3’ at a distance of 15 meters (far)

loor 1’, at a distance of 1 meter (near)

located at the symbolic location “near door 14, near floor 1, far corridor
Physical shops can be easily located by using a specific beacon at the entrance door.

Figure 30) depicts the device registration performed by both visitor
and retailer applications as well as all components involved in the Smart Stadium use

Figure 30: Device Registration

level of symbIoTe integration will be L1.

Report on System Integration and
Application Implementation

Page 57 of 96

platforms, a new enabler merging data from different platforms, etc.). The backend does
it will be developed in the context of this use case. Visitor platform will

provide access to known services registered in symbIoTe. The platform will act as a
All IoT devices are localized using a custom symbolic location based on proximity

All beacons emit unique identifiers that can be

BLE) capable device

located at the symbolic location “near door 14, near floor 1, far corridor
Physical shops can be easily located by using a specific beacon at the entrance door.

depicts the device registration performed by both visitor
and retailer applications as well as all components involved in the Smart Stadium use

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 58 of 96
 © Copyright 2017, the Members of the symbIoTe

5.4.1.3 Platform

The visitor application solution will be implemented using the following technology stacks:

• Mobile app: hybrid application developed using Cordova as a native envelope and
Ionic and AngularJS as application core.

• App will run on Android devices with BLE capability to locate near beacons.

• Backend: J2EE stateless RESTful services implemented using Spring Framework
and MongoDB.

5.4.1.4 User interaction

The visitor application brings to people arriving to the stadium all information and services
they need to get updated of sport events and products they might be interested in, for
example, sport stuff, food and drinks. The other great functionality the app provides to the
user is passive to the user: receiving incoming data from devices/people with granted
access to symbIoTe and Visitor Platform related devices: push notifications. Figure 31
depicts the registration process of the visitor device once he/she enters the stadium.

Figure 31: Workflow “Visitor registration”

Figure 32 describes the workflow being performed when the visitor buys something via the
visitor app. In a few words, visitor app looks for shops near the visitor and displays the

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 59 of 96
 © Copyright 2017, the Members of the symbIoTe

products they sell; visitor prepares an order with some products (and maybe coupons and
discounts) and sends it to the retailer, waiting for confirmation.

Figure 32: “Order a Promotion” workflow

Finally, the sequence diagram shown in Figure 33 depicts the arrival of notifications
coming from a symbIoTe client to the mobile application.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 60 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 33: Workflow “Sending promotions to both PromoWalls and visitors”

The communication between the Visitor platform and the mobile app is intended to be
implemented via push messages.

Application visuals are already available, as shown in Figure 34.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 61 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 34: Visuals for the Smart Stadium use case Visitor scenario application

5.4.1.5 Implementation

As mention above, there are two pieces of software involved in this application which are
implemented in the following way:

• Backend: J2EE application implemented using the following frameworks and tools

o Spring Framework: core framework

o Apache Camel: to implement relevant processes

o Spring Data: data layer abstraction

o MongoDB: NoSQL database

o Apache CXF: implement RESTful services

o CAS: security for REST API

• Mobile application: hybrid application

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 62 of 96
 © Copyright 2017, the Members of the symbIoTe

o Cordova: envelop providing access to native capabilities as well as platform
specific application stores

o Ionic and AngularJS: core framework to develop application logic and UI

o Flux: data flow pattern for large applications

In order to guarantee code quality, the backend will be analyzed using SonarQube29 and
JaCoCo30 (code coverage), and the RESTful API will be tested using Postman. On the
other hand, mobile application will be tested using functional test cases.

Moreover, this use case required a modification of the Core Information Model to add a
generic IoT device, as until then it was only covering sensors and actuators.

Currently mobile application is being implemented, in and advanced stage but
disconnected from server. On the other hand, backend just started its implementation
based on R2 symbIoTe release. It’s currently on an early stage with all components being
connected.

5.4.1.6 Initial Functional Tests

Test cases are not yet defined at this stage of the pilot definition.

5.4.2 Application: Retailer Application

The retailer application, with no commercial name yet but intended to be an application per
retailer (custom UI), provides retailers the opportunity to publish their services and
products to anyone in the stadium. This application let retailers manage the order inbox
and all the orders being processed and delivered. It also lets the seller to emit specific
discounts and coupons to either visitors’ devices or Promowalls located in certain sections
of the stadium.

5.4.2.1 Design

The main benefit of using symbIoTe is the device discoverability via the Search registry to
access all kind of symbIoTe enabled platforms that are currently defined but much more
that could raise in the future.

The application is divided into a regular client and server architecture (Figure 29), where
the server is the one that knows and interacts with symbIoTe. This way client app
capabilities can grow with no deep details on where those services come from (new
platforms, a new enabler merging data from different platforms, etc.). The backend does
not yet exist and it will be developed in the context of this use case. Remote Ordering
platform will provide access to known services registered in symbIoTe, related to the
Smart Stadium use case. The platform will act as a facade. All IoT devices are localized
using a custom symbolic location based on proximity to beacons spread throughout the
stadium.

29

 https://www.sonarqube.org/
30

 http://www.eclemma.org/jacoco/trunk/index.html

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 63 of 96
 © Copyright 2017, the Members of the symbIoTe

All beacons emit unique identifiers that can be used to locate IoT devices inside the
stadium, as is described in Section 5.4.1.

5.4.2.2 Compliance Level

The primary compliance level of symbIoTe integration will be L1.

5.4.2.3 Platform

The retailer application solution will be implemented using the following technology stacks:

• Desktop app: web application developed using Electron as a native envelope and
Ionic and AngularJS as application core.

• App will run on a RaspberryPi device with a plugged display.

• Backend: J2EE stateless RESTful services implemented using Spring Framework
and MongoDB.

5.4.2.4 User interaction

The retailer application allows sellers to make their products and services accessible to
anyone in the stadium, as well as the ability to send messages and offers to them.

The sequence diagram in Figure 35 depicts the process of sending promotions to visitors
located in specific areas of the stadium.

Figure 35: Workflow “Sending promotions to both PromoWalls and visitors”

The sequence diagram in Figure 36 shows the purchasing process from the retailer’s
perspective: the reception of the purchase order and the acceptancy or rejection by the
retailer.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 64 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 36: Workflow “Receive and acknowledge order”

The communication between the Remote Ordering Platform and the desktop app is
intended to be implemented either via push messages (if working on Electron), or polling,
as TPV app is intended to be always in foreground. Application visuals are already
available with examples in Figure 37.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 65 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 37: Visuals for the Smart Stadium use case Retailer scenario application

5.4.2.5 Implementation

As mention above, there are two pieces of software involved in this application that are
implemented in the following way:

• Backend: J2EE application implemented using the following frameworks and tools

o Spring Framework: core framework

o Apache Camel: to implement relevant processes

o Spring Data: data layer abstraction

o MongoDB: NoSQL database

o Apache CXF: implement RESTful services

o CAS: security for REST API

• Mobile application: desktop application developed using HTML5

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 66 of 96
 © Copyright 2017, the Members of the symbIoTe

o Electron: envelop providing access to OS capabilities as well as platform
specific installer and runtime

o Ionic and AngularJS: core framework to develop application logic and UI

o Flux: data flow pattern for large applications

In order to guarantee code quality, the backend will be analyzed using SonarQube and
JaCoCo (code coverage), and the RESTful API will be tested using Postman. On the other
hand, mobile application will be tested using functional test cases. Moreover, this use case
required a modification of the Core Information Model to add a generic IoT device, as until
then it was only covering sensors and actuators.

Currently mobile application is being implemented, in and advanced stage but
disconnected from server. On the other hand, backend just started its implementation
based on R2 symbIoTe release. It’s currently on an early stage with all components being
connected.

5.4.2.6 Initial Functional Tests

Test cases are not yet defined at this stage of the pilot definition.

5.4.3 Application: Promowall

Promowall is an existing solution from Worldline that offers the ability to publish stylish
promotions and limited coupons to customers in two different channels: Promowall mobile
app and large touch-screen Smart TVs, the Promowalls.

5.4.3.1 Design

The main benefit of using symbIoTe is the broadcasting of the Promowall published
information thanks to the discoverability of new devices and the ability to introduce new
symbIoTe enabled platforms that could use Promowall.

The Promowall backoffice application was implemented as a monolithic piece of software
containing a RESTful API, used by the mobile app, and a backoffice GUI implemented
using ZK Framework (server-side rendering).

The Promowall solution is divided into three applications (see Figure 29):

• Promowall backoffice (out of Smart Stadium use case, because it’s replaced by the
Retailer application described above).

• Frontend HTML5 application running on Promowall devices displaying promotions,
relevant information and the QR code to activate promotions using any QR scanner
application from their devices (Promowall mobile app is not even required).

• Promowall mobile application for final users.

5.4.3.2 Compliance Level

The primary compliance level of symbIoTe integration will be L1.

5.4.3.3 Platform

The Promotion and Information platform is nothing else than the symbIoTe enabled
Promowall backend.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 67 of 96
 © Copyright 2017, the Members of the symbIoTe

The retailer application solution is implemented using the following technology stacks:

• RESTful API: J2EE web application using Spring Framework.

• SmartTV frontend: HTML5 application

• Mobile application: Android native application running on a BLE capable device

5.4.3.4 User interaction

The Promowall solution relevant for Smart Stadium use case involves the interaction of
visitors with Promowalls and smartphones running the Promowall app. The interaction is
depicted in Figure 38, while the real screenshots of the Android mobile and Web
application of Promowall are provided in Figure 39 and Figure 40, respectively.

The interaction is depicted in the following storyboard (also notice embedded comments).

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 68 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 38: Promowall interaction

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 69 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 39: Promowall Smartphone application screenshots

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 70 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 40: Screenshots of Web applications running on Promowall devices

5.4.3.5 Implementation

As mention above, there are three pieces of software involved in this application that are
implemented in the following way:

• Backend: J2EE application implemented using the following frameworks and tools

o Spring Framework: core framework

o MySQL database

o Apache CXF: implement RESTful services

• SmartTV frontend: HTML5 site

o jQuery: core library

o Mustache.js: logic-less HTML template library

o Hammer.js: gesture library for web

o Isotope: dynamic masonry tile layout

• Mobile application: Android native application

This application does not require any special attention. The effort on this platform is to
convert this in a real symbIoTe platform.

Currently Promowall application is finished but it is being adapted to a symbIoTe enabled
platform based on R2 symbIoTe release. This process is on an early stage yet.

5.4.3.6 Initial Functional Tests

This application is fully developed and it does not need any new functional tests.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 71 of 96
 © Copyright 2017, the Members of the symbIoTe

5.5 Use Case Scenario “Smart Yachting”

The focus of Smart Yachting is to provide advanced services for the Yachting industry
based on IoT solutions. From an implementation viewpoint, the use case focuses on two
specific showcases: Smart Mooring and Automated Supply Chain.

The former aims to automate the mooring procedure of the port, in itself a quite
bureaucratic and tedious process, since Marinas operate in strongly regulated contexts.
For the use case, the workflow logic is provided by a Navigo application (Portnet).

Automated Supply Chain aims to automatically identify the needs for goods and services
on board of the Yacht, so that automated requests for offers can be issued on the
marketplace platform of the Port, provided by another application of the Navigo
infrastructure (Centrale Acquisti).

Both showcases exploit data from IoT sensors to automatically acquire information from
the Yacht and to pass them to the aforementioned business applications that are
connected to the Port infrastructure.

Therefore, the context for the use case is based on the following hypotheses:

• the Port has an IoT platform

• the Yacht has an IoT Platform on board

• these two platforms interoperate through symbIoTe

• no need for these platforms to be the same, as long as they are both symbIoTe
enabled (for example in the use case the Port has Navigo Digitale as the IoT
platform, while the Yacht is supposed to have Nextworks’ Symphony on board)

• the Port IoT Platform connects with sensors in its area

• the Port is seen as a Smart Space, that interacts with Smart Devices through both
LoRaWAN and WiFi

• the Mooring and the Supply Chain Management systems are connected to the
symbIoTe ecosystem through “Enablers”.

The latter choice should facilitate the integration of these business applications with
symbIoTe, by encapsulating the technical details of the whole IoT infrastructure and
exposing only the minimum set of methods that must be implemented, to guarantee the
communication and the data exchange envisioned in the use case.

This is particularly important, since each Port that in the future might adhere to symbIoTe
for implementing the Smart Yachting use case, must develop the integration of their
Mooring and Supply Chain Management systems (not necessarily based on Navigo’s
products): we want therefore that this integration could be as simple and straightforward as
possible.

5.5.1 Application: Smart Mooring

As said, Smart Mooring aims to simplify, through M2M interactions, the mooring
authorization workflow. It allows the Port’s workflow management system to automatically
retrieve those data from the Yacht that are needed for the workflow authorization.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 72 of 96
 © Copyright 2017, the Members of the symbIoTe

We want to intercept a particular phase of the Mooring process that starts when the Yacht
is approaching – at a distance – the destination port and ends when it finally berths into
one of its piers.

We assume that the initial mooring request (a sort of "booking" for the boat in the Port)
always starts off-line or in any case outside symbIoTe: it might be performed through a
phone call or a web access to the Mooring workflow management system. For example,
when the boat is still far from the destination port (e.g., in the port of origin) the yachtsman
calls the destination port to “book” its arrival at a specific time: the mooring workflow is
therefore initiated by the port personnel. Instructions are then exchanged between the boat
and the port authority personnel (e.g., the boat is expected to arrive at the destination port
on a specific date and time and to berth on a specific pier).

With Smart Mooring we are implementing a scenario through symbIoTe enabled systems:

• sensors in the Harbor can detect when the Yacht is approaching

o No need for a phone call to announce the arrival

o through M2M interactions the mooring workflow can be identified and
updated automatically

• data from sensors (e.g., latest routes, fuel consumption, emissions...) can be
automatically attached to this workflow

o No need to fill-in paper files

o A larger amount of information can be tracked

o No risk of errors or of wrong/false data reported

• automatic communication can be sent to the port personnel to await the incoming
ship

o Simplifying and empower Port's organization

o Detecting when the vessel has finally arrived at the berth through sensors

There should not be any need for the yachtsman to physically go to the Port Authority,
unless problems are detected and reported.

5.5.1.1 Design

A simplified architectural view of the present showcase is provided in the diagram that
follows.

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure 41: Architectural view of the Smart Mooring showcase

As indicated in the diagram, the Mooring Workflow application interacts, through
symbIoTe’s components, with the Yacht’s IoT platform to rec
must be attached to the authorization workflow, while sensors in the Port area, managed
by its IoT platform, can recognize when the Yacht has finally berthed on the assigned pier.

For the use case, we are aiming to integrate Io
partners, namely Nextworks’ Symphony and Navigo’s Navigo Digitale and Portnet.
Actually, to make it relevant, it is essential that in perspective the Smart Yachting use case
can be adopted by the largest number of Ya
seen, we envision the Yacht as a Roaming Device: the more ports support Smart Yachting
services, the more useful they will be seen by the Yachtsmen (and by Yacht
Manufacturers).

Allowing other Mooring Applications
enabled is at the same time essential and a critical factor, since there isn’t any standard,
nor a market leader in this arena. In order to encourage software vendors to adopt this
model, we must simplify their
section, it has been decided to encapsulate the integration details within an enabler, which
will hide all the possible complications and provide simple cooperation mechanisms.

The design of this showcase was elaborated in respect of the general project
requirements. In particular, the most relevant requirements have been taken into account,
and these are:

• #4 – IoT services MUST
manner. Data source/identity shall be exposed to application developers.

• #5 – The system MUST monitor the availability of the IoT services registered by IoT
platform operators.

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Architectural view of the Smart Mooring showcase

As indicated in the diagram, the Mooring Workflow application interacts, through
symbIoTe’s components, with the Yacht’s IoT platform to receive data from sensors that
must be attached to the authorization workflow, while sensors in the Port area, managed
by its IoT platform, can recognize when the Yacht has finally berthed on the assigned pier.

For the use case, we are aiming to integrate IoT platforms and applications of project
partners, namely Nextworks’ Symphony and Navigo’s Navigo Digitale and Portnet.
Actually, to make it relevant, it is essential that in perspective the Smart Yachting use case
can be adopted by the largest number of Yacht manufacturers and Port Authorities. As
seen, we envision the Yacht as a Roaming Device: the more ports support Smart Yachting
services, the more useful they will be seen by the Yachtsmen (and by Yacht

Allowing other Mooring Applications, beyond Navigo’s Portnet, to become symbIoTe
enabled is at the same time essential and a critical factor, since there isn’t any standard,
nor a market leader in this arena. In order to encourage software vendors to adopt this
model, we must simplify their work: that is why, as indicated at the beginning of this
section, it has been decided to encapsulate the integration details within an enabler, which
will hide all the possible complications and provide simple cooperation mechanisms.

owcase was elaborated in respect of the general project
requirements. In particular, the most relevant requirements have been taken into account,

IoT services MUST appear to application developers in a homogeneous
dentity shall be exposed to application developers.

system MUST monitor the availability of the IoT services registered by IoT

Report on System Integration and
Application Implementation

Page 73 of 96

Architectural view of the Smart Mooring showcase

As indicated in the diagram, the Mooring Workflow application interacts, through
eive data from sensors that

must be attached to the authorization workflow, while sensors in the Port area, managed
by its IoT platform, can recognize when the Yacht has finally berthed on the assigned pier.

T platforms and applications of project
partners, namely Nextworks’ Symphony and Navigo’s Navigo Digitale and Portnet.
Actually, to make it relevant, it is essential that in perspective the Smart Yachting use case

cht manufacturers and Port Authorities. As
seen, we envision the Yacht as a Roaming Device: the more ports support Smart Yachting
services, the more useful they will be seen by the Yachtsmen (and by Yacht

, beyond Navigo’s Portnet, to become symbIoTe-
enabled is at the same time essential and a critical factor, since there isn’t any standard,
nor a market leader in this arena. In order to encourage software vendors to adopt this

work: that is why, as indicated at the beginning of this
section, it has been decided to encapsulate the integration details within an enabler, which
will hide all the possible complications and provide simple cooperation mechanisms.

owcase was elaborated in respect of the general project
requirements. In particular, the most relevant requirements have been taken into account,

appear to application developers in a homogeneous
dentity shall be exposed to application developers.

system MUST monitor the availability of the IoT services registered by IoT

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 74 of 96
 © Copyright 2017, the Members of the symbIoTe

• #11 – The information from IoT services and IoT devices MUST have the units in
which the data is described associated to standard unit of the common information
model (meters, kg, etc.). The encoding of units should adhere to a standard (e.g.
UCUM).

• #12 – The common information model MUST support geo-reference information

• #19 – symbIoTe MUST distinguish IoT devices which are fixed (geo-location does
not change over time) and mobile (their location changes).

• #21 – The system SHOULD allow application developers to create their own
enablers (focusing on a single domain or be cross-domain), defining their own logic,
etc.

• #61 - symbIoTe smart spaces SHOULD be able to operate without a permanent
Internet connection.

The reason for their importance becomes clear when reading the description of the
showcase that follows.

The use of symbIoTe will allow Mooring Workflow applications used in Marinas – like
Navigo’s Portnet – to deeply simplify their processes and data entry phases, by
automating the retrieval of information from sensors of the approaching Yacht and of the
Port.

5.5.1.2 Compliance Level

The main assumptions that we are making for implementing the Smart Mooring showcase
are:

• Level 3 compliance: as said, we see the Yacht as a Smart Device (SDEV) and the
Port as a Smart Space (SSP). The implementation of the showcase becomes
similar to the symbIoTe scenario of a Smart Device (the Yacht) entering a Smart
Space (the Port).

• Level 4 compliance: we assume that the Yacht maintains its ID when moving
between Ports. The Yacht will be therefore seen as an example of a Roaming
Device

By default the use case will also imply Level 1 symbIoTe compliance.

5.5.1.3 Platform

Smart Mooring will be based on the Navigo Digitale IoT platform and on the Navigo’s
business application Portnet, the latter integrated in symbIoTe through an Enabler. On the
Yacht side, Nextworks’ Symphony IoT platform will be used.

5.5.1.4 User Interaction

From a functional viewpoint, Smart Mooring aims to reduce user activities at a minimum.
The following description therefore is not centered around human behavior but on a pure
M2M interaction.

Together with the team working on the Smart Space middleware (WP4) and the Enabler
(WP2) implementations, Navigo has refined the present showcase, to make sure that it
can fit with the general project vision and that it can be L3 & L4 compliant. The hypotheses

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 75 of 96
 © Copyright 2017, the Members of the symbIoTe

that we are considering for Smart Mooring involve several interactions between the Boat,
the Port IoT System and the symbIoTe components. In details:

• Since the Yacht is a roaming device, its ID must be maintained in the Registry. Here
two specific properties will be associated (and updated) for each Yacht:
ConnectionStatus and ConnectedInPort. The former registers how (and if) the
Yacht is connected and can assume as possible values: “disconnected”,
“LoRaWAN” and “WiFi”. The latter, when ConnectionStatus is not “disconnected”,
will take as the value the ID of the Port where the Yacht is connected.

• LoRaWAN connectivity will be used: we assume therefore that a specific LoRaWAN
controller is attached to the SSP middleware.

• When approaching the port, the vessel – as a SDEV – is detected by the SSP
LoRaWAN controller and registered by it to the SSP Innkeeper (which, in turn,
updates the Yacht/SDEV properties in the symbIoTe Core Registry).

• The mooring application receives through its enabler a notification that a new Smart
Yacht SDEV has been registered to the SSP of the port: this event activates the
mooring workflow.

• When the Yacht is near the port, again through LoRaWAN, a Wi-Fi password is
transmitted to the Yacht SDEV, which starts a full Internet connection. Therefore the
Yacht, as a SDEV, first connects via LoRaWAN and then connects via Wi-Fi when
the latter signal is strong enough. This connection change allows Portnet’s Enabler
to request the retrieval of data from boat sensors.

In particular, the information that we assume to fetch from Yacht’s sensors are:

• Navigation routes from the GPS and the Wheelhouse sensors. We assume that
Portnet receives an array of the most recent routes, including the one from the port
of departure

• Yacht speed (in knots)

• Average Fuel Consumption per nautical mile (in litres)

• Fresh, Grey and Black Water tanks level (in litres)

• Service Fuel and Storage Fuel Oil tanks level (in litres)

• Port Exhaust and Starboard Exhaust temperature (in degree Celsius).

Portnet also needs to know when the Yacht has finally berthed on the specified pier. We
assume to have a RFID/beacon sensor on each Yacht (e.g., installed on the on-board
device) and a RFID/Beacon Receiver on each pier, managed by the Port IoT platform.

We are also assuming that the Mooring application logic is mainly on the port side, but
there might be a specific "Smart Mooring" device on board, to simplify the management of
the sensors involved in the showcase (LoRaWAN sensor, Wi Fi antenna, RFID/Beacon).
Since this device can be very simple and "low-cost" (and therefore very easy to install), it
can be used stand-alone in smaller boats (below 15 metres): this should open the
possibility to exploit Smart Mooring to a larger amount of boats, not only high-end yachts.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 76 of 96
 © Copyright 2017, the Members of the symbIoTe

The interactions described above are depicted in the following UML sequence diagrams
(see Figure 42 and Figure 43). We have divided the mooring process in two parts, where
the first one describes the moment in which the Yacht is approaching the port. In details:

• The Mooring Management System (Portnet) awaits for the incoming Yacht; it
requests to the enabler to detect the Yacht arrival. The enabler will query, at a
specified frequency (e.g. every 5 minutes), the Registry to detect when the Yacht’s
ConnectionStatus becomes different from “disconnected”.

• The Yacht LoRaWAN sensor connects to the Port's Antenna and sends its ID. The
LoRaWAN controller, which will be supervised by the Smart Space Innkeeper, will
update the ConnectionStatus and ConnectedInPort properties of the Yacht in the
Registry.

• The Enabler queries once again the Registry: this time the ConnectionStatus =
“loRaWAN”, so it notifies Portnet of the incoming ship.

• Portnet automatically starts the mooring procedures for the specific Boat and alerts
the Port Authority operators and Port personnel.

Figure 42: Sequence Diagram of the Yacht approaching the Port

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 77 of 96
 © Copyright 2017, the Members of the symbIoTe

The second sequence diagram shows the arrival of the Yacht in the harbor and the
accomplishment of the mooring procedure. In details:

• Through LoRaWAN the Yacht receives the credentials to connect to the Port’s Wi-Fi
network: they will be sent by the SSP middleware (note: the actual process to
implement this is still under investigation in WP4)

• The Yacht activates the Wi-Fi connection when the signal is strong enough

• The symbIoTe-Agent of the Yacht connects to the SSP

• The SSP middleware updates the Yacht property ConnectionStatus to “WiFi” in the
Registry.

• The Enabler queries once again the Registry: this time the ConnectionStatus =
“WiFi”, so it communicates to the Enabler to stop data acquisition for the Yacht’s
properties.

• The Enabler now requests to acquire data from the Yacht, by invoking its two
services getLatestSensorDataService and getLatestRouteService.

• The Yacht grants access and returns its data

• The Enabler receives these data, verifies them, stops data acquisition and passes
the information to Portnet

• Portnet updates the workflow, processes the incoming data and sends alerts to both
the Port Authority Operator and the Port Personnel

• The Enabler requests to receive data from the Port IoT platform, to verify if the
Yacht has arrived at the specified pier. Technically speaking it queries the value of
the presence sensor attached to the Port’s pier.

• the Yacht arrives at the pier and through RFID sensors the Port IoT platform
acknowledges its presence

• The Enabler queries the Port IoT platform and finally verifies that the Yacht has
arrived at the correct destination. It passes the information to Portnet.

• Portnet sends and alert to the Port Authority Operator and closes the mooring
workflow.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 78 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 43: Sequence Diagram of the Yacht arriving at the Port

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 79 of 96
 © Copyright 2017, the Members of the symbIoTe

5.5.1.5 GUI Design

No specific GUI is needed for this showcase. The only GUIs are those of the Portnet
application (beyond the scope of symbIoTe).

5.5.1.6 Implementation

The following programming languages are used for the development of the showcase:

• Navigo Digitale IoT platform: its back-end has been developed in Python while the
front-end is a web application

• Portnet is a Java web application, currently implemented in Liferay. A new version,
based on the PHP Drupal 8 framework, is currently under development (outside of
the scope of symbIoTe)

• Specific logic for the integration of Portnet with the Enabler will be implemented in
Java.

The Navigo Digitale IoT platform already exists and its Level 1 compliance to symbIoTe is
currently under development. As indicated, Navigo is working on a new version of Portnet.
The latter module will heavily rely on symbIoTe’ Smart Space Middleware, which is still in
the design phase.

5.5.1.7 Initial Functional Tests

A specific test plan will be defined to cover all kinds of tests, from functional to integration
and possibly load testing.

5.5.2 Application: Automated Supply Chain

The Automated Supply Chain (ASC) workflow can be seen as a particular case of the
latter part of the Mooring use case. The Centrale Acquisti web application (by Navigo),
through an enabler, accesses the resources of the Yacht (sensors) to retrieve information
about the needs (of goods or services) on board.

Like in the previous case, we assume that the showcase will always starts off-line or in any
case outside symbIoTe.

5.5.2.1 Design

A simplified architectural view of the present showcase is provided in Figure 44.

688156 - symbIoTe - H2020-ICT-2015

Version 0.20
 © Copyright

Figure 44: Architectural view of the Automated Supply Chain showcase

Similarly to the case of Smart Mooring, we have an application here (Navigo’s Centrale
Acquisti) that exploits M2M and symbIoTe to
needs of goods and services on board of the Yacht, as detected by its IoT platform (for the
use case, Nextworks’ Symphony). Again, we aim to involve other third party software
vendors that provide applications sim
integration task, we propose the use of an enabler to mediate the interaction with
symbIoTe infrastructure.

The design of this showcase was elaborated in respect of t
requirements. In particular, the most relevant requirements that have been taken into
account are:

• #4 – IoT services MUST
manner. Data source/identity shall be exposed to application developers.

• #5 - The system MUST monitor
platform operators.

• #15 – The information model of the system SHOULD comply to standardized
ontologies where possible and SHOULD try to be compatible to the data model of
the other IoT-EPI projects.
schema.org ontology is used)

• #21 – The system SHOULD allow application developers to create their own
enablers (focusing on a single domain or be cross
etc.

2015 D5.2 - Report on System Integration and
Application Implementation

Public

© Copyright 2017, the Members of the symbIoTe

Architectural view of the Automated Supply Chain showcase

Similarly to the case of Smart Mooring, we have an application here (Navigo’s Centrale
Acquisti) that exploits M2M and symbIoTe to automatically get the list of the possible
needs of goods and services on board of the Yacht, as detected by its IoT platform (for the
use case, Nextworks’ Symphony). Again, we aim to involve other third party software
vendors that provide applications similar to Centrale Acquisti: in order to simplify their
integration task, we propose the use of an enabler to mediate the interaction with

The design of this showcase was elaborated in respect of the general project
the most relevant requirements that have been taken into

IoT services MUST appear to application developers in a homogeneous
manner. Data source/identity shall be exposed to application developers.

The system MUST monitor the availability of the IoT services registered by IoT

he information model of the system SHOULD comply to standardized
ontologies where possible and SHOULD try to be compatible to the data model of

EPI projects. (In the Automated Supply Chain showcase, the
schema.org ontology is used)

The system SHOULD allow application developers to create their own
enablers (focusing on a single domain or be cross-domain), defining their own logic,

Report on System Integration and
Application Implementation

Page 80 of 96

Architectural view of the Automated Supply Chain showcase

Similarly to the case of Smart Mooring, we have an application here (Navigo’s Centrale
automatically get the list of the possible

needs of goods and services on board of the Yacht, as detected by its IoT platform (for the
use case, Nextworks’ Symphony). Again, we aim to involve other third party software

ilar to Centrale Acquisti: in order to simplify their
integration task, we propose the use of an enabler to mediate the interaction with

he general project
the most relevant requirements that have been taken into

appear to application developers in a homogeneous
manner. Data source/identity shall be exposed to application developers.

the availability of the IoT services registered by IoT

he information model of the system SHOULD comply to standardized
ontologies where possible and SHOULD try to be compatible to the data model of

In the Automated Supply Chain showcase, the

The system SHOULD allow application developers to create their own
domain), defining their own logic,

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 81 of 96
 © Copyright 2017, the Members of the symbIoTe

The use of symbIoTe in the Centrale Acquisti application will simplify how Yachtsmen can
resupply or execute maintenance tasks on the Yacht by automatically finding possible
sellers or service providers in the area, even on their first visit in the (symbIoTe enabled)
Port.

5.5.2.2 Compliance Level

This showcase can be implemented as a Level 1 compliance scenario.

5.5.2.3 Platform

Automated Supply Chain will be based on the integration in symbIoTe of the Navigo’s
business application Centrale Acquisti through an Enabler. On the Yacht side, Nextworks’
Symphony IoT platform will be used.

5.5.2.4 User Interaction

While the yacht is berthed in the "smart" port, the yachtsman connects to the Centrale
Acquisti supply chain application through a common web browser. He/she gives the
authorization to Centrale Acquisti to connect through symbIoTe to the machine data of the
boat, that automatically provides indication about needs on board, whether of maintenance
or resupply nature. Needs are expressed by identifying the categories of the possible
suppliers that might fulfil them: for this purpose the schema.org ontology will be used. For
example the schema:ElectronicsStore class will be used when some maintenance on the
electric systems of the Yacht have been identified.

The following sequence diagrams illustrates the steps through which the Automated
Supply Chain will take place (Figure 45). In details:

• The Enabler requests to acquire data from the Yacht, by invoking its two services
getMaintenanceNeedsService and getConsumableNeedsService.

• The Yacht grants access and returns its data

• The Enabler receives these data, verifies them, stops data acquisition and passes
the information to Centrale Acquisti

• Centrale Acquisti tries to find a possible match with the suppliers of goods and
services in the port area.

• It returns the yachtsman with a list of proposals

The yachtsman will manage these proposals in the Centrale Acquisti web application. No
specific GUI is needed for this showcase. The only GUIs are those of the Centrale Acquisti
application (beyond the scope of symbIoTe).

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 82 of 96
 © Copyright 2017, the Members of the symbIoTe

Figure 45: Sequence Diagram of the Automated Supply Chain showcase

5.5.2.5 Implementation

The following programming languages are used for the development of the showcase:

• Navigo Digitale IoT platform: its back-end has been developed in Python while the
front-end is a web application

• Centrale Acquisti is a PHP application, implemented with the WordPress framework

• Specific logic for the integration of Centrale Acquisti with the Enabler will be
implemented in Java.

The Navigo Digitale IoT platform already exists and its Level 1 compliance to symbIoTe is
under development. Centrale Acquisti already exists while its Enabler is currently in the
design phase.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 83 of 96
 © Copyright 2017, the Members of the symbIoTe

5.5.2.6 Initial Functional Tests

A specific test plan will be defined to cover all kinds of tests, from functional to integration
and possibly load testing.

5.6 Platforms and their Integration Status

Several existing IoT platforms are being integrated and used in before mentioned
applications, as can be seen in Figure 10 to Figure 44. The full list is given in Table 7
showing some basic information and the integration status. Details on their integration are
provided in the Appendix section.

Table 7: Information on IoT platforms and their integration status

Platform Intended
Compliance
Level

Owner Use Case Related
Applications

Integration Status

OpenIoT L1 / L2 FER Smart
Mobility

Mobile Routing
Application

openIoT is fully
integrated at
compliance Level
L1 for Release R2

Web Routing
Application

openUwedat L1 / L2 AIT Smart
Mobility

Mobile Routing
Application

Integration with
symbIoTe finished
for Release R2.
Tested with a small
specialized testing
application and with
the demo web
application.

Work still missing:
Tap into relevant
data providers for
fixed stations’ data.

Web Routing
Application

openUwedat L1 / L2 AIT Smart
Residence

Smart Healthy
Indoor Air

See Status from
the UC “Smart
Mobility”

MoBaaS L1 / L2 UW Smart
Mobility

Mobile Routing
Application

Integration with
symbIoTe done for
release 1, still
needs to be done
for release 2.

Web Routing
Application

Symphony L1 / L3 NXW Smart
Residence

Smart Area
Controller

L1 compliance
implemented

Smart Home
Comfort

Symphony L3 / L4 NXW Smart
Yachting

Portnet

Symphony is
already L1

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 84 of 96
 © Copyright 2017, the Members of the symbIoTe

Centrale
Acquisti

compliant (see use
case smart
residence).

KIOLA L1 AIT Smart
Residence

Smart Health
Mirror

L1 compliance
implementation in
progress

nAssist L1 / L2 S&C Smart
Residence

Smart Healthy
Indoor Air

symbIoTe
compliance under
development31

IOSB Building
Management

L2 IOSB Edu
Campus

Searching for a
room

L1 compliance
implementation in
progress

KIT SmartCampus L2 IOSB/KIT Edu
Campus

Searching for a
room

L1 compliance
implementation in
progress

Beacons Platform L1 WLI Smart
Stadium

Visitor
Application

Retailer
Application

Early stage of
development, as
explained in Status
from the Smart
Stadium use case.

User Platform L1 WLI Smart
Stadium

Visitor
Application

Early stage of
development, as
explained in Status
from the Smart
Stadium use case.

Promotion/Information
Platform

L1 WLI Smart
Stadium

Visitor
Application

Retailer
Application

PromoWall
Application

Early stage of
development, as
explained in Status
from the Smart
Stadium use case.

Remote ordering
platform

L1 WLI Smart
Stadium

Visitor
Application

Retailer
Application

Early stage of
development, as
explained in Status
from the Smart
Stadium use case.

Navigo Digitale L1 Navigo Smart
Yachting

Portnet

symbIoTe
compliance under
development

Centrale
Acquisti

31

 See Section 5.1.1.5

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 85 of 96
 © Copyright 2017, the Members of the symbIoTe

6 Conclusions

The Internet has already evolved into a highly innovative and competitive marketplace for
applications, services, and content. Due to the widespread access to the Internet and
availability of mobile devices, new requirements have emerged due to the growing number
of broadband users worldwide. The users are in demand of novel applications that simplify
their daily activities in various situations and environments, being that of a smart home or
accessing services when visiting shopping malls and stadiums. Moreover, the lower entry
barriers for non-technical users to become content and service providers, and the
available IoT platforms and services on the market have also added to the list of
requirements and demands. All these requirements pose new challenges and call for a
middleware solution to enable services (e.g., tracking and correlating health data from
different IoT platforms in a smart home environment) and interface points for different use
cases, application fields, and services.

This challenge is now addressed through the symbIoTe project, in which a set of defined
use cases covering different domains provide a firm basis for developing applications
running on top of the symbIoTe prototype, i.e., core services. The focus in this Deliverable
D5.2 is set on reporting the ongoing symbIoTe system integration (i.e., symbIoTe
prototype), as well as on the involved, symbIoTe compliant, applications aimed at the end
users.

In the process of system integration the symbIoTe development team has followed the
microservice architecture, thus providing a better scalability, performance and code
maintenance. This was due to the nature of providing IoT services in general, which
requires high level of distribution and performance. This has proven to be a good choice,
as was observed in the stress testing runs that included varied number of users and
concurrent request, and showing that the symbIoTe release R2 is relatively stable and that
it can handle large amount of request for medium sized datasets.

The applications related to the five Use Cases are described in detail, and ready for an
implementation and integration:

• The four Smart Residence applications cover the indoor, house environment

involving air quality control, health monitoring, and comfort and device control.

• The two Smart Mobility and Ecological Routing web and mobile applications

allow for analytical services based on collected data from several different IoT

platforms.

• EduCampus scenario is meant to ease a student’s life by, e.g., allowing booking

a room (for visiting, meeting) in a different campus.

• The five Smart Yachting and Smart Stadium applications come with

functionalities and usages involving provision of location based services, e.g.,

information of available services, purchases, offers, automatic supply chains,

etc.

• Smart Stadium in particular does not involve any specific sensors, but devices

such as smartphones, tablets and TVs, and these play as the IoT elements.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 86 of 96
 © Copyright 2017, the Members of the symbIoTe

Most of the use cases are utilizing IoT platforms at Level L1 or L2. Some use case
scenarios make use of the symbIoTe platform L3 and L4 functionality.

The follow up Deliverable, D5.4, scheduled for month 30, will address the final symbIoTe
prototype and implemented applications running on top of it.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 87 of 96
 © Copyright 2017, the Members of the symbIoTe

7 References

[1] G. Dünnebeil, “D1.1: Initial Report on Use Cases,” 2016.

[2] R. Duro and G. Dünnebeil, “D1.3: Final Specification on Use Cases and Initial Report
on Business Models,” 2016.

[3] P. Skočir, “D1.4: Final Report on System Requirements and Architecture,” 2017.

[4] R. Vitorino, K. Katsaros and J. Garcia, “D5.1: Implementation Framework,” 2016.

[5] M. Drobics, K. Kreiner and H. Leopold, “Next Generation ICT PLatform to Harmonize
Medical, Care and Lifestyle Services,” Adances in Intelligent Systems and Computing,
2016.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 88 of 96
 © Copyright 2017, the Members of the symbIoTe

8 Acronyms

AAL Ambient Assisted Living

AIT Austrian Institute of Technology GmbH

API Application Programming Interface

APP Application

ATOS ATOS Spain SA

BLE Bluetooth Low Energy Beacon

CLD Cloud Domain (symbIoTe domain layer)

CO2 Carbon Dioxide

CPS Cyber Physical Systems. A mechanism controlled or monitored by
computer-based algorithms

DoW Description of Work

eduroam EDUcation ROAMing

FER Faculty of Electrical Engineering and Computer Science, University
of Zagreb

GPS

H2020

Global Positioning System

“Horizon 2020” EU Research and Innovation Programme

HTTP Hypertext Transfer Protocol

IAQ Indoor Air Quality

ICOM Intracom Sa Telecom Solutions

ICT Information and Communication Technology

IOSB Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung
ev

IoT Internet of Things

ITU-T ITU Telecommunication Standardization Sector

JSON Javascript Object Notation, a human readable data exchange format

JVM Java Virtual Machine

KIOLA Telehealth Service Platform

KIT Karlsruhe Institute of Technology

LoRa

LoRaWAN

LoRa Alliance TechnologyLow Power Wide Area Network

MMSI Maritime Mobile Service Identity

NAVIGO Na.Vi.Go. Societa Consortile a Responsabilita Limitata

NXW Nextworks

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 89 of 96
 © Copyright 2017, the Members of the symbIoTe

OData Open Data Protocol, an open protocol to allow the creation and
consumption of queryable and interoperable RESTful APIs

openUwedat AIT’s platform to manage observations and related data

OSM Open Street Map

P2P Peer-to-Peer

PIM Platform Information Model

POI Point of Interest

RAP Resource Access Proxy

RDF Resource Description Framework, a description standard for
semantical relations

REST REpresentational State Transfer

S&C Sensing & Control Systems SL

SD Device Domain (symbIoTe domain layer)

SPARQL A query language for semantically linked data sets (see RDF)

SSP Smart Space Domain (symbIoTe domain layer)

symbIoTe Symbiosis of Smart Objects across IoT Environments

TPV Third Party Verification

ToC Table of Contents

UC Use Case

UNIDATA Unidata Spa

UNIVIE Universität Wien

UNIZG-FER Sveučilište u Zagrebu, Fakultet Elektrotehnike i Računarstva

URL Uniform Resource Locator

UW Ubiwhere Lda

VIP Vipnet d.o.o.

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 90 of 96
 © Copyright 2017, the Members of the symbIoTe

9 Appendix

9.1 Platform Integration Scenarios

There are two foreseen scenarios to integrate a platform into the cloud: The first scenario
means that you have to modify the Resource Access Proxy (RAP). The RAP includes a
class with two prepared, empty methods that you can modify to add you functionality. The
advantage of this approach is that you do not need to fiddle around with Gradle and
Spring, such that you can concentrate on the core task to add the needed functionality.
The disadvantage is that you need to modify source code of other people and, if the RAP
code is modified itself, you need to merge your changes with changes you pull from git.
Another disadvantage is that there is no explicit initialization phase for the prepared class
so if your platform needs extended initialization you are on your own here.

The alternative approach is an “external” plugin that exists in an own process. The only
constraint in this case is the API to the RAP itself, which must adhere to the predefined
channels and messages. Beyond that you have all the freedom of design you want
including using another implementation language. Of course, that also means you have all
burdens that come with that freedom.

9.1.1 “Internal Integration”: Integration of OpenIoT

OpenIoT32 has a simple interface so the integration approach is to use the “internal” plugin
(i.e. platform-specific plugin of RAP). This sub-section presents details how to set up RAP,
i.e., it shows some code examples of platform-specific plugin of RAP that process the user
request and provides data. The first two examples are based on the specific class33 that is
provided in RAP repository and can be easily extended and modified to implement
platform specific plug-in for RAP.

The PlatformSpecificPlugin class has already prepared two methods which are used in
serving data requests (the pull mode): readResourceHistory and readResource (see
Listing 1).

readResourceHistory returns all available observations for selected sensor, and
readResource returns only last measured value. The sensor is identified by the value of
resourceId field, which represents the platform-native id used during registration (i.e., the
generic part of RAP handles translation between symbIoTe id and platform-native id). The
return value is an instance of the Observation class, a helper class provided in the code
base of the symbIoTe library. The commented block provides one hardcoded example to
demonstrate to a developer how to create the Observation object (Listing 1).

32

 http://www.openiot.eu/
33

 eu.h2020.symbiote.plugin.PlatformSpecificPlugin

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 91 of 96
 © Copyright 2017, the Members of the symbIoTe

Listing 1: Configuration of RAP platform-specific plugin for pull requests.

The second example demonstrates how to set-up push mode of data delivery. This is done
in two parts, the first part sets subscription mechanism to your platform (see Listing 2) and
the second part pushes data toward an end-user using RAP (see Listing 3). The
subscription to your underlying mechanism can be called from the receiveMessage
method of the PlatformSpecificPlugin class. Within the switch/case statement a
developer can set up the subscription based on the user request. The list of resources (i.e.
sensors) which an end-user has requested to continuously receive data updates is stored
in the mess.getResourceInfoList(). The resources are identified by their platform-
native id, same as with previous example. The similar code is used to delete continuous
request, i.e., to unsubscribe from data pushes.

public List<Observation> readResourceHistory(String resourceId) {

 List<Observation> value = new ArrayList();

 // INSERT HERE: query to the platform with internal resource id

 // example

 //Observation obs1 = observationExampleValue();

 //Observation obs2 = observationExampleValue();

 //value.add(obs1);

 //value.add(obs2);

 value = getObservations(resourceId);

 return value;

}

public List<Observation> readResource(String resourceId) {

 List<Observation> value = new ArrayList();

 value.add(getObservations(resourceId).get(0));

 return value;

}

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 92 of 96
 © Copyright 2017, the Members of the symbIoTe

Listing 2: Configuration of RAP platform-specific plugin for processing subscription

requests

Data push is done upon receiving a data update, and the example is presented on the
following code snippet. RAP pushes to end-users instances of Observation class, so if
the underlying subscription mechanism returns different data objects it is necessary to
create an Observation class from them. The rabbitMQ details where the generic part of
RAP expects data updates is provided in the example.

Listing 3: Configuration of RAP platform-specific plugin for push notification delivery

Observation pushObs = receivedDataUpdate();

ObjectMapper mapper = new ObjectMapper();

mapper.configure(SerializationFeature.INDENT_OUTPUT, true);

mapper.setSerializationInclusion(JsonInclude.Include.NON_EMPTY);

byte[] dissMSG = mapper.writeValueAsBytes(pushObs);

TopicExchange t = new TopicExchange("symbIoTe.rapPluginExchange-

notification");

rabbitTemplate.convertAndSend(t.getName(), "symbIoTe.rapPluginExchange.plugin-

notification", dissMSG);

public String receiveMessage(String message) {

 ...

 switch (access) {

 ...

 case SUBSCRIBE: {

 // insert here subscription to resource

 ResourceAccessSubscribeMessage mess =

(ResourceAccessSubscribeMessage) msg;

 log.info("Subscription requested");

 if (subscribe(mess.getResourceInfoList())) {

 log.info("Subscription successful");

 }

 break;

 }

 case UNSUBSCRIBE: {

 // insert here unsubscription to resource

 ResourceAccessSubscribeMessage mess =

(ResourceAccessSubscribeMessage) msg;

 log.info("Unsubscription requested");

 if (unsubscribe(mess.getResourceInfoList())) {

 log.info("Unsubscription successful");

 }

 break;

 }

...

}

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 93 of 96
 © Copyright 2017, the Members of the symbIoTe

9.1.2 “External integration”: Integration of openUwedat

For several reasons openUwedat34 chose the path of an “external” plugin. These reasons
were partly technical. Especially the not existing “init” phase was a showstopper for the
“internal” approach. Other influences for the decision were more personal like inexperience
with the spring framework by the integrator.

At the editorial deadline of this deliverable openUwedats implemented just the reading of
measurements in pull mode. Implementing push mode is planned for the near future.

9.1.2.1 Technical environment

openUwedat uses the Jackson package to convert from java to JSON and back.

The general approach is very similar to the one chosen by openIoT. The major difference
is that the openUwedatRAPPlugin runs in its own process. The communication via
RabbitMQ between the RAP and the plugin is the same. One major difference though is
that openUwedat needed to write its own support environment to handle RabbitMQ
connections.

Where ever possible classes from the symbIoTe library where taken as containers to
prepare JSON. Unfortunately the communication between the RAP and is not covered by
classes from that library35. As a workaround the RAP itself was placed on the class path as
well at compile time as at runtime.

9.1.2.2 Registring the plugin

Registering the platform is easy. You create a new instance of a class named
RegisterPluginMessage, convert that to JSON and send it via RabbitMQ.

The essence of that code is shown in Listing 4.

34

 https://www.ait.ac.at/en/research-fields/environmental-and-crisis-disaster-management/uwedat/
35

 This issue is filed in JIRA under SYM-322

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 94 of 96
 © Copyright 2017, the Members of the symbIoTe

Listing 4: Code to register plugin

9.1.2.3 Providing measurements

To provide measurements a callback routine was registered with RabbitMQ. This callback
is activated on incoming requests from the RAP. (Listing 5)

public static void registerPlugin(Connection conn, String plugin_platform_id,

boolean hasNotifications, boolean hasFilters) {

 try {

 RegisterPluginMessage msg = new

RegisterPluginMessage(plugin_platform_id, hasNotifications, hasFilters);

 ObjectMapper mapper = new ObjectMapper();

 mapper.configure(SerializationFeature.INDENT_OUTPUT, true);

 mapper.setSerializationInclusion(JsonInclude.Include.NON_EMPTY);

 String json = mapper.writeValueAsString(msg);

 Channel channel=conn.createChannel();

 byte[] rawMessage=json.getBytes("UTF-8");

 AMQP.BasicProperties messageProperties

 =new AMQP.BasicProperties.Builder()

 .contentEncoding("UTF-8")

 .deliveryMode(2)

 .build();

 channel.basicPublish("symbIoTe.rapPluginExchange",

"symbIoTe.rapPluginExchange.add-plugin", messageProperties, rawMessage);

 } catch (Exception e) {

 …

 }

 }

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 95 of 96
 © Copyright 2017, the Members of the symbIoTe

Listing 5: Provide data through RabbitMQ

Decoding and handling of the request is done in another routine which looks as follows:

private static void registerAndArmAccessCallback(Connection conn) throws IOException

{

 Channel channel=conn.createChannel();

 channel.exchangeDeclare("plugin-exchange", "topic");

 String queueName = "RAPPlugin.openUwedat";

 channel.queueDeclare(queueName, false, true, true, null);

 channel.queueBind(queueName, "plugin-exchange", "get"); // TODO: add more

routing keys here

 Consumer consumer = new DefaultConsumer(channel) {

 @Override

 public void handleDelivery(String consumerTag, Envelope envelope,

AMQP.BasicProperties properties, byte[] body)

 throws IOException {

 /**

 * This routine handles incoming messages, tries to get a

response and sends it back to the initiator of the incoming message.

 */

 String jsonReply=openUwedatRAPMain.handleRequests(consumerTag,

envelope, properties, body);

 AMQP.BasicProperties replyProps = new AMQP.BasicProperties

 .Builder()

 .correlationId(properties.getCorrelationId())

 .contentType("text/plain")

 .build();

 Channel channelReply=channel;

 channelReply.basicQos(1);

 channelReply.basicPublish("", properties.getReplyTo(), replyProps,

jsonReply.getBytes("UTF-8"));

 return;

 }

 };

 String consumerTag=channel.basicConsume(queueName, true, consumer);

 System.out.println("Bound to the queue with consumer tag "+consumerTag);

 }

688156 - symbIoTe - H2020-ICT-2015 D5.2 - Report on System Integration and
Application Implementation

 Public

Version 0.20 Page 96 of 96
 © Copyright 2017, the Members of the symbIoTe

The routines readResource, readResourceHistory and writeResource are already
openUwedat specific.

protected static String handleRequests(String consumerTag, Envelope envelope,

BasicProperties properties,

 byte[] body) throws UnsupportedEncodingException {

 String json = "";

 String message="";

 try {

 message=new String(body, "UTF-8");

 System.out.println("Handling a request for a message of "+message);

 ObjectMapper mapper = new ObjectMapper();

 ResourceAccessMessage msg = mapper.readValue(message,

ResourceAccessMessage.class);

 ResourceAccessMessage.AccessType access = msg.getAccessType();

 switch(access) {

 case GET:

 ResourceAccessGetMessage getMsg=(ResourceAccessGetMessage)msg;

 ResourceInfo info = getMsg.getResourceInfo();

 List<Observation> observationList =

readResource(info.getInternalId());

 json = mapper.writeValueAsString(observationList);

 break;

 case HISTORY:

// List<Observation> observationLst =

readResourceHistory(info.getPlatformResourceId());

// json = mapper.writeValueAsString(observationLst);

 throw new Exception("Access type " + access.toString() + " not

yet supported");

 case SET:

// ResourceAccessSetMessage mess = (ResourceAccessSetMessage)msg;

// writeResource(info.getPlatformResourceId(), mess.getValue());

 throw new Exception("Access type " + access.toString() + " not

yet supported");

 }

 } catch (Exception e) {

 System.err.println("Error while processing message:\n" + message + "\n"

+ e);

 }

 return json;

 }

